f2fs crypto: activate encryption support for fs APIs
[deliverable/linux.git] / fs / f2fs / inline.c
1 /*
2 * fs/f2fs/inline.c
3 * Copyright (c) 2013, Intel Corporation
4 * Authors: Huajun Li <huajun.li@intel.com>
5 * Haicheng Li <haicheng.li@intel.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13
14 #include "f2fs.h"
15
16 bool f2fs_may_inline_data(struct inode *inode)
17 {
18 if (!test_opt(F2FS_I_SB(inode), INLINE_DATA))
19 return false;
20
21 if (f2fs_is_atomic_file(inode))
22 return false;
23
24 if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
25 return false;
26
27 if (i_size_read(inode) > MAX_INLINE_DATA)
28 return false;
29
30 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
31 return false;
32
33 return true;
34 }
35
36 bool f2fs_may_inline_dentry(struct inode *inode)
37 {
38 if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
39 return false;
40
41 if (!S_ISDIR(inode->i_mode))
42 return false;
43
44 return true;
45 }
46
47 void read_inline_data(struct page *page, struct page *ipage)
48 {
49 void *src_addr, *dst_addr;
50
51 if (PageUptodate(page))
52 return;
53
54 f2fs_bug_on(F2FS_P_SB(page), page->index);
55
56 zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
57
58 /* Copy the whole inline data block */
59 src_addr = inline_data_addr(ipage);
60 dst_addr = kmap_atomic(page);
61 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
62 flush_dcache_page(page);
63 kunmap_atomic(dst_addr);
64 SetPageUptodate(page);
65 }
66
67 bool truncate_inline_inode(struct page *ipage, u64 from)
68 {
69 void *addr;
70
71 if (from >= MAX_INLINE_DATA)
72 return false;
73
74 addr = inline_data_addr(ipage);
75
76 f2fs_wait_on_page_writeback(ipage, NODE);
77 memset(addr + from, 0, MAX_INLINE_DATA - from);
78
79 return true;
80 }
81
82 int f2fs_read_inline_data(struct inode *inode, struct page *page)
83 {
84 struct page *ipage;
85
86 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
87 if (IS_ERR(ipage)) {
88 unlock_page(page);
89 return PTR_ERR(ipage);
90 }
91
92 if (!f2fs_has_inline_data(inode)) {
93 f2fs_put_page(ipage, 1);
94 return -EAGAIN;
95 }
96
97 if (page->index)
98 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
99 else
100 read_inline_data(page, ipage);
101
102 SetPageUptodate(page);
103 f2fs_put_page(ipage, 1);
104 unlock_page(page);
105 return 0;
106 }
107
108 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
109 {
110 void *src_addr, *dst_addr;
111 struct f2fs_io_info fio = {
112 .sbi = F2FS_I_SB(dn->inode),
113 .type = DATA,
114 .rw = WRITE_SYNC | REQ_PRIO,
115 .page = page,
116 };
117 int dirty, err;
118
119 f2fs_bug_on(F2FS_I_SB(dn->inode), page->index);
120
121 if (!f2fs_exist_data(dn->inode))
122 goto clear_out;
123
124 err = f2fs_reserve_block(dn, 0);
125 if (err)
126 return err;
127
128 f2fs_wait_on_page_writeback(page, DATA);
129
130 if (PageUptodate(page))
131 goto no_update;
132
133 zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
134
135 /* Copy the whole inline data block */
136 src_addr = inline_data_addr(dn->inode_page);
137 dst_addr = kmap_atomic(page);
138 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
139 flush_dcache_page(page);
140 kunmap_atomic(dst_addr);
141 SetPageUptodate(page);
142 no_update:
143 /* clear dirty state */
144 dirty = clear_page_dirty_for_io(page);
145
146 /* write data page to try to make data consistent */
147 set_page_writeback(page);
148 fio.blk_addr = dn->data_blkaddr;
149 write_data_page(dn, &fio);
150 set_data_blkaddr(dn);
151 f2fs_update_extent_cache(dn);
152 f2fs_wait_on_page_writeback(page, DATA);
153 if (dirty)
154 inode_dec_dirty_pages(dn->inode);
155
156 /* this converted inline_data should be recovered. */
157 set_inode_flag(F2FS_I(dn->inode), FI_APPEND_WRITE);
158
159 /* clear inline data and flag after data writeback */
160 truncate_inline_inode(dn->inode_page, 0);
161 clear_out:
162 stat_dec_inline_inode(dn->inode);
163 f2fs_clear_inline_inode(dn->inode);
164 sync_inode_page(dn);
165 f2fs_put_dnode(dn);
166 return 0;
167 }
168
169 int f2fs_convert_inline_inode(struct inode *inode)
170 {
171 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
172 struct dnode_of_data dn;
173 struct page *ipage, *page;
174 int err = 0;
175
176 page = grab_cache_page(inode->i_mapping, 0);
177 if (!page)
178 return -ENOMEM;
179
180 f2fs_lock_op(sbi);
181
182 ipage = get_node_page(sbi, inode->i_ino);
183 if (IS_ERR(ipage)) {
184 err = PTR_ERR(ipage);
185 goto out;
186 }
187
188 set_new_dnode(&dn, inode, ipage, ipage, 0);
189
190 if (f2fs_has_inline_data(inode))
191 err = f2fs_convert_inline_page(&dn, page);
192
193 f2fs_put_dnode(&dn);
194 out:
195 f2fs_unlock_op(sbi);
196
197 f2fs_put_page(page, 1);
198 return err;
199 }
200
201 int f2fs_write_inline_data(struct inode *inode, struct page *page)
202 {
203 void *src_addr, *dst_addr;
204 struct dnode_of_data dn;
205 int err;
206
207 set_new_dnode(&dn, inode, NULL, NULL, 0);
208 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
209 if (err)
210 return err;
211
212 if (!f2fs_has_inline_data(inode)) {
213 f2fs_put_dnode(&dn);
214 return -EAGAIN;
215 }
216
217 f2fs_bug_on(F2FS_I_SB(inode), page->index);
218
219 f2fs_wait_on_page_writeback(dn.inode_page, NODE);
220 src_addr = kmap_atomic(page);
221 dst_addr = inline_data_addr(dn.inode_page);
222 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
223 kunmap_atomic(src_addr);
224
225 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
226 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
227
228 sync_inode_page(&dn);
229 f2fs_put_dnode(&dn);
230 return 0;
231 }
232
233 bool recover_inline_data(struct inode *inode, struct page *npage)
234 {
235 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
236 struct f2fs_inode *ri = NULL;
237 void *src_addr, *dst_addr;
238 struct page *ipage;
239
240 /*
241 * The inline_data recovery policy is as follows.
242 * [prev.] [next] of inline_data flag
243 * o o -> recover inline_data
244 * o x -> remove inline_data, and then recover data blocks
245 * x o -> remove inline_data, and then recover inline_data
246 * x x -> recover data blocks
247 */
248 if (IS_INODE(npage))
249 ri = F2FS_INODE(npage);
250
251 if (f2fs_has_inline_data(inode) &&
252 ri && (ri->i_inline & F2FS_INLINE_DATA)) {
253 process_inline:
254 ipage = get_node_page(sbi, inode->i_ino);
255 f2fs_bug_on(sbi, IS_ERR(ipage));
256
257 f2fs_wait_on_page_writeback(ipage, NODE);
258
259 src_addr = inline_data_addr(npage);
260 dst_addr = inline_data_addr(ipage);
261 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
262
263 set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
264 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
265
266 update_inode(inode, ipage);
267 f2fs_put_page(ipage, 1);
268 return true;
269 }
270
271 if (f2fs_has_inline_data(inode)) {
272 ipage = get_node_page(sbi, inode->i_ino);
273 f2fs_bug_on(sbi, IS_ERR(ipage));
274 truncate_inline_inode(ipage, 0);
275 f2fs_clear_inline_inode(inode);
276 update_inode(inode, ipage);
277 f2fs_put_page(ipage, 1);
278 } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
279 truncate_blocks(inode, 0, false);
280 goto process_inline;
281 }
282 return false;
283 }
284
285 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
286 struct qstr *name, struct page **res_page)
287 {
288 struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
289 struct f2fs_inline_dentry *inline_dentry;
290 struct f2fs_dir_entry *de;
291 struct f2fs_dentry_ptr d;
292 struct page *ipage;
293
294 ipage = get_node_page(sbi, dir->i_ino);
295 if (IS_ERR(ipage))
296 return NULL;
297
298 inline_dentry = inline_data_addr(ipage);
299
300 make_dentry_ptr(&d, (void *)inline_dentry, 2);
301 de = find_target_dentry(name, NULL, &d);
302
303 unlock_page(ipage);
304 if (de)
305 *res_page = ipage;
306 else
307 f2fs_put_page(ipage, 0);
308
309 /*
310 * For the most part, it should be a bug when name_len is zero.
311 * We stop here for figuring out where the bugs has occurred.
312 */
313 f2fs_bug_on(sbi, d.max < 0);
314 return de;
315 }
316
317 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *dir,
318 struct page **p)
319 {
320 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
321 struct page *ipage;
322 struct f2fs_dir_entry *de;
323 struct f2fs_inline_dentry *dentry_blk;
324
325 ipage = get_node_page(sbi, dir->i_ino);
326 if (IS_ERR(ipage))
327 return NULL;
328
329 dentry_blk = inline_data_addr(ipage);
330 de = &dentry_blk->dentry[1];
331 *p = ipage;
332 unlock_page(ipage);
333 return de;
334 }
335
336 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
337 struct page *ipage)
338 {
339 struct f2fs_inline_dentry *dentry_blk;
340 struct f2fs_dentry_ptr d;
341
342 dentry_blk = inline_data_addr(ipage);
343
344 make_dentry_ptr(&d, (void *)dentry_blk, 2);
345 do_make_empty_dir(inode, parent, &d);
346
347 set_page_dirty(ipage);
348
349 /* update i_size to MAX_INLINE_DATA */
350 if (i_size_read(inode) < MAX_INLINE_DATA) {
351 i_size_write(inode, MAX_INLINE_DATA);
352 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
353 }
354 return 0;
355 }
356
357 static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
358 struct f2fs_inline_dentry *inline_dentry)
359 {
360 struct page *page;
361 struct dnode_of_data dn;
362 struct f2fs_dentry_block *dentry_blk;
363 int err;
364
365 page = grab_cache_page(dir->i_mapping, 0);
366 if (!page)
367 return -ENOMEM;
368
369 set_new_dnode(&dn, dir, ipage, NULL, 0);
370 err = f2fs_reserve_block(&dn, 0);
371 if (err)
372 goto out;
373
374 f2fs_wait_on_page_writeback(page, DATA);
375 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
376
377 dentry_blk = kmap_atomic(page);
378
379 /* copy data from inline dentry block to new dentry block */
380 memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
381 INLINE_DENTRY_BITMAP_SIZE);
382 memcpy(dentry_blk->dentry, inline_dentry->dentry,
383 sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
384 memcpy(dentry_blk->filename, inline_dentry->filename,
385 NR_INLINE_DENTRY * F2FS_SLOT_LEN);
386
387 kunmap_atomic(dentry_blk);
388 SetPageUptodate(page);
389 set_page_dirty(page);
390
391 /* clear inline dir and flag after data writeback */
392 truncate_inline_inode(ipage, 0);
393
394 stat_dec_inline_dir(dir);
395 clear_inode_flag(F2FS_I(dir), FI_INLINE_DENTRY);
396
397 if (i_size_read(dir) < PAGE_CACHE_SIZE) {
398 i_size_write(dir, PAGE_CACHE_SIZE);
399 set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
400 }
401
402 sync_inode_page(&dn);
403 out:
404 f2fs_put_page(page, 1);
405 return err;
406 }
407
408 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *name,
409 struct inode *inode, nid_t ino, umode_t mode)
410 {
411 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
412 struct page *ipage;
413 unsigned int bit_pos;
414 f2fs_hash_t name_hash;
415 size_t namelen = name->len;
416 struct f2fs_inline_dentry *dentry_blk = NULL;
417 struct f2fs_dentry_ptr d;
418 int slots = GET_DENTRY_SLOTS(namelen);
419 struct page *page = NULL;
420 int err = 0;
421
422 ipage = get_node_page(sbi, dir->i_ino);
423 if (IS_ERR(ipage))
424 return PTR_ERR(ipage);
425
426 dentry_blk = inline_data_addr(ipage);
427 bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
428 slots, NR_INLINE_DENTRY);
429 if (bit_pos >= NR_INLINE_DENTRY) {
430 err = f2fs_convert_inline_dir(dir, ipage, dentry_blk);
431 if (!err)
432 err = -EAGAIN;
433 goto out;
434 }
435
436 if (inode) {
437 down_write(&F2FS_I(inode)->i_sem);
438 page = init_inode_metadata(inode, dir, name, ipage);
439 if (IS_ERR(page)) {
440 err = PTR_ERR(page);
441 goto fail;
442 }
443 }
444
445 f2fs_wait_on_page_writeback(ipage, NODE);
446
447 name_hash = f2fs_dentry_hash(name);
448 make_dentry_ptr(&d, (void *)dentry_blk, 2);
449 f2fs_update_dentry(ino, mode, &d, name, name_hash, bit_pos);
450
451 set_page_dirty(ipage);
452
453 /* we don't need to mark_inode_dirty now */
454 if (inode) {
455 F2FS_I(inode)->i_pino = dir->i_ino;
456 update_inode(inode, page);
457 f2fs_put_page(page, 1);
458 }
459
460 update_parent_metadata(dir, inode, 0);
461 fail:
462 if (inode)
463 up_write(&F2FS_I(inode)->i_sem);
464
465 if (is_inode_flag_set(F2FS_I(dir), FI_UPDATE_DIR)) {
466 update_inode(dir, ipage);
467 clear_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
468 }
469 out:
470 f2fs_put_page(ipage, 1);
471 return err;
472 }
473
474 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
475 struct inode *dir, struct inode *inode)
476 {
477 struct f2fs_inline_dentry *inline_dentry;
478 int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
479 unsigned int bit_pos;
480 int i;
481
482 lock_page(page);
483 f2fs_wait_on_page_writeback(page, NODE);
484
485 inline_dentry = inline_data_addr(page);
486 bit_pos = dentry - inline_dentry->dentry;
487 for (i = 0; i < slots; i++)
488 test_and_clear_bit_le(bit_pos + i,
489 &inline_dentry->dentry_bitmap);
490
491 set_page_dirty(page);
492
493 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
494
495 if (inode)
496 f2fs_drop_nlink(dir, inode, page);
497
498 f2fs_put_page(page, 1);
499 }
500
501 bool f2fs_empty_inline_dir(struct inode *dir)
502 {
503 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
504 struct page *ipage;
505 unsigned int bit_pos = 2;
506 struct f2fs_inline_dentry *dentry_blk;
507
508 ipage = get_node_page(sbi, dir->i_ino);
509 if (IS_ERR(ipage))
510 return false;
511
512 dentry_blk = inline_data_addr(ipage);
513 bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
514 NR_INLINE_DENTRY,
515 bit_pos);
516
517 f2fs_put_page(ipage, 1);
518
519 if (bit_pos < NR_INLINE_DENTRY)
520 return false;
521
522 return true;
523 }
524
525 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx)
526 {
527 struct inode *inode = file_inode(file);
528 struct f2fs_inline_dentry *inline_dentry = NULL;
529 struct page *ipage = NULL;
530 struct f2fs_dentry_ptr d;
531
532 if (ctx->pos == NR_INLINE_DENTRY)
533 return 0;
534
535 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
536 if (IS_ERR(ipage))
537 return PTR_ERR(ipage);
538
539 inline_dentry = inline_data_addr(ipage);
540
541 make_dentry_ptr(&d, (void *)inline_dentry, 2);
542
543 if (!f2fs_fill_dentries(ctx, &d, 0))
544 ctx->pos = NR_INLINE_DENTRY;
545
546 f2fs_put_page(ipage, 1);
547 return 0;
548 }
This page took 0.073723 seconds and 6 git commands to generate.