Merge tag 'for-linus-20150422' of git://git.infradead.org/linux-mtd
[deliverable/linux.git] / fs / f2fs / inline.c
1 /*
2 * fs/f2fs/inline.c
3 * Copyright (c) 2013, Intel Corporation
4 * Authors: Huajun Li <huajun.li@intel.com>
5 * Haicheng Li <haicheng.li@intel.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13
14 #include "f2fs.h"
15
16 bool f2fs_may_inline(struct inode *inode)
17 {
18 if (!test_opt(F2FS_I_SB(inode), INLINE_DATA))
19 return false;
20
21 if (f2fs_is_atomic_file(inode))
22 return false;
23
24 if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
25 return false;
26
27 if (i_size_read(inode) > MAX_INLINE_DATA)
28 return false;
29
30 return true;
31 }
32
33 void read_inline_data(struct page *page, struct page *ipage)
34 {
35 void *src_addr, *dst_addr;
36
37 if (PageUptodate(page))
38 return;
39
40 f2fs_bug_on(F2FS_P_SB(page), page->index);
41
42 zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
43
44 /* Copy the whole inline data block */
45 src_addr = inline_data_addr(ipage);
46 dst_addr = kmap_atomic(page);
47 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
48 flush_dcache_page(page);
49 kunmap_atomic(dst_addr);
50 SetPageUptodate(page);
51 }
52
53 bool truncate_inline_inode(struct page *ipage, u64 from)
54 {
55 void *addr;
56
57 if (from >= MAX_INLINE_DATA)
58 return false;
59
60 addr = inline_data_addr(ipage);
61
62 f2fs_wait_on_page_writeback(ipage, NODE);
63 memset(addr + from, 0, MAX_INLINE_DATA - from);
64
65 return true;
66 }
67
68 int f2fs_read_inline_data(struct inode *inode, struct page *page)
69 {
70 struct page *ipage;
71
72 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
73 if (IS_ERR(ipage)) {
74 unlock_page(page);
75 return PTR_ERR(ipage);
76 }
77
78 if (!f2fs_has_inline_data(inode)) {
79 f2fs_put_page(ipage, 1);
80 return -EAGAIN;
81 }
82
83 if (page->index)
84 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
85 else
86 read_inline_data(page, ipage);
87
88 SetPageUptodate(page);
89 f2fs_put_page(ipage, 1);
90 unlock_page(page);
91 return 0;
92 }
93
94 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
95 {
96 void *src_addr, *dst_addr;
97 struct f2fs_io_info fio = {
98 .type = DATA,
99 .rw = WRITE_SYNC | REQ_PRIO,
100 };
101 int dirty, err;
102
103 f2fs_bug_on(F2FS_I_SB(dn->inode), page->index);
104
105 if (!f2fs_exist_data(dn->inode))
106 goto clear_out;
107
108 err = f2fs_reserve_block(dn, 0);
109 if (err)
110 return err;
111
112 f2fs_wait_on_page_writeback(page, DATA);
113
114 if (PageUptodate(page))
115 goto no_update;
116
117 zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
118
119 /* Copy the whole inline data block */
120 src_addr = inline_data_addr(dn->inode_page);
121 dst_addr = kmap_atomic(page);
122 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
123 flush_dcache_page(page);
124 kunmap_atomic(dst_addr);
125 SetPageUptodate(page);
126 no_update:
127 /* clear dirty state */
128 dirty = clear_page_dirty_for_io(page);
129
130 /* write data page to try to make data consistent */
131 set_page_writeback(page);
132 fio.blk_addr = dn->data_blkaddr;
133 write_data_page(page, dn, &fio);
134 set_data_blkaddr(dn);
135 f2fs_update_extent_cache(dn);
136 f2fs_wait_on_page_writeback(page, DATA);
137 if (dirty)
138 inode_dec_dirty_pages(dn->inode);
139
140 /* this converted inline_data should be recovered. */
141 set_inode_flag(F2FS_I(dn->inode), FI_APPEND_WRITE);
142
143 /* clear inline data and flag after data writeback */
144 truncate_inline_inode(dn->inode_page, 0);
145 clear_out:
146 stat_dec_inline_inode(dn->inode);
147 f2fs_clear_inline_inode(dn->inode);
148 sync_inode_page(dn);
149 f2fs_put_dnode(dn);
150 return 0;
151 }
152
153 int f2fs_convert_inline_inode(struct inode *inode)
154 {
155 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
156 struct dnode_of_data dn;
157 struct page *ipage, *page;
158 int err = 0;
159
160 page = grab_cache_page(inode->i_mapping, 0);
161 if (!page)
162 return -ENOMEM;
163
164 f2fs_lock_op(sbi);
165
166 ipage = get_node_page(sbi, inode->i_ino);
167 if (IS_ERR(ipage)) {
168 err = PTR_ERR(ipage);
169 goto out;
170 }
171
172 set_new_dnode(&dn, inode, ipage, ipage, 0);
173
174 if (f2fs_has_inline_data(inode))
175 err = f2fs_convert_inline_page(&dn, page);
176
177 f2fs_put_dnode(&dn);
178 out:
179 f2fs_unlock_op(sbi);
180
181 f2fs_put_page(page, 1);
182 return err;
183 }
184
185 int f2fs_write_inline_data(struct inode *inode, struct page *page)
186 {
187 void *src_addr, *dst_addr;
188 struct dnode_of_data dn;
189 int err;
190
191 set_new_dnode(&dn, inode, NULL, NULL, 0);
192 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
193 if (err)
194 return err;
195
196 if (!f2fs_has_inline_data(inode)) {
197 f2fs_put_dnode(&dn);
198 return -EAGAIN;
199 }
200
201 f2fs_bug_on(F2FS_I_SB(inode), page->index);
202
203 f2fs_wait_on_page_writeback(dn.inode_page, NODE);
204 src_addr = kmap_atomic(page);
205 dst_addr = inline_data_addr(dn.inode_page);
206 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
207 kunmap_atomic(src_addr);
208
209 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
210 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
211
212 sync_inode_page(&dn);
213 f2fs_put_dnode(&dn);
214 return 0;
215 }
216
217 bool recover_inline_data(struct inode *inode, struct page *npage)
218 {
219 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
220 struct f2fs_inode *ri = NULL;
221 void *src_addr, *dst_addr;
222 struct page *ipage;
223
224 /*
225 * The inline_data recovery policy is as follows.
226 * [prev.] [next] of inline_data flag
227 * o o -> recover inline_data
228 * o x -> remove inline_data, and then recover data blocks
229 * x o -> remove inline_data, and then recover inline_data
230 * x x -> recover data blocks
231 */
232 if (IS_INODE(npage))
233 ri = F2FS_INODE(npage);
234
235 if (f2fs_has_inline_data(inode) &&
236 ri && (ri->i_inline & F2FS_INLINE_DATA)) {
237 process_inline:
238 ipage = get_node_page(sbi, inode->i_ino);
239 f2fs_bug_on(sbi, IS_ERR(ipage));
240
241 f2fs_wait_on_page_writeback(ipage, NODE);
242
243 src_addr = inline_data_addr(npage);
244 dst_addr = inline_data_addr(ipage);
245 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
246
247 set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
248 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
249
250 update_inode(inode, ipage);
251 f2fs_put_page(ipage, 1);
252 return true;
253 }
254
255 if (f2fs_has_inline_data(inode)) {
256 ipage = get_node_page(sbi, inode->i_ino);
257 f2fs_bug_on(sbi, IS_ERR(ipage));
258 truncate_inline_inode(ipage, 0);
259 f2fs_clear_inline_inode(inode);
260 update_inode(inode, ipage);
261 f2fs_put_page(ipage, 1);
262 } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
263 truncate_blocks(inode, 0, false);
264 goto process_inline;
265 }
266 return false;
267 }
268
269 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
270 struct qstr *name, struct page **res_page)
271 {
272 struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
273 struct f2fs_inline_dentry *inline_dentry;
274 struct f2fs_dir_entry *de;
275 struct f2fs_dentry_ptr d;
276 struct page *ipage;
277
278 ipage = get_node_page(sbi, dir->i_ino);
279 if (IS_ERR(ipage))
280 return NULL;
281
282 inline_dentry = inline_data_addr(ipage);
283
284 make_dentry_ptr(&d, (void *)inline_dentry, 2);
285 de = find_target_dentry(name, NULL, &d);
286
287 unlock_page(ipage);
288 if (de)
289 *res_page = ipage;
290 else
291 f2fs_put_page(ipage, 0);
292
293 /*
294 * For the most part, it should be a bug when name_len is zero.
295 * We stop here for figuring out where the bugs has occurred.
296 */
297 f2fs_bug_on(sbi, d.max < 0);
298 return de;
299 }
300
301 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *dir,
302 struct page **p)
303 {
304 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
305 struct page *ipage;
306 struct f2fs_dir_entry *de;
307 struct f2fs_inline_dentry *dentry_blk;
308
309 ipage = get_node_page(sbi, dir->i_ino);
310 if (IS_ERR(ipage))
311 return NULL;
312
313 dentry_blk = inline_data_addr(ipage);
314 de = &dentry_blk->dentry[1];
315 *p = ipage;
316 unlock_page(ipage);
317 return de;
318 }
319
320 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
321 struct page *ipage)
322 {
323 struct f2fs_inline_dentry *dentry_blk;
324 struct f2fs_dentry_ptr d;
325
326 dentry_blk = inline_data_addr(ipage);
327
328 make_dentry_ptr(&d, (void *)dentry_blk, 2);
329 do_make_empty_dir(inode, parent, &d);
330
331 set_page_dirty(ipage);
332
333 /* update i_size to MAX_INLINE_DATA */
334 if (i_size_read(inode) < MAX_INLINE_DATA) {
335 i_size_write(inode, MAX_INLINE_DATA);
336 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
337 }
338 return 0;
339 }
340
341 static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
342 struct f2fs_inline_dentry *inline_dentry)
343 {
344 struct page *page;
345 struct dnode_of_data dn;
346 struct f2fs_dentry_block *dentry_blk;
347 int err;
348
349 page = grab_cache_page(dir->i_mapping, 0);
350 if (!page)
351 return -ENOMEM;
352
353 set_new_dnode(&dn, dir, ipage, NULL, 0);
354 err = f2fs_reserve_block(&dn, 0);
355 if (err)
356 goto out;
357
358 f2fs_wait_on_page_writeback(page, DATA);
359 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
360
361 dentry_blk = kmap_atomic(page);
362
363 /* copy data from inline dentry block to new dentry block */
364 memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
365 INLINE_DENTRY_BITMAP_SIZE);
366 memcpy(dentry_blk->dentry, inline_dentry->dentry,
367 sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
368 memcpy(dentry_blk->filename, inline_dentry->filename,
369 NR_INLINE_DENTRY * F2FS_SLOT_LEN);
370
371 kunmap_atomic(dentry_blk);
372 SetPageUptodate(page);
373 set_page_dirty(page);
374
375 /* clear inline dir and flag after data writeback */
376 truncate_inline_inode(ipage, 0);
377
378 stat_dec_inline_dir(dir);
379 clear_inode_flag(F2FS_I(dir), FI_INLINE_DENTRY);
380
381 if (i_size_read(dir) < PAGE_CACHE_SIZE) {
382 i_size_write(dir, PAGE_CACHE_SIZE);
383 set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
384 }
385
386 sync_inode_page(&dn);
387 out:
388 f2fs_put_page(page, 1);
389 return err;
390 }
391
392 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *name,
393 struct inode *inode, nid_t ino, umode_t mode)
394 {
395 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
396 struct page *ipage;
397 unsigned int bit_pos;
398 f2fs_hash_t name_hash;
399 size_t namelen = name->len;
400 struct f2fs_inline_dentry *dentry_blk = NULL;
401 struct f2fs_dentry_ptr d;
402 int slots = GET_DENTRY_SLOTS(namelen);
403 struct page *page = NULL;
404 int err = 0;
405
406 ipage = get_node_page(sbi, dir->i_ino);
407 if (IS_ERR(ipage))
408 return PTR_ERR(ipage);
409
410 dentry_blk = inline_data_addr(ipage);
411 bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
412 slots, NR_INLINE_DENTRY);
413 if (bit_pos >= NR_INLINE_DENTRY) {
414 err = f2fs_convert_inline_dir(dir, ipage, dentry_blk);
415 if (!err)
416 err = -EAGAIN;
417 goto out;
418 }
419
420 if (inode) {
421 down_write(&F2FS_I(inode)->i_sem);
422 page = init_inode_metadata(inode, dir, name, ipage);
423 if (IS_ERR(page)) {
424 err = PTR_ERR(page);
425 goto fail;
426 }
427 }
428
429 f2fs_wait_on_page_writeback(ipage, NODE);
430
431 name_hash = f2fs_dentry_hash(name);
432 make_dentry_ptr(&d, (void *)dentry_blk, 2);
433 f2fs_update_dentry(ino, mode, &d, name, name_hash, bit_pos);
434
435 set_page_dirty(ipage);
436
437 /* we don't need to mark_inode_dirty now */
438 if (inode) {
439 F2FS_I(inode)->i_pino = dir->i_ino;
440 update_inode(inode, page);
441 f2fs_put_page(page, 1);
442 }
443
444 update_parent_metadata(dir, inode, 0);
445 fail:
446 if (inode)
447 up_write(&F2FS_I(inode)->i_sem);
448
449 if (is_inode_flag_set(F2FS_I(dir), FI_UPDATE_DIR)) {
450 update_inode(dir, ipage);
451 clear_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
452 }
453 out:
454 f2fs_put_page(ipage, 1);
455 return err;
456 }
457
458 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
459 struct inode *dir, struct inode *inode)
460 {
461 struct f2fs_inline_dentry *inline_dentry;
462 int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
463 unsigned int bit_pos;
464 int i;
465
466 lock_page(page);
467 f2fs_wait_on_page_writeback(page, NODE);
468
469 inline_dentry = inline_data_addr(page);
470 bit_pos = dentry - inline_dentry->dentry;
471 for (i = 0; i < slots; i++)
472 test_and_clear_bit_le(bit_pos + i,
473 &inline_dentry->dentry_bitmap);
474
475 set_page_dirty(page);
476
477 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
478
479 if (inode)
480 f2fs_drop_nlink(dir, inode, page);
481
482 f2fs_put_page(page, 1);
483 }
484
485 bool f2fs_empty_inline_dir(struct inode *dir)
486 {
487 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
488 struct page *ipage;
489 unsigned int bit_pos = 2;
490 struct f2fs_inline_dentry *dentry_blk;
491
492 ipage = get_node_page(sbi, dir->i_ino);
493 if (IS_ERR(ipage))
494 return false;
495
496 dentry_blk = inline_data_addr(ipage);
497 bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
498 NR_INLINE_DENTRY,
499 bit_pos);
500
501 f2fs_put_page(ipage, 1);
502
503 if (bit_pos < NR_INLINE_DENTRY)
504 return false;
505
506 return true;
507 }
508
509 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx)
510 {
511 struct inode *inode = file_inode(file);
512 struct f2fs_inline_dentry *inline_dentry = NULL;
513 struct page *ipage = NULL;
514 struct f2fs_dentry_ptr d;
515
516 if (ctx->pos == NR_INLINE_DENTRY)
517 return 0;
518
519 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
520 if (IS_ERR(ipage))
521 return PTR_ERR(ipage);
522
523 inline_dentry = inline_data_addr(ipage);
524
525 make_dentry_ptr(&d, (void *)inline_dentry, 2);
526
527 if (!f2fs_fill_dentries(ctx, &d, 0))
528 ctx->pos = NR_INLINE_DENTRY;
529
530 f2fs_put_page(ipage, 1);
531 return 0;
532 }
This page took 0.041055 seconds and 6 git commands to generate.