f2fs crypto: add encryption support in read/write paths
[deliverable/linux.git] / fs / f2fs / inline.c
1 /*
2 * fs/f2fs/inline.c
3 * Copyright (c) 2013, Intel Corporation
4 * Authors: Huajun Li <huajun.li@intel.com>
5 * Haicheng Li <haicheng.li@intel.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13
14 #include "f2fs.h"
15
16 bool f2fs_may_inline_data(struct inode *inode)
17 {
18 if (!test_opt(F2FS_I_SB(inode), INLINE_DATA))
19 return false;
20
21 if (f2fs_is_atomic_file(inode))
22 return false;
23
24 if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
25 return false;
26
27 if (i_size_read(inode) > MAX_INLINE_DATA)
28 return false;
29
30 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
31 return false;
32
33 return true;
34 }
35
36 bool f2fs_may_inline_dentry(struct inode *inode)
37 {
38 if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
39 return false;
40
41 if (!S_ISDIR(inode->i_mode))
42 return false;
43
44 return true;
45 }
46
47 void read_inline_data(struct page *page, struct page *ipage)
48 {
49 void *src_addr, *dst_addr;
50
51 if (PageUptodate(page))
52 return;
53
54 f2fs_bug_on(F2FS_P_SB(page), page->index);
55
56 zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
57
58 /* Copy the whole inline data block */
59 src_addr = inline_data_addr(ipage);
60 dst_addr = kmap_atomic(page);
61 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
62 flush_dcache_page(page);
63 kunmap_atomic(dst_addr);
64 SetPageUptodate(page);
65 }
66
67 bool truncate_inline_inode(struct page *ipage, u64 from)
68 {
69 void *addr;
70
71 if (from >= MAX_INLINE_DATA)
72 return false;
73
74 addr = inline_data_addr(ipage);
75
76 f2fs_wait_on_page_writeback(ipage, NODE);
77 memset(addr + from, 0, MAX_INLINE_DATA - from);
78
79 return true;
80 }
81
82 int f2fs_read_inline_data(struct inode *inode, struct page *page)
83 {
84 struct page *ipage;
85
86 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
87 if (IS_ERR(ipage)) {
88 unlock_page(page);
89 return PTR_ERR(ipage);
90 }
91
92 if (!f2fs_has_inline_data(inode)) {
93 f2fs_put_page(ipage, 1);
94 return -EAGAIN;
95 }
96
97 if (page->index)
98 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
99 else
100 read_inline_data(page, ipage);
101
102 SetPageUptodate(page);
103 f2fs_put_page(ipage, 1);
104 unlock_page(page);
105 return 0;
106 }
107
108 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
109 {
110 void *src_addr, *dst_addr;
111 struct f2fs_io_info fio = {
112 .sbi = F2FS_I_SB(dn->inode),
113 .type = DATA,
114 .rw = WRITE_SYNC | REQ_PRIO,
115 .page = page,
116 .encrypted_page = NULL,
117 };
118 int dirty, err;
119
120 f2fs_bug_on(F2FS_I_SB(dn->inode), page->index);
121
122 if (!f2fs_exist_data(dn->inode))
123 goto clear_out;
124
125 err = f2fs_reserve_block(dn, 0);
126 if (err)
127 return err;
128
129 f2fs_wait_on_page_writeback(page, DATA);
130
131 if (PageUptodate(page))
132 goto no_update;
133
134 zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
135
136 /* Copy the whole inline data block */
137 src_addr = inline_data_addr(dn->inode_page);
138 dst_addr = kmap_atomic(page);
139 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
140 flush_dcache_page(page);
141 kunmap_atomic(dst_addr);
142 SetPageUptodate(page);
143 no_update:
144 /* clear dirty state */
145 dirty = clear_page_dirty_for_io(page);
146
147 /* write data page to try to make data consistent */
148 set_page_writeback(page);
149 fio.blk_addr = dn->data_blkaddr;
150 write_data_page(dn, &fio);
151 set_data_blkaddr(dn);
152 f2fs_update_extent_cache(dn);
153 f2fs_wait_on_page_writeback(page, DATA);
154 if (dirty)
155 inode_dec_dirty_pages(dn->inode);
156
157 /* this converted inline_data should be recovered. */
158 set_inode_flag(F2FS_I(dn->inode), FI_APPEND_WRITE);
159
160 /* clear inline data and flag after data writeback */
161 truncate_inline_inode(dn->inode_page, 0);
162 clear_out:
163 stat_dec_inline_inode(dn->inode);
164 f2fs_clear_inline_inode(dn->inode);
165 sync_inode_page(dn);
166 f2fs_put_dnode(dn);
167 return 0;
168 }
169
170 int f2fs_convert_inline_inode(struct inode *inode)
171 {
172 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
173 struct dnode_of_data dn;
174 struct page *ipage, *page;
175 int err = 0;
176
177 page = grab_cache_page(inode->i_mapping, 0);
178 if (!page)
179 return -ENOMEM;
180
181 f2fs_lock_op(sbi);
182
183 ipage = get_node_page(sbi, inode->i_ino);
184 if (IS_ERR(ipage)) {
185 err = PTR_ERR(ipage);
186 goto out;
187 }
188
189 set_new_dnode(&dn, inode, ipage, ipage, 0);
190
191 if (f2fs_has_inline_data(inode))
192 err = f2fs_convert_inline_page(&dn, page);
193
194 f2fs_put_dnode(&dn);
195 out:
196 f2fs_unlock_op(sbi);
197
198 f2fs_put_page(page, 1);
199 return err;
200 }
201
202 int f2fs_write_inline_data(struct inode *inode, struct page *page)
203 {
204 void *src_addr, *dst_addr;
205 struct dnode_of_data dn;
206 int err;
207
208 set_new_dnode(&dn, inode, NULL, NULL, 0);
209 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
210 if (err)
211 return err;
212
213 if (!f2fs_has_inline_data(inode)) {
214 f2fs_put_dnode(&dn);
215 return -EAGAIN;
216 }
217
218 f2fs_bug_on(F2FS_I_SB(inode), page->index);
219
220 f2fs_wait_on_page_writeback(dn.inode_page, NODE);
221 src_addr = kmap_atomic(page);
222 dst_addr = inline_data_addr(dn.inode_page);
223 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
224 kunmap_atomic(src_addr);
225
226 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
227 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
228
229 sync_inode_page(&dn);
230 f2fs_put_dnode(&dn);
231 return 0;
232 }
233
234 bool recover_inline_data(struct inode *inode, struct page *npage)
235 {
236 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
237 struct f2fs_inode *ri = NULL;
238 void *src_addr, *dst_addr;
239 struct page *ipage;
240
241 /*
242 * The inline_data recovery policy is as follows.
243 * [prev.] [next] of inline_data flag
244 * o o -> recover inline_data
245 * o x -> remove inline_data, and then recover data blocks
246 * x o -> remove inline_data, and then recover inline_data
247 * x x -> recover data blocks
248 */
249 if (IS_INODE(npage))
250 ri = F2FS_INODE(npage);
251
252 if (f2fs_has_inline_data(inode) &&
253 ri && (ri->i_inline & F2FS_INLINE_DATA)) {
254 process_inline:
255 ipage = get_node_page(sbi, inode->i_ino);
256 f2fs_bug_on(sbi, IS_ERR(ipage));
257
258 f2fs_wait_on_page_writeback(ipage, NODE);
259
260 src_addr = inline_data_addr(npage);
261 dst_addr = inline_data_addr(ipage);
262 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
263
264 set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
265 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
266
267 update_inode(inode, ipage);
268 f2fs_put_page(ipage, 1);
269 return true;
270 }
271
272 if (f2fs_has_inline_data(inode)) {
273 ipage = get_node_page(sbi, inode->i_ino);
274 f2fs_bug_on(sbi, IS_ERR(ipage));
275 truncate_inline_inode(ipage, 0);
276 f2fs_clear_inline_inode(inode);
277 update_inode(inode, ipage);
278 f2fs_put_page(ipage, 1);
279 } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
280 truncate_blocks(inode, 0, false);
281 goto process_inline;
282 }
283 return false;
284 }
285
286 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
287 struct qstr *name, struct page **res_page)
288 {
289 struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
290 struct f2fs_inline_dentry *inline_dentry;
291 struct f2fs_dir_entry *de;
292 struct f2fs_dentry_ptr d;
293 struct page *ipage;
294
295 ipage = get_node_page(sbi, dir->i_ino);
296 if (IS_ERR(ipage))
297 return NULL;
298
299 inline_dentry = inline_data_addr(ipage);
300
301 make_dentry_ptr(&d, (void *)inline_dentry, 2);
302 de = find_target_dentry(name, NULL, &d);
303
304 unlock_page(ipage);
305 if (de)
306 *res_page = ipage;
307 else
308 f2fs_put_page(ipage, 0);
309
310 /*
311 * For the most part, it should be a bug when name_len is zero.
312 * We stop here for figuring out where the bugs has occurred.
313 */
314 f2fs_bug_on(sbi, d.max < 0);
315 return de;
316 }
317
318 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *dir,
319 struct page **p)
320 {
321 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
322 struct page *ipage;
323 struct f2fs_dir_entry *de;
324 struct f2fs_inline_dentry *dentry_blk;
325
326 ipage = get_node_page(sbi, dir->i_ino);
327 if (IS_ERR(ipage))
328 return NULL;
329
330 dentry_blk = inline_data_addr(ipage);
331 de = &dentry_blk->dentry[1];
332 *p = ipage;
333 unlock_page(ipage);
334 return de;
335 }
336
337 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
338 struct page *ipage)
339 {
340 struct f2fs_inline_dentry *dentry_blk;
341 struct f2fs_dentry_ptr d;
342
343 dentry_blk = inline_data_addr(ipage);
344
345 make_dentry_ptr(&d, (void *)dentry_blk, 2);
346 do_make_empty_dir(inode, parent, &d);
347
348 set_page_dirty(ipage);
349
350 /* update i_size to MAX_INLINE_DATA */
351 if (i_size_read(inode) < MAX_INLINE_DATA) {
352 i_size_write(inode, MAX_INLINE_DATA);
353 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
354 }
355 return 0;
356 }
357
358 static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
359 struct f2fs_inline_dentry *inline_dentry)
360 {
361 struct page *page;
362 struct dnode_of_data dn;
363 struct f2fs_dentry_block *dentry_blk;
364 int err;
365
366 page = grab_cache_page(dir->i_mapping, 0);
367 if (!page)
368 return -ENOMEM;
369
370 set_new_dnode(&dn, dir, ipage, NULL, 0);
371 err = f2fs_reserve_block(&dn, 0);
372 if (err)
373 goto out;
374
375 f2fs_wait_on_page_writeback(page, DATA);
376 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
377
378 dentry_blk = kmap_atomic(page);
379
380 /* copy data from inline dentry block to new dentry block */
381 memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
382 INLINE_DENTRY_BITMAP_SIZE);
383 memcpy(dentry_blk->dentry, inline_dentry->dentry,
384 sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
385 memcpy(dentry_blk->filename, inline_dentry->filename,
386 NR_INLINE_DENTRY * F2FS_SLOT_LEN);
387
388 kunmap_atomic(dentry_blk);
389 SetPageUptodate(page);
390 set_page_dirty(page);
391
392 /* clear inline dir and flag after data writeback */
393 truncate_inline_inode(ipage, 0);
394
395 stat_dec_inline_dir(dir);
396 clear_inode_flag(F2FS_I(dir), FI_INLINE_DENTRY);
397
398 if (i_size_read(dir) < PAGE_CACHE_SIZE) {
399 i_size_write(dir, PAGE_CACHE_SIZE);
400 set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
401 }
402
403 sync_inode_page(&dn);
404 out:
405 f2fs_put_page(page, 1);
406 return err;
407 }
408
409 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *name,
410 struct inode *inode, nid_t ino, umode_t mode)
411 {
412 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
413 struct page *ipage;
414 unsigned int bit_pos;
415 f2fs_hash_t name_hash;
416 size_t namelen = name->len;
417 struct f2fs_inline_dentry *dentry_blk = NULL;
418 struct f2fs_dentry_ptr d;
419 int slots = GET_DENTRY_SLOTS(namelen);
420 struct page *page = NULL;
421 int err = 0;
422
423 ipage = get_node_page(sbi, dir->i_ino);
424 if (IS_ERR(ipage))
425 return PTR_ERR(ipage);
426
427 dentry_blk = inline_data_addr(ipage);
428 bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
429 slots, NR_INLINE_DENTRY);
430 if (bit_pos >= NR_INLINE_DENTRY) {
431 err = f2fs_convert_inline_dir(dir, ipage, dentry_blk);
432 if (!err)
433 err = -EAGAIN;
434 goto out;
435 }
436
437 if (inode) {
438 down_write(&F2FS_I(inode)->i_sem);
439 page = init_inode_metadata(inode, dir, name, ipage);
440 if (IS_ERR(page)) {
441 err = PTR_ERR(page);
442 goto fail;
443 }
444 }
445
446 f2fs_wait_on_page_writeback(ipage, NODE);
447
448 name_hash = f2fs_dentry_hash(name);
449 make_dentry_ptr(&d, (void *)dentry_blk, 2);
450 f2fs_update_dentry(ino, mode, &d, name, name_hash, bit_pos);
451
452 set_page_dirty(ipage);
453
454 /* we don't need to mark_inode_dirty now */
455 if (inode) {
456 F2FS_I(inode)->i_pino = dir->i_ino;
457 update_inode(inode, page);
458 f2fs_put_page(page, 1);
459 }
460
461 update_parent_metadata(dir, inode, 0);
462 fail:
463 if (inode)
464 up_write(&F2FS_I(inode)->i_sem);
465
466 if (is_inode_flag_set(F2FS_I(dir), FI_UPDATE_DIR)) {
467 update_inode(dir, ipage);
468 clear_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
469 }
470 out:
471 f2fs_put_page(ipage, 1);
472 return err;
473 }
474
475 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
476 struct inode *dir, struct inode *inode)
477 {
478 struct f2fs_inline_dentry *inline_dentry;
479 int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
480 unsigned int bit_pos;
481 int i;
482
483 lock_page(page);
484 f2fs_wait_on_page_writeback(page, NODE);
485
486 inline_dentry = inline_data_addr(page);
487 bit_pos = dentry - inline_dentry->dentry;
488 for (i = 0; i < slots; i++)
489 test_and_clear_bit_le(bit_pos + i,
490 &inline_dentry->dentry_bitmap);
491
492 set_page_dirty(page);
493
494 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
495
496 if (inode)
497 f2fs_drop_nlink(dir, inode, page);
498
499 f2fs_put_page(page, 1);
500 }
501
502 bool f2fs_empty_inline_dir(struct inode *dir)
503 {
504 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
505 struct page *ipage;
506 unsigned int bit_pos = 2;
507 struct f2fs_inline_dentry *dentry_blk;
508
509 ipage = get_node_page(sbi, dir->i_ino);
510 if (IS_ERR(ipage))
511 return false;
512
513 dentry_blk = inline_data_addr(ipage);
514 bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
515 NR_INLINE_DENTRY,
516 bit_pos);
517
518 f2fs_put_page(ipage, 1);
519
520 if (bit_pos < NR_INLINE_DENTRY)
521 return false;
522
523 return true;
524 }
525
526 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx)
527 {
528 struct inode *inode = file_inode(file);
529 struct f2fs_inline_dentry *inline_dentry = NULL;
530 struct page *ipage = NULL;
531 struct f2fs_dentry_ptr d;
532
533 if (ctx->pos == NR_INLINE_DENTRY)
534 return 0;
535
536 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
537 if (IS_ERR(ipage))
538 return PTR_ERR(ipage);
539
540 inline_dentry = inline_data_addr(ipage);
541
542 make_dentry_ptr(&d, (void *)inline_dentry, 2);
543
544 if (!f2fs_fill_dentries(ctx, &d, 0))
545 ctx->pos = NR_INLINE_DENTRY;
546
547 f2fs_put_page(ipage, 1);
548 return 0;
549 }
This page took 0.041754 seconds and 5 git commands to generate.