f2fs: avoid mark_inode_dirty
[deliverable/linux.git] / fs / f2fs / inline.c
1 /*
2 * fs/f2fs/inline.c
3 * Copyright (c) 2013, Intel Corporation
4 * Authors: Huajun Li <huajun.li@intel.com>
5 * Haicheng Li <haicheng.li@intel.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13
14 #include "f2fs.h"
15 #include "node.h"
16
17 bool f2fs_may_inline_data(struct inode *inode)
18 {
19 if (f2fs_is_atomic_file(inode))
20 return false;
21
22 if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
23 return false;
24
25 if (i_size_read(inode) > MAX_INLINE_DATA)
26 return false;
27
28 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
29 return false;
30
31 return true;
32 }
33
34 bool f2fs_may_inline_dentry(struct inode *inode)
35 {
36 if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
37 return false;
38
39 if (!S_ISDIR(inode->i_mode))
40 return false;
41
42 return true;
43 }
44
45 void read_inline_data(struct page *page, struct page *ipage)
46 {
47 void *src_addr, *dst_addr;
48
49 if (PageUptodate(page))
50 return;
51
52 f2fs_bug_on(F2FS_P_SB(page), page->index);
53
54 zero_user_segment(page, MAX_INLINE_DATA, PAGE_SIZE);
55
56 /* Copy the whole inline data block */
57 src_addr = inline_data_addr(ipage);
58 dst_addr = kmap_atomic(page);
59 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
60 flush_dcache_page(page);
61 kunmap_atomic(dst_addr);
62 if (!PageUptodate(page))
63 SetPageUptodate(page);
64 }
65
66 bool truncate_inline_inode(struct page *ipage, u64 from)
67 {
68 void *addr;
69
70 if (from >= MAX_INLINE_DATA)
71 return false;
72
73 addr = inline_data_addr(ipage);
74
75 f2fs_wait_on_page_writeback(ipage, NODE, true);
76 memset(addr + from, 0, MAX_INLINE_DATA - from);
77 set_page_dirty(ipage);
78 return true;
79 }
80
81 int f2fs_read_inline_data(struct inode *inode, struct page *page)
82 {
83 struct page *ipage;
84
85 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
86 if (IS_ERR(ipage)) {
87 unlock_page(page);
88 return PTR_ERR(ipage);
89 }
90
91 if (!f2fs_has_inline_data(inode)) {
92 f2fs_put_page(ipage, 1);
93 return -EAGAIN;
94 }
95
96 if (page->index)
97 zero_user_segment(page, 0, PAGE_SIZE);
98 else
99 read_inline_data(page, ipage);
100
101 if (!PageUptodate(page))
102 SetPageUptodate(page);
103 f2fs_put_page(ipage, 1);
104 unlock_page(page);
105 return 0;
106 }
107
108 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
109 {
110 struct f2fs_io_info fio = {
111 .sbi = F2FS_I_SB(dn->inode),
112 .type = DATA,
113 .rw = WRITE_SYNC | REQ_PRIO,
114 .page = page,
115 .encrypted_page = NULL,
116 };
117 int dirty, err;
118
119 if (!f2fs_exist_data(dn->inode))
120 goto clear_out;
121
122 err = f2fs_reserve_block(dn, 0);
123 if (err)
124 return err;
125
126 f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page));
127
128 read_inline_data(page, dn->inode_page);
129 set_page_dirty(page);
130
131 /* clear dirty state */
132 dirty = clear_page_dirty_for_io(page);
133
134 /* write data page to try to make data consistent */
135 set_page_writeback(page);
136 fio.old_blkaddr = dn->data_blkaddr;
137 write_data_page(dn, &fio);
138 f2fs_wait_on_page_writeback(page, DATA, true);
139 if (dirty)
140 inode_dec_dirty_pages(dn->inode);
141
142 /* this converted inline_data should be recovered. */
143 set_inode_flag(dn->inode, FI_APPEND_WRITE);
144
145 /* clear inline data and flag after data writeback */
146 truncate_inline_inode(dn->inode_page, 0);
147 clear_inline_node(dn->inode_page);
148 clear_out:
149 stat_dec_inline_inode(dn->inode);
150 f2fs_clear_inline_inode(dn->inode);
151 f2fs_put_dnode(dn);
152 return 0;
153 }
154
155 int f2fs_convert_inline_inode(struct inode *inode)
156 {
157 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
158 struct dnode_of_data dn;
159 struct page *ipage, *page;
160 int err = 0;
161
162 if (!f2fs_has_inline_data(inode))
163 return 0;
164
165 page = f2fs_grab_cache_page(inode->i_mapping, 0, false);
166 if (!page)
167 return -ENOMEM;
168
169 f2fs_lock_op(sbi);
170
171 ipage = get_node_page(sbi, inode->i_ino);
172 if (IS_ERR(ipage)) {
173 err = PTR_ERR(ipage);
174 goto out;
175 }
176
177 set_new_dnode(&dn, inode, ipage, ipage, 0);
178
179 if (f2fs_has_inline_data(inode))
180 err = f2fs_convert_inline_page(&dn, page);
181
182 f2fs_put_dnode(&dn);
183 out:
184 f2fs_unlock_op(sbi);
185
186 f2fs_put_page(page, 1);
187
188 f2fs_balance_fs(sbi, dn.node_changed);
189
190 return err;
191 }
192
193 int f2fs_write_inline_data(struct inode *inode, struct page *page)
194 {
195 void *src_addr, *dst_addr;
196 struct dnode_of_data dn;
197 int err;
198
199 set_new_dnode(&dn, inode, NULL, NULL, 0);
200 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
201 if (err)
202 return err;
203
204 if (!f2fs_has_inline_data(inode)) {
205 f2fs_put_dnode(&dn);
206 return -EAGAIN;
207 }
208
209 f2fs_bug_on(F2FS_I_SB(inode), page->index);
210
211 f2fs_wait_on_page_writeback(dn.inode_page, NODE, true);
212 src_addr = kmap_atomic(page);
213 dst_addr = inline_data_addr(dn.inode_page);
214 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
215 kunmap_atomic(src_addr);
216 set_page_dirty(dn.inode_page);
217
218 set_inode_flag(inode, FI_APPEND_WRITE);
219 set_inode_flag(inode, FI_DATA_EXIST);
220
221 clear_inline_node(dn.inode_page);
222 f2fs_put_dnode(&dn);
223 return 0;
224 }
225
226 bool recover_inline_data(struct inode *inode, struct page *npage)
227 {
228 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
229 struct f2fs_inode *ri = NULL;
230 void *src_addr, *dst_addr;
231 struct page *ipage;
232
233 /*
234 * The inline_data recovery policy is as follows.
235 * [prev.] [next] of inline_data flag
236 * o o -> recover inline_data
237 * o x -> remove inline_data, and then recover data blocks
238 * x o -> remove inline_data, and then recover inline_data
239 * x x -> recover data blocks
240 */
241 if (IS_INODE(npage))
242 ri = F2FS_INODE(npage);
243
244 if (f2fs_has_inline_data(inode) &&
245 ri && (ri->i_inline & F2FS_INLINE_DATA)) {
246 process_inline:
247 ipage = get_node_page(sbi, inode->i_ino);
248 f2fs_bug_on(sbi, IS_ERR(ipage));
249
250 f2fs_wait_on_page_writeback(ipage, NODE, true);
251
252 src_addr = inline_data_addr(npage);
253 dst_addr = inline_data_addr(ipage);
254 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
255
256 set_inode_flag(inode, FI_INLINE_DATA);
257 set_inode_flag(inode, FI_DATA_EXIST);
258
259 set_page_dirty(ipage);
260 f2fs_put_page(ipage, 1);
261 return true;
262 }
263
264 if (f2fs_has_inline_data(inode)) {
265 ipage = get_node_page(sbi, inode->i_ino);
266 f2fs_bug_on(sbi, IS_ERR(ipage));
267 if (!truncate_inline_inode(ipage, 0))
268 return false;
269 f2fs_clear_inline_inode(inode);
270 f2fs_put_page(ipage, 1);
271 } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
272 if (truncate_blocks(inode, 0, false))
273 return false;
274 goto process_inline;
275 }
276 return false;
277 }
278
279 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
280 struct fscrypt_name *fname, struct page **res_page)
281 {
282 struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
283 struct f2fs_inline_dentry *inline_dentry;
284 struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
285 struct f2fs_dir_entry *de;
286 struct f2fs_dentry_ptr d;
287 struct page *ipage;
288 f2fs_hash_t namehash;
289
290 ipage = get_node_page(sbi, dir->i_ino);
291 if (IS_ERR(ipage)) {
292 *res_page = ipage;
293 return NULL;
294 }
295
296 namehash = f2fs_dentry_hash(&name);
297
298 inline_dentry = inline_data_addr(ipage);
299
300 make_dentry_ptr(NULL, &d, (void *)inline_dentry, 2);
301 de = find_target_dentry(fname, namehash, NULL, &d);
302 unlock_page(ipage);
303 if (de)
304 *res_page = ipage;
305 else
306 f2fs_put_page(ipage, 0);
307
308 return de;
309 }
310
311 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
312 struct page *ipage)
313 {
314 struct f2fs_inline_dentry *dentry_blk;
315 struct f2fs_dentry_ptr d;
316
317 dentry_blk = inline_data_addr(ipage);
318
319 make_dentry_ptr(NULL, &d, (void *)dentry_blk, 2);
320 do_make_empty_dir(inode, parent, &d);
321
322 set_page_dirty(ipage);
323
324 /* update i_size to MAX_INLINE_DATA */
325 if (i_size_read(inode) < MAX_INLINE_DATA)
326 f2fs_i_size_write(inode, MAX_INLINE_DATA);
327 return 0;
328 }
329
330 /*
331 * NOTE: ipage is grabbed by caller, but if any error occurs, we should
332 * release ipage in this function.
333 */
334 static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage,
335 struct f2fs_inline_dentry *inline_dentry)
336 {
337 struct page *page;
338 struct dnode_of_data dn;
339 struct f2fs_dentry_block *dentry_blk;
340 int err;
341
342 page = f2fs_grab_cache_page(dir->i_mapping, 0, false);
343 if (!page) {
344 f2fs_put_page(ipage, 1);
345 return -ENOMEM;
346 }
347
348 set_new_dnode(&dn, dir, ipage, NULL, 0);
349 err = f2fs_reserve_block(&dn, 0);
350 if (err)
351 goto out;
352
353 f2fs_wait_on_page_writeback(page, DATA, true);
354 zero_user_segment(page, MAX_INLINE_DATA, PAGE_SIZE);
355
356 dentry_blk = kmap_atomic(page);
357
358 /* copy data from inline dentry block to new dentry block */
359 memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
360 INLINE_DENTRY_BITMAP_SIZE);
361 memset(dentry_blk->dentry_bitmap + INLINE_DENTRY_BITMAP_SIZE, 0,
362 SIZE_OF_DENTRY_BITMAP - INLINE_DENTRY_BITMAP_SIZE);
363 /*
364 * we do not need to zero out remainder part of dentry and filename
365 * field, since we have used bitmap for marking the usage status of
366 * them, besides, we can also ignore copying/zeroing reserved space
367 * of dentry block, because them haven't been used so far.
368 */
369 memcpy(dentry_blk->dentry, inline_dentry->dentry,
370 sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
371 memcpy(dentry_blk->filename, inline_dentry->filename,
372 NR_INLINE_DENTRY * F2FS_SLOT_LEN);
373
374 kunmap_atomic(dentry_blk);
375 if (!PageUptodate(page))
376 SetPageUptodate(page);
377 set_page_dirty(page);
378
379 /* clear inline dir and flag after data writeback */
380 truncate_inline_inode(ipage, 0);
381
382 stat_dec_inline_dir(dir);
383 clear_inode_flag(dir, FI_INLINE_DENTRY);
384
385 f2fs_i_depth_write(dir, 1);
386 if (i_size_read(dir) < PAGE_SIZE)
387 f2fs_i_size_write(dir, PAGE_SIZE);
388 out:
389 f2fs_put_page(page, 1);
390 return err;
391 }
392
393 static int f2fs_add_inline_entries(struct inode *dir,
394 struct f2fs_inline_dentry *inline_dentry)
395 {
396 struct f2fs_dentry_ptr d;
397 unsigned long bit_pos = 0;
398 int err = 0;
399
400 make_dentry_ptr(NULL, &d, (void *)inline_dentry, 2);
401
402 while (bit_pos < d.max) {
403 struct f2fs_dir_entry *de;
404 struct qstr new_name;
405 nid_t ino;
406 umode_t fake_mode;
407
408 if (!test_bit_le(bit_pos, d.bitmap)) {
409 bit_pos++;
410 continue;
411 }
412
413 de = &d.dentry[bit_pos];
414
415 if (unlikely(!de->name_len)) {
416 bit_pos++;
417 continue;
418 }
419
420 new_name.name = d.filename[bit_pos];
421 new_name.len = de->name_len;
422
423 ino = le32_to_cpu(de->ino);
424 fake_mode = get_de_type(de) << S_SHIFT;
425
426 err = f2fs_add_regular_entry(dir, &new_name, NULL,
427 ino, fake_mode);
428 if (err)
429 goto punch_dentry_pages;
430
431 bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
432 }
433 return 0;
434 punch_dentry_pages:
435 truncate_inode_pages(&dir->i_data, 0);
436 truncate_blocks(dir, 0, false);
437 remove_dirty_inode(dir);
438 return err;
439 }
440
441 static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage,
442 struct f2fs_inline_dentry *inline_dentry)
443 {
444 struct f2fs_inline_dentry *backup_dentry;
445 int err;
446
447 backup_dentry = f2fs_kmalloc(sizeof(struct f2fs_inline_dentry),
448 GFP_F2FS_ZERO);
449 if (!backup_dentry) {
450 f2fs_put_page(ipage, 1);
451 return -ENOMEM;
452 }
453
454 memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA);
455 truncate_inline_inode(ipage, 0);
456
457 unlock_page(ipage);
458
459 err = f2fs_add_inline_entries(dir, backup_dentry);
460 if (err)
461 goto recover;
462
463 lock_page(ipage);
464
465 stat_dec_inline_dir(dir);
466 clear_inode_flag(dir, FI_INLINE_DENTRY);
467 kfree(backup_dentry);
468 return 0;
469 recover:
470 lock_page(ipage);
471 memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA);
472 f2fs_i_depth_write(dir, 0);
473 f2fs_i_size_write(dir, MAX_INLINE_DATA);
474 set_page_dirty(ipage);
475 f2fs_put_page(ipage, 1);
476
477 kfree(backup_dentry);
478 return err;
479 }
480
481 static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
482 struct f2fs_inline_dentry *inline_dentry)
483 {
484 if (!F2FS_I(dir)->i_dir_level)
485 return f2fs_move_inline_dirents(dir, ipage, inline_dentry);
486 else
487 return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry);
488 }
489
490 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *name,
491 struct inode *inode, nid_t ino, umode_t mode)
492 {
493 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
494 struct page *ipage;
495 unsigned int bit_pos;
496 f2fs_hash_t name_hash;
497 size_t namelen = name->len;
498 struct f2fs_inline_dentry *dentry_blk = NULL;
499 struct f2fs_dentry_ptr d;
500 int slots = GET_DENTRY_SLOTS(namelen);
501 struct page *page = NULL;
502 int err = 0;
503
504 ipage = get_node_page(sbi, dir->i_ino);
505 if (IS_ERR(ipage))
506 return PTR_ERR(ipage);
507
508 dentry_blk = inline_data_addr(ipage);
509 bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
510 slots, NR_INLINE_DENTRY);
511 if (bit_pos >= NR_INLINE_DENTRY) {
512 err = f2fs_convert_inline_dir(dir, ipage, dentry_blk);
513 if (err)
514 return err;
515 err = -EAGAIN;
516 goto out;
517 }
518
519 if (inode) {
520 down_write(&F2FS_I(inode)->i_sem);
521 page = init_inode_metadata(inode, dir, name, ipage);
522 if (IS_ERR(page)) {
523 err = PTR_ERR(page);
524 goto fail;
525 }
526 }
527
528 f2fs_wait_on_page_writeback(ipage, NODE, true);
529
530 name_hash = f2fs_dentry_hash(name);
531 make_dentry_ptr(NULL, &d, (void *)dentry_blk, 2);
532 f2fs_update_dentry(ino, mode, &d, name, name_hash, bit_pos);
533
534 set_page_dirty(ipage);
535
536 /* we don't need to mark_inode_dirty now */
537 if (inode) {
538 f2fs_i_pino_write(inode, dir->i_ino);
539 f2fs_put_page(page, 1);
540 }
541
542 update_parent_metadata(dir, inode, 0);
543 fail:
544 if (inode)
545 up_write(&F2FS_I(inode)->i_sem);
546 out:
547 f2fs_put_page(ipage, 1);
548 return err;
549 }
550
551 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
552 struct inode *dir, struct inode *inode)
553 {
554 struct f2fs_inline_dentry *inline_dentry;
555 int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
556 unsigned int bit_pos;
557 int i;
558
559 lock_page(page);
560 f2fs_wait_on_page_writeback(page, NODE, true);
561
562 inline_dentry = inline_data_addr(page);
563 bit_pos = dentry - inline_dentry->dentry;
564 for (i = 0; i < slots; i++)
565 test_and_clear_bit_le(bit_pos + i,
566 &inline_dentry->dentry_bitmap);
567
568 set_page_dirty(page);
569 f2fs_put_page(page, 1);
570
571 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
572 f2fs_mark_inode_dirty_sync(dir);
573
574 if (inode)
575 f2fs_drop_nlink(dir, inode);
576 }
577
578 bool f2fs_empty_inline_dir(struct inode *dir)
579 {
580 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
581 struct page *ipage;
582 unsigned int bit_pos = 2;
583 struct f2fs_inline_dentry *dentry_blk;
584
585 ipage = get_node_page(sbi, dir->i_ino);
586 if (IS_ERR(ipage))
587 return false;
588
589 dentry_blk = inline_data_addr(ipage);
590 bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
591 NR_INLINE_DENTRY,
592 bit_pos);
593
594 f2fs_put_page(ipage, 1);
595
596 if (bit_pos < NR_INLINE_DENTRY)
597 return false;
598
599 return true;
600 }
601
602 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
603 struct fscrypt_str *fstr)
604 {
605 struct inode *inode = file_inode(file);
606 struct f2fs_inline_dentry *inline_dentry = NULL;
607 struct page *ipage = NULL;
608 struct f2fs_dentry_ptr d;
609
610 if (ctx->pos == NR_INLINE_DENTRY)
611 return 0;
612
613 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
614 if (IS_ERR(ipage))
615 return PTR_ERR(ipage);
616
617 inline_dentry = inline_data_addr(ipage);
618
619 make_dentry_ptr(inode, &d, (void *)inline_dentry, 2);
620
621 if (!f2fs_fill_dentries(ctx, &d, 0, fstr))
622 ctx->pos = NR_INLINE_DENTRY;
623
624 f2fs_put_page(ipage, 1);
625 return 0;
626 }
627
628 int f2fs_inline_data_fiemap(struct inode *inode,
629 struct fiemap_extent_info *fieinfo, __u64 start, __u64 len)
630 {
631 __u64 byteaddr, ilen;
632 __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED |
633 FIEMAP_EXTENT_LAST;
634 struct node_info ni;
635 struct page *ipage;
636 int err = 0;
637
638 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
639 if (IS_ERR(ipage))
640 return PTR_ERR(ipage);
641
642 if (!f2fs_has_inline_data(inode)) {
643 err = -EAGAIN;
644 goto out;
645 }
646
647 ilen = min_t(size_t, MAX_INLINE_DATA, i_size_read(inode));
648 if (start >= ilen)
649 goto out;
650 if (start + len < ilen)
651 ilen = start + len;
652 ilen -= start;
653
654 get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni);
655 byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits;
656 byteaddr += (char *)inline_data_addr(ipage) - (char *)F2FS_INODE(ipage);
657 err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags);
658 out:
659 f2fs_put_page(ipage, 1);
660 return err;
661 }
This page took 0.047139 seconds and 6 git commands to generate.