f2fs: remove syncing inode page in all the cases
[deliverable/linux.git] / fs / f2fs / inline.c
1 /*
2 * fs/f2fs/inline.c
3 * Copyright (c) 2013, Intel Corporation
4 * Authors: Huajun Li <huajun.li@intel.com>
5 * Haicheng Li <haicheng.li@intel.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13
14 #include "f2fs.h"
15 #include "node.h"
16
17 bool f2fs_may_inline_data(struct inode *inode)
18 {
19 if (f2fs_is_atomic_file(inode))
20 return false;
21
22 if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
23 return false;
24
25 if (i_size_read(inode) > MAX_INLINE_DATA)
26 return false;
27
28 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
29 return false;
30
31 return true;
32 }
33
34 bool f2fs_may_inline_dentry(struct inode *inode)
35 {
36 if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
37 return false;
38
39 if (!S_ISDIR(inode->i_mode))
40 return false;
41
42 return true;
43 }
44
45 void read_inline_data(struct page *page, struct page *ipage)
46 {
47 void *src_addr, *dst_addr;
48
49 if (PageUptodate(page))
50 return;
51
52 f2fs_bug_on(F2FS_P_SB(page), page->index);
53
54 zero_user_segment(page, MAX_INLINE_DATA, PAGE_SIZE);
55
56 /* Copy the whole inline data block */
57 src_addr = inline_data_addr(ipage);
58 dst_addr = kmap_atomic(page);
59 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
60 flush_dcache_page(page);
61 kunmap_atomic(dst_addr);
62 SetPageUptodate(page);
63 }
64
65 bool truncate_inline_inode(struct page *ipage, u64 from)
66 {
67 void *addr;
68
69 if (from >= MAX_INLINE_DATA)
70 return false;
71
72 addr = inline_data_addr(ipage);
73
74 f2fs_wait_on_page_writeback(ipage, NODE, true);
75 memset(addr + from, 0, MAX_INLINE_DATA - from);
76 set_page_dirty(ipage);
77 return true;
78 }
79
80 int f2fs_read_inline_data(struct inode *inode, struct page *page)
81 {
82 struct page *ipage;
83
84 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
85 if (IS_ERR(ipage)) {
86 unlock_page(page);
87 return PTR_ERR(ipage);
88 }
89
90 if (!f2fs_has_inline_data(inode)) {
91 f2fs_put_page(ipage, 1);
92 return -EAGAIN;
93 }
94
95 if (page->index)
96 zero_user_segment(page, 0, PAGE_SIZE);
97 else
98 read_inline_data(page, ipage);
99
100 SetPageUptodate(page);
101 f2fs_put_page(ipage, 1);
102 unlock_page(page);
103 return 0;
104 }
105
106 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
107 {
108 struct f2fs_io_info fio = {
109 .sbi = F2FS_I_SB(dn->inode),
110 .type = DATA,
111 .rw = WRITE_SYNC | REQ_PRIO,
112 .page = page,
113 .encrypted_page = NULL,
114 };
115 int dirty, err;
116
117 if (!f2fs_exist_data(dn->inode))
118 goto clear_out;
119
120 err = f2fs_reserve_block(dn, 0);
121 if (err)
122 return err;
123
124 f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page));
125
126 read_inline_data(page, dn->inode_page);
127 set_page_dirty(page);
128
129 /* clear dirty state */
130 dirty = clear_page_dirty_for_io(page);
131
132 /* write data page to try to make data consistent */
133 set_page_writeback(page);
134 fio.old_blkaddr = dn->data_blkaddr;
135 write_data_page(dn, &fio);
136 f2fs_wait_on_page_writeback(page, DATA, true);
137 if (dirty)
138 inode_dec_dirty_pages(dn->inode);
139
140 /* this converted inline_data should be recovered. */
141 set_inode_flag(dn->inode, FI_APPEND_WRITE);
142
143 /* clear inline data and flag after data writeback */
144 truncate_inline_inode(dn->inode_page, 0);
145 clear_inline_node(dn->inode_page);
146 clear_out:
147 stat_dec_inline_inode(dn->inode);
148 f2fs_clear_inline_inode(dn->inode);
149 f2fs_put_dnode(dn);
150 return 0;
151 }
152
153 int f2fs_convert_inline_inode(struct inode *inode)
154 {
155 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
156 struct dnode_of_data dn;
157 struct page *ipage, *page;
158 int err = 0;
159
160 if (!f2fs_has_inline_data(inode))
161 return 0;
162
163 page = f2fs_grab_cache_page(inode->i_mapping, 0, false);
164 if (!page)
165 return -ENOMEM;
166
167 f2fs_lock_op(sbi);
168
169 ipage = get_node_page(sbi, inode->i_ino);
170 if (IS_ERR(ipage)) {
171 err = PTR_ERR(ipage);
172 goto out;
173 }
174
175 set_new_dnode(&dn, inode, ipage, ipage, 0);
176
177 if (f2fs_has_inline_data(inode))
178 err = f2fs_convert_inline_page(&dn, page);
179
180 f2fs_put_dnode(&dn);
181 out:
182 f2fs_unlock_op(sbi);
183
184 f2fs_put_page(page, 1);
185
186 f2fs_balance_fs(sbi, dn.node_changed);
187
188 return err;
189 }
190
191 int f2fs_write_inline_data(struct inode *inode, struct page *page)
192 {
193 void *src_addr, *dst_addr;
194 struct dnode_of_data dn;
195 int err;
196
197 set_new_dnode(&dn, inode, NULL, NULL, 0);
198 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
199 if (err)
200 return err;
201
202 if (!f2fs_has_inline_data(inode)) {
203 f2fs_put_dnode(&dn);
204 return -EAGAIN;
205 }
206
207 f2fs_bug_on(F2FS_I_SB(inode), page->index);
208
209 f2fs_wait_on_page_writeback(dn.inode_page, NODE, true);
210 src_addr = kmap_atomic(page);
211 dst_addr = inline_data_addr(dn.inode_page);
212 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
213 kunmap_atomic(src_addr);
214 set_page_dirty(dn.inode_page);
215
216 set_inode_flag(inode, FI_APPEND_WRITE);
217 set_inode_flag(inode, FI_DATA_EXIST);
218
219 clear_inline_node(dn.inode_page);
220 f2fs_put_dnode(&dn);
221 return 0;
222 }
223
224 bool recover_inline_data(struct inode *inode, struct page *npage)
225 {
226 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
227 struct f2fs_inode *ri = NULL;
228 void *src_addr, *dst_addr;
229 struct page *ipage;
230
231 /*
232 * The inline_data recovery policy is as follows.
233 * [prev.] [next] of inline_data flag
234 * o o -> recover inline_data
235 * o x -> remove inline_data, and then recover data blocks
236 * x o -> remove inline_data, and then recover inline_data
237 * x x -> recover data blocks
238 */
239 if (IS_INODE(npage))
240 ri = F2FS_INODE(npage);
241
242 if (f2fs_has_inline_data(inode) &&
243 ri && (ri->i_inline & F2FS_INLINE_DATA)) {
244 process_inline:
245 ipage = get_node_page(sbi, inode->i_ino);
246 f2fs_bug_on(sbi, IS_ERR(ipage));
247
248 f2fs_wait_on_page_writeback(ipage, NODE, true);
249
250 src_addr = inline_data_addr(npage);
251 dst_addr = inline_data_addr(ipage);
252 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
253
254 set_inode_flag(inode, FI_INLINE_DATA);
255 set_inode_flag(inode, FI_DATA_EXIST);
256
257 set_page_dirty(ipage);
258 f2fs_put_page(ipage, 1);
259 return true;
260 }
261
262 if (f2fs_has_inline_data(inode)) {
263 ipage = get_node_page(sbi, inode->i_ino);
264 f2fs_bug_on(sbi, IS_ERR(ipage));
265 if (!truncate_inline_inode(ipage, 0))
266 return false;
267 f2fs_clear_inline_inode(inode);
268 f2fs_put_page(ipage, 1);
269 } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
270 if (truncate_blocks(inode, 0, false))
271 return false;
272 goto process_inline;
273 }
274 return false;
275 }
276
277 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
278 struct fscrypt_name *fname, struct page **res_page)
279 {
280 struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
281 struct f2fs_inline_dentry *inline_dentry;
282 struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
283 struct f2fs_dir_entry *de;
284 struct f2fs_dentry_ptr d;
285 struct page *ipage;
286 f2fs_hash_t namehash;
287
288 ipage = get_node_page(sbi, dir->i_ino);
289 if (IS_ERR(ipage))
290 return NULL;
291
292 namehash = f2fs_dentry_hash(&name);
293
294 inline_dentry = inline_data_addr(ipage);
295
296 make_dentry_ptr(NULL, &d, (void *)inline_dentry, 2);
297 de = find_target_dentry(fname, namehash, NULL, &d);
298 unlock_page(ipage);
299 if (de)
300 *res_page = ipage;
301 else
302 f2fs_put_page(ipage, 0);
303
304 return de;
305 }
306
307 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *dir,
308 struct page **p)
309 {
310 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
311 struct page *ipage;
312 struct f2fs_dir_entry *de;
313 struct f2fs_inline_dentry *dentry_blk;
314
315 ipage = get_node_page(sbi, dir->i_ino);
316 if (IS_ERR(ipage))
317 return NULL;
318
319 dentry_blk = inline_data_addr(ipage);
320 de = &dentry_blk->dentry[1];
321 *p = ipage;
322 unlock_page(ipage);
323 return de;
324 }
325
326 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
327 struct page *ipage)
328 {
329 struct f2fs_inline_dentry *dentry_blk;
330 struct f2fs_dentry_ptr d;
331
332 dentry_blk = inline_data_addr(ipage);
333
334 make_dentry_ptr(NULL, &d, (void *)dentry_blk, 2);
335 do_make_empty_dir(inode, parent, &d);
336
337 set_page_dirty(ipage);
338
339 /* update i_size to MAX_INLINE_DATA */
340 if (i_size_read(inode) < MAX_INLINE_DATA)
341 f2fs_i_size_write(inode, MAX_INLINE_DATA);
342 return 0;
343 }
344
345 /*
346 * NOTE: ipage is grabbed by caller, but if any error occurs, we should
347 * release ipage in this function.
348 */
349 static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage,
350 struct f2fs_inline_dentry *inline_dentry)
351 {
352 struct page *page;
353 struct dnode_of_data dn;
354 struct f2fs_dentry_block *dentry_blk;
355 int err;
356
357 page = f2fs_grab_cache_page(dir->i_mapping, 0, false);
358 if (!page) {
359 f2fs_put_page(ipage, 1);
360 return -ENOMEM;
361 }
362
363 set_new_dnode(&dn, dir, ipage, NULL, 0);
364 err = f2fs_reserve_block(&dn, 0);
365 if (err)
366 goto out;
367
368 f2fs_wait_on_page_writeback(page, DATA, true);
369 zero_user_segment(page, MAX_INLINE_DATA, PAGE_SIZE);
370
371 dentry_blk = kmap_atomic(page);
372
373 /* copy data from inline dentry block to new dentry block */
374 memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
375 INLINE_DENTRY_BITMAP_SIZE);
376 memset(dentry_blk->dentry_bitmap + INLINE_DENTRY_BITMAP_SIZE, 0,
377 SIZE_OF_DENTRY_BITMAP - INLINE_DENTRY_BITMAP_SIZE);
378 /*
379 * we do not need to zero out remainder part of dentry and filename
380 * field, since we have used bitmap for marking the usage status of
381 * them, besides, we can also ignore copying/zeroing reserved space
382 * of dentry block, because them haven't been used so far.
383 */
384 memcpy(dentry_blk->dentry, inline_dentry->dentry,
385 sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
386 memcpy(dentry_blk->filename, inline_dentry->filename,
387 NR_INLINE_DENTRY * F2FS_SLOT_LEN);
388
389 kunmap_atomic(dentry_blk);
390 SetPageUptodate(page);
391 set_page_dirty(page);
392
393 /* clear inline dir and flag after data writeback */
394 truncate_inline_inode(ipage, 0);
395
396 stat_dec_inline_dir(dir);
397 clear_inode_flag(dir, FI_INLINE_DENTRY);
398
399 f2fs_i_depth_write(dir, 1);
400 if (i_size_read(dir) < PAGE_SIZE)
401 f2fs_i_size_write(dir, PAGE_SIZE);
402 out:
403 f2fs_put_page(page, 1);
404 return err;
405 }
406
407 static int f2fs_add_inline_entries(struct inode *dir,
408 struct f2fs_inline_dentry *inline_dentry)
409 {
410 struct f2fs_dentry_ptr d;
411 unsigned long bit_pos = 0;
412 int err = 0;
413
414 make_dentry_ptr(NULL, &d, (void *)inline_dentry, 2);
415
416 while (bit_pos < d.max) {
417 struct f2fs_dir_entry *de;
418 struct qstr new_name;
419 nid_t ino;
420 umode_t fake_mode;
421
422 if (!test_bit_le(bit_pos, d.bitmap)) {
423 bit_pos++;
424 continue;
425 }
426
427 de = &d.dentry[bit_pos];
428
429 if (unlikely(!de->name_len)) {
430 bit_pos++;
431 continue;
432 }
433
434 new_name.name = d.filename[bit_pos];
435 new_name.len = de->name_len;
436
437 ino = le32_to_cpu(de->ino);
438 fake_mode = get_de_type(de) << S_SHIFT;
439
440 err = f2fs_add_regular_entry(dir, &new_name, NULL,
441 ino, fake_mode);
442 if (err)
443 goto punch_dentry_pages;
444
445 bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
446 }
447 return 0;
448 punch_dentry_pages:
449 truncate_inode_pages(&dir->i_data, 0);
450 truncate_blocks(dir, 0, false);
451 remove_dirty_inode(dir);
452 return err;
453 }
454
455 static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage,
456 struct f2fs_inline_dentry *inline_dentry)
457 {
458 struct f2fs_inline_dentry *backup_dentry;
459 int err;
460
461 backup_dentry = f2fs_kmalloc(sizeof(struct f2fs_inline_dentry),
462 GFP_F2FS_ZERO);
463 if (!backup_dentry) {
464 f2fs_put_page(ipage, 1);
465 return -ENOMEM;
466 }
467
468 memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA);
469 truncate_inline_inode(ipage, 0);
470
471 unlock_page(ipage);
472
473 err = f2fs_add_inline_entries(dir, backup_dentry);
474 if (err)
475 goto recover;
476
477 lock_page(ipage);
478
479 stat_dec_inline_dir(dir);
480 clear_inode_flag(dir, FI_INLINE_DENTRY);
481 kfree(backup_dentry);
482 return 0;
483 recover:
484 lock_page(ipage);
485 memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA);
486 f2fs_i_depth_write(dir, 0);
487 f2fs_i_size_write(dir, MAX_INLINE_DATA);
488 set_page_dirty(ipage);
489 f2fs_put_page(ipage, 1);
490
491 kfree(backup_dentry);
492 return err;
493 }
494
495 static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
496 struct f2fs_inline_dentry *inline_dentry)
497 {
498 if (!F2FS_I(dir)->i_dir_level)
499 return f2fs_move_inline_dirents(dir, ipage, inline_dentry);
500 else
501 return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry);
502 }
503
504 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *name,
505 struct inode *inode, nid_t ino, umode_t mode)
506 {
507 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
508 struct page *ipage;
509 unsigned int bit_pos;
510 f2fs_hash_t name_hash;
511 size_t namelen = name->len;
512 struct f2fs_inline_dentry *dentry_blk = NULL;
513 struct f2fs_dentry_ptr d;
514 int slots = GET_DENTRY_SLOTS(namelen);
515 struct page *page = NULL;
516 int err = 0;
517
518 ipage = get_node_page(sbi, dir->i_ino);
519 if (IS_ERR(ipage))
520 return PTR_ERR(ipage);
521
522 dentry_blk = inline_data_addr(ipage);
523 bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
524 slots, NR_INLINE_DENTRY);
525 if (bit_pos >= NR_INLINE_DENTRY) {
526 err = f2fs_convert_inline_dir(dir, ipage, dentry_blk);
527 if (err)
528 return err;
529 err = -EAGAIN;
530 goto out;
531 }
532
533 if (inode) {
534 down_write(&F2FS_I(inode)->i_sem);
535 page = init_inode_metadata(inode, dir, name, ipage);
536 if (IS_ERR(page)) {
537 err = PTR_ERR(page);
538 goto fail;
539 }
540 }
541
542 f2fs_wait_on_page_writeback(ipage, NODE, true);
543
544 name_hash = f2fs_dentry_hash(name);
545 make_dentry_ptr(NULL, &d, (void *)dentry_blk, 2);
546 f2fs_update_dentry(ino, mode, &d, name, name_hash, bit_pos);
547
548 set_page_dirty(ipage);
549
550 /* we don't need to mark_inode_dirty now */
551 if (inode) {
552 f2fs_i_pino_write(inode, dir->i_ino);
553 f2fs_put_page(page, 1);
554 }
555
556 update_parent_metadata(dir, inode, 0);
557 fail:
558 if (inode)
559 up_write(&F2FS_I(inode)->i_sem);
560 out:
561 f2fs_put_page(ipage, 1);
562 return err;
563 }
564
565 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
566 struct inode *dir, struct inode *inode)
567 {
568 struct f2fs_inline_dentry *inline_dentry;
569 int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
570 unsigned int bit_pos;
571 int i;
572
573 lock_page(page);
574 f2fs_wait_on_page_writeback(page, NODE, true);
575
576 inline_dentry = inline_data_addr(page);
577 bit_pos = dentry - inline_dentry->dentry;
578 for (i = 0; i < slots; i++)
579 test_and_clear_bit_le(bit_pos + i,
580 &inline_dentry->dentry_bitmap);
581
582 set_page_dirty(page);
583
584 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
585 mark_inode_dirty_sync(dir);
586
587 if (inode)
588 f2fs_drop_nlink(dir, inode, page);
589
590 f2fs_put_page(page, 1);
591 }
592
593 bool f2fs_empty_inline_dir(struct inode *dir)
594 {
595 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
596 struct page *ipage;
597 unsigned int bit_pos = 2;
598 struct f2fs_inline_dentry *dentry_blk;
599
600 ipage = get_node_page(sbi, dir->i_ino);
601 if (IS_ERR(ipage))
602 return false;
603
604 dentry_blk = inline_data_addr(ipage);
605 bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
606 NR_INLINE_DENTRY,
607 bit_pos);
608
609 f2fs_put_page(ipage, 1);
610
611 if (bit_pos < NR_INLINE_DENTRY)
612 return false;
613
614 return true;
615 }
616
617 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
618 struct fscrypt_str *fstr)
619 {
620 struct inode *inode = file_inode(file);
621 struct f2fs_inline_dentry *inline_dentry = NULL;
622 struct page *ipage = NULL;
623 struct f2fs_dentry_ptr d;
624
625 if (ctx->pos == NR_INLINE_DENTRY)
626 return 0;
627
628 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
629 if (IS_ERR(ipage))
630 return PTR_ERR(ipage);
631
632 inline_dentry = inline_data_addr(ipage);
633
634 make_dentry_ptr(inode, &d, (void *)inline_dentry, 2);
635
636 if (!f2fs_fill_dentries(ctx, &d, 0, fstr))
637 ctx->pos = NR_INLINE_DENTRY;
638
639 f2fs_put_page(ipage, 1);
640 return 0;
641 }
642
643 int f2fs_inline_data_fiemap(struct inode *inode,
644 struct fiemap_extent_info *fieinfo, __u64 start, __u64 len)
645 {
646 __u64 byteaddr, ilen;
647 __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED |
648 FIEMAP_EXTENT_LAST;
649 struct node_info ni;
650 struct page *ipage;
651 int err = 0;
652
653 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
654 if (IS_ERR(ipage))
655 return PTR_ERR(ipage);
656
657 if (!f2fs_has_inline_data(inode)) {
658 err = -EAGAIN;
659 goto out;
660 }
661
662 ilen = min_t(size_t, MAX_INLINE_DATA, i_size_read(inode));
663 if (start >= ilen)
664 goto out;
665 if (start + len < ilen)
666 ilen = start + len;
667 ilen -= start;
668
669 get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni);
670 byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits;
671 byteaddr += (char *)inline_data_addr(ipage) - (char *)F2FS_INODE(ipage);
672 err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags);
673 out:
674 f2fs_put_page(ipage, 1);
675 return err;
676 }
This page took 0.04914 seconds and 6 git commands to generate.