6caad8bea8aa8b6894c2f9d68a3a07436db2a58e
[deliverable/linux.git] / fs / f2fs / inline.c
1 /*
2 * fs/f2fs/inline.c
3 * Copyright (c) 2013, Intel Corporation
4 * Authors: Huajun Li <huajun.li@intel.com>
5 * Haicheng Li <haicheng.li@intel.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13
14 #include "f2fs.h"
15 #include "node.h"
16
17 bool f2fs_may_inline_data(struct inode *inode)
18 {
19 if (f2fs_is_atomic_file(inode))
20 return false;
21
22 if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
23 return false;
24
25 if (i_size_read(inode) > MAX_INLINE_DATA)
26 return false;
27
28 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
29 return false;
30
31 return true;
32 }
33
34 bool f2fs_may_inline_dentry(struct inode *inode)
35 {
36 if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
37 return false;
38
39 if (!S_ISDIR(inode->i_mode))
40 return false;
41
42 return true;
43 }
44
45 void read_inline_data(struct page *page, struct page *ipage)
46 {
47 void *src_addr, *dst_addr;
48
49 if (PageUptodate(page))
50 return;
51
52 f2fs_bug_on(F2FS_P_SB(page), page->index);
53
54 zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
55
56 /* Copy the whole inline data block */
57 src_addr = inline_data_addr(ipage);
58 dst_addr = kmap_atomic(page);
59 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
60 flush_dcache_page(page);
61 kunmap_atomic(dst_addr);
62 SetPageUptodate(page);
63 }
64
65 bool truncate_inline_inode(struct page *ipage, u64 from)
66 {
67 void *addr;
68
69 if (from >= MAX_INLINE_DATA)
70 return false;
71
72 addr = inline_data_addr(ipage);
73
74 f2fs_wait_on_page_writeback(ipage, NODE, true);
75 memset(addr + from, 0, MAX_INLINE_DATA - from);
76
77 return true;
78 }
79
80 int f2fs_read_inline_data(struct inode *inode, struct page *page)
81 {
82 struct page *ipage;
83
84 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
85 if (IS_ERR(ipage)) {
86 unlock_page(page);
87 return PTR_ERR(ipage);
88 }
89
90 if (!f2fs_has_inline_data(inode)) {
91 f2fs_put_page(ipage, 1);
92 return -EAGAIN;
93 }
94
95 if (page->index)
96 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
97 else
98 read_inline_data(page, ipage);
99
100 SetPageUptodate(page);
101 f2fs_put_page(ipage, 1);
102 unlock_page(page);
103 return 0;
104 }
105
106 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
107 {
108 struct f2fs_io_info fio = {
109 .sbi = F2FS_I_SB(dn->inode),
110 .type = DATA,
111 .rw = WRITE_SYNC | REQ_PRIO,
112 .page = page,
113 .encrypted_page = NULL,
114 };
115 int dirty, err;
116
117 if (!f2fs_exist_data(dn->inode))
118 goto clear_out;
119
120 err = f2fs_reserve_block(dn, 0);
121 if (err)
122 return err;
123
124 f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page));
125
126 read_inline_data(page, dn->inode_page);
127 set_page_dirty(page);
128
129 /* clear dirty state */
130 dirty = clear_page_dirty_for_io(page);
131
132 /* write data page to try to make data consistent */
133 set_page_writeback(page);
134 fio.blk_addr = dn->data_blkaddr;
135 write_data_page(dn, &fio);
136 set_data_blkaddr(dn);
137 f2fs_update_extent_cache(dn);
138 f2fs_wait_on_page_writeback(page, DATA, true);
139 if (dirty)
140 inode_dec_dirty_pages(dn->inode);
141
142 /* this converted inline_data should be recovered. */
143 set_inode_flag(F2FS_I(dn->inode), FI_APPEND_WRITE);
144
145 /* clear inline data and flag after data writeback */
146 truncate_inline_inode(dn->inode_page, 0);
147 clear_inline_node(dn->inode_page);
148 clear_out:
149 stat_dec_inline_inode(dn->inode);
150 f2fs_clear_inline_inode(dn->inode);
151 sync_inode_page(dn);
152 f2fs_put_dnode(dn);
153 return 0;
154 }
155
156 int f2fs_convert_inline_inode(struct inode *inode)
157 {
158 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
159 struct dnode_of_data dn;
160 struct page *ipage, *page;
161 int err = 0;
162
163 if (!f2fs_has_inline_data(inode))
164 return 0;
165
166 page = grab_cache_page(inode->i_mapping, 0);
167 if (!page)
168 return -ENOMEM;
169
170 f2fs_lock_op(sbi);
171
172 ipage = get_node_page(sbi, inode->i_ino);
173 if (IS_ERR(ipage)) {
174 err = PTR_ERR(ipage);
175 goto out;
176 }
177
178 set_new_dnode(&dn, inode, ipage, ipage, 0);
179
180 if (f2fs_has_inline_data(inode))
181 err = f2fs_convert_inline_page(&dn, page);
182
183 f2fs_put_dnode(&dn);
184 out:
185 f2fs_unlock_op(sbi);
186
187 f2fs_put_page(page, 1);
188
189 f2fs_balance_fs(sbi, dn.node_changed);
190
191 return err;
192 }
193
194 int f2fs_write_inline_data(struct inode *inode, struct page *page)
195 {
196 void *src_addr, *dst_addr;
197 struct dnode_of_data dn;
198 int err;
199
200 set_new_dnode(&dn, inode, NULL, NULL, 0);
201 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
202 if (err)
203 return err;
204
205 if (!f2fs_has_inline_data(inode)) {
206 f2fs_put_dnode(&dn);
207 return -EAGAIN;
208 }
209
210 f2fs_bug_on(F2FS_I_SB(inode), page->index);
211
212 f2fs_wait_on_page_writeback(dn.inode_page, NODE, true);
213 src_addr = kmap_atomic(page);
214 dst_addr = inline_data_addr(dn.inode_page);
215 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
216 kunmap_atomic(src_addr);
217
218 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
219 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
220
221 sync_inode_page(&dn);
222 clear_inline_node(dn.inode_page);
223 f2fs_put_dnode(&dn);
224 return 0;
225 }
226
227 bool recover_inline_data(struct inode *inode, struct page *npage)
228 {
229 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
230 struct f2fs_inode *ri = NULL;
231 void *src_addr, *dst_addr;
232 struct page *ipage;
233
234 /*
235 * The inline_data recovery policy is as follows.
236 * [prev.] [next] of inline_data flag
237 * o o -> recover inline_data
238 * o x -> remove inline_data, and then recover data blocks
239 * x o -> remove inline_data, and then recover inline_data
240 * x x -> recover data blocks
241 */
242 if (IS_INODE(npage))
243 ri = F2FS_INODE(npage);
244
245 if (f2fs_has_inline_data(inode) &&
246 ri && (ri->i_inline & F2FS_INLINE_DATA)) {
247 process_inline:
248 ipage = get_node_page(sbi, inode->i_ino);
249 f2fs_bug_on(sbi, IS_ERR(ipage));
250
251 f2fs_wait_on_page_writeback(ipage, NODE, true);
252
253 src_addr = inline_data_addr(npage);
254 dst_addr = inline_data_addr(ipage);
255 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
256
257 set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
258 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
259
260 update_inode(inode, ipage);
261 f2fs_put_page(ipage, 1);
262 return true;
263 }
264
265 if (f2fs_has_inline_data(inode)) {
266 ipage = get_node_page(sbi, inode->i_ino);
267 f2fs_bug_on(sbi, IS_ERR(ipage));
268 if (!truncate_inline_inode(ipage, 0))
269 return false;
270 f2fs_clear_inline_inode(inode);
271 update_inode(inode, ipage);
272 f2fs_put_page(ipage, 1);
273 } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
274 if (truncate_blocks(inode, 0, false))
275 return false;
276 goto process_inline;
277 }
278 return false;
279 }
280
281 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
282 struct f2fs_filename *fname, struct page **res_page)
283 {
284 struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
285 struct f2fs_inline_dentry *inline_dentry;
286 struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
287 struct f2fs_dir_entry *de;
288 struct f2fs_dentry_ptr d;
289 struct page *ipage;
290 f2fs_hash_t namehash;
291
292 ipage = get_node_page(sbi, dir->i_ino);
293 if (IS_ERR(ipage))
294 return NULL;
295
296 namehash = f2fs_dentry_hash(&name);
297
298 inline_dentry = inline_data_addr(ipage);
299
300 make_dentry_ptr(NULL, &d, (void *)inline_dentry, 2);
301 de = find_target_dentry(fname, namehash, NULL, &d);
302 unlock_page(ipage);
303 if (de)
304 *res_page = ipage;
305 else
306 f2fs_put_page(ipage, 0);
307
308 /*
309 * For the most part, it should be a bug when name_len is zero.
310 * We stop here for figuring out where the bugs has occurred.
311 */
312 f2fs_bug_on(sbi, d.max < 0);
313 return de;
314 }
315
316 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *dir,
317 struct page **p)
318 {
319 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
320 struct page *ipage;
321 struct f2fs_dir_entry *de;
322 struct f2fs_inline_dentry *dentry_blk;
323
324 ipage = get_node_page(sbi, dir->i_ino);
325 if (IS_ERR(ipage))
326 return NULL;
327
328 dentry_blk = inline_data_addr(ipage);
329 de = &dentry_blk->dentry[1];
330 *p = ipage;
331 unlock_page(ipage);
332 return de;
333 }
334
335 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
336 struct page *ipage)
337 {
338 struct f2fs_inline_dentry *dentry_blk;
339 struct f2fs_dentry_ptr d;
340
341 dentry_blk = inline_data_addr(ipage);
342
343 make_dentry_ptr(NULL, &d, (void *)dentry_blk, 2);
344 do_make_empty_dir(inode, parent, &d);
345
346 set_page_dirty(ipage);
347
348 /* update i_size to MAX_INLINE_DATA */
349 if (i_size_read(inode) < MAX_INLINE_DATA) {
350 i_size_write(inode, MAX_INLINE_DATA);
351 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
352 }
353 return 0;
354 }
355
356 /*
357 * NOTE: ipage is grabbed by caller, but if any error occurs, we should
358 * release ipage in this function.
359 */
360 static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
361 struct f2fs_inline_dentry *inline_dentry)
362 {
363 struct page *page;
364 struct dnode_of_data dn;
365 struct f2fs_dentry_block *dentry_blk;
366 int err;
367
368 page = grab_cache_page(dir->i_mapping, 0);
369 if (!page) {
370 f2fs_put_page(ipage, 1);
371 return -ENOMEM;
372 }
373
374 set_new_dnode(&dn, dir, ipage, NULL, 0);
375 err = f2fs_reserve_block(&dn, 0);
376 if (err)
377 goto out;
378
379 f2fs_wait_on_page_writeback(page, DATA, true);
380 zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
381
382 dentry_blk = kmap_atomic(page);
383
384 /* copy data from inline dentry block to new dentry block */
385 memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
386 INLINE_DENTRY_BITMAP_SIZE);
387 memset(dentry_blk->dentry_bitmap + INLINE_DENTRY_BITMAP_SIZE, 0,
388 SIZE_OF_DENTRY_BITMAP - INLINE_DENTRY_BITMAP_SIZE);
389 /*
390 * we do not need to zero out remainder part of dentry and filename
391 * field, since we have used bitmap for marking the usage status of
392 * them, besides, we can also ignore copying/zeroing reserved space
393 * of dentry block, because them haven't been used so far.
394 */
395 memcpy(dentry_blk->dentry, inline_dentry->dentry,
396 sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
397 memcpy(dentry_blk->filename, inline_dentry->filename,
398 NR_INLINE_DENTRY * F2FS_SLOT_LEN);
399
400 kunmap_atomic(dentry_blk);
401 SetPageUptodate(page);
402 set_page_dirty(page);
403
404 /* clear inline dir and flag after data writeback */
405 truncate_inline_inode(ipage, 0);
406
407 stat_dec_inline_dir(dir);
408 clear_inode_flag(F2FS_I(dir), FI_INLINE_DENTRY);
409
410 if (i_size_read(dir) < PAGE_CACHE_SIZE) {
411 i_size_write(dir, PAGE_CACHE_SIZE);
412 set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
413 }
414
415 sync_inode_page(&dn);
416 out:
417 f2fs_put_page(page, 1);
418 return err;
419 }
420
421 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *name,
422 struct inode *inode, nid_t ino, umode_t mode)
423 {
424 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
425 struct page *ipage;
426 unsigned int bit_pos;
427 f2fs_hash_t name_hash;
428 size_t namelen = name->len;
429 struct f2fs_inline_dentry *dentry_blk = NULL;
430 struct f2fs_dentry_ptr d;
431 int slots = GET_DENTRY_SLOTS(namelen);
432 struct page *page = NULL;
433 int err = 0;
434
435 ipage = get_node_page(sbi, dir->i_ino);
436 if (IS_ERR(ipage))
437 return PTR_ERR(ipage);
438
439 dentry_blk = inline_data_addr(ipage);
440 bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
441 slots, NR_INLINE_DENTRY);
442 if (bit_pos >= NR_INLINE_DENTRY) {
443 err = f2fs_convert_inline_dir(dir, ipage, dentry_blk);
444 if (err)
445 return err;
446 err = -EAGAIN;
447 goto out;
448 }
449
450 if (inode) {
451 down_write(&F2FS_I(inode)->i_sem);
452 page = init_inode_metadata(inode, dir, name, ipage);
453 if (IS_ERR(page)) {
454 err = PTR_ERR(page);
455 goto fail;
456 }
457 }
458
459 f2fs_wait_on_page_writeback(ipage, NODE, true);
460
461 name_hash = f2fs_dentry_hash(name);
462 make_dentry_ptr(NULL, &d, (void *)dentry_blk, 2);
463 f2fs_update_dentry(ino, mode, &d, name, name_hash, bit_pos);
464
465 set_page_dirty(ipage);
466
467 /* we don't need to mark_inode_dirty now */
468 if (inode) {
469 F2FS_I(inode)->i_pino = dir->i_ino;
470 update_inode(inode, page);
471 f2fs_put_page(page, 1);
472 }
473
474 update_parent_metadata(dir, inode, 0);
475 fail:
476 if (inode)
477 up_write(&F2FS_I(inode)->i_sem);
478
479 if (is_inode_flag_set(F2FS_I(dir), FI_UPDATE_DIR)) {
480 update_inode(dir, ipage);
481 clear_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
482 }
483 out:
484 f2fs_put_page(ipage, 1);
485 return err;
486 }
487
488 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
489 struct inode *dir, struct inode *inode)
490 {
491 struct f2fs_inline_dentry *inline_dentry;
492 int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
493 unsigned int bit_pos;
494 int i;
495
496 lock_page(page);
497 f2fs_wait_on_page_writeback(page, NODE, true);
498
499 inline_dentry = inline_data_addr(page);
500 bit_pos = dentry - inline_dentry->dentry;
501 for (i = 0; i < slots; i++)
502 test_and_clear_bit_le(bit_pos + i,
503 &inline_dentry->dentry_bitmap);
504
505 set_page_dirty(page);
506
507 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
508
509 if (inode)
510 f2fs_drop_nlink(dir, inode, page);
511
512 f2fs_put_page(page, 1);
513 }
514
515 bool f2fs_empty_inline_dir(struct inode *dir)
516 {
517 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
518 struct page *ipage;
519 unsigned int bit_pos = 2;
520 struct f2fs_inline_dentry *dentry_blk;
521
522 ipage = get_node_page(sbi, dir->i_ino);
523 if (IS_ERR(ipage))
524 return false;
525
526 dentry_blk = inline_data_addr(ipage);
527 bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
528 NR_INLINE_DENTRY,
529 bit_pos);
530
531 f2fs_put_page(ipage, 1);
532
533 if (bit_pos < NR_INLINE_DENTRY)
534 return false;
535
536 return true;
537 }
538
539 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
540 struct f2fs_str *fstr)
541 {
542 struct inode *inode = file_inode(file);
543 struct f2fs_inline_dentry *inline_dentry = NULL;
544 struct page *ipage = NULL;
545 struct f2fs_dentry_ptr d;
546
547 if (ctx->pos == NR_INLINE_DENTRY)
548 return 0;
549
550 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
551 if (IS_ERR(ipage))
552 return PTR_ERR(ipage);
553
554 inline_dentry = inline_data_addr(ipage);
555
556 make_dentry_ptr(inode, &d, (void *)inline_dentry, 2);
557
558 if (!f2fs_fill_dentries(ctx, &d, 0, fstr))
559 ctx->pos = NR_INLINE_DENTRY;
560
561 f2fs_put_page(ipage, 1);
562 return 0;
563 }
564
565 int f2fs_inline_data_fiemap(struct inode *inode,
566 struct fiemap_extent_info *fieinfo, __u64 start, __u64 len)
567 {
568 __u64 byteaddr, ilen;
569 __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED |
570 FIEMAP_EXTENT_LAST;
571 struct node_info ni;
572 struct page *ipage;
573 int err = 0;
574
575 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
576 if (IS_ERR(ipage))
577 return PTR_ERR(ipage);
578
579 if (!f2fs_has_inline_data(inode)) {
580 err = -EAGAIN;
581 goto out;
582 }
583
584 ilen = min_t(size_t, MAX_INLINE_DATA, i_size_read(inode));
585 if (start >= ilen)
586 goto out;
587 if (start + len < ilen)
588 ilen = start + len;
589 ilen -= start;
590
591 get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni);
592 byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits;
593 byteaddr += (char *)inline_data_addr(ipage) - (char *)F2FS_INODE(ipage);
594 err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags);
595 out:
596 f2fs_put_page(ipage, 1);
597 return err;
598 }
This page took 0.042453 seconds and 4 git commands to generate.