Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / fs / f2fs / node.c
1 /*
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23
24 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
25
26 static struct kmem_cache *nat_entry_slab;
27 static struct kmem_cache *free_nid_slab;
28
29 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
30 {
31 struct f2fs_nm_info *nm_i = NM_I(sbi);
32 struct sysinfo val;
33 unsigned long mem_size = 0;
34 bool res = false;
35
36 si_meminfo(&val);
37 /* give 25%, 25%, 50% memory for each components respectively */
38 if (type == FREE_NIDS) {
39 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >> 12;
40 res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
41 } else if (type == NAT_ENTRIES) {
42 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 12;
43 res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
44 } else if (type == DIRTY_DENTS) {
45 if (sbi->sb->s_bdi->dirty_exceeded)
46 return false;
47 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
48 res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 1);
49 }
50 return res;
51 }
52
53 static void clear_node_page_dirty(struct page *page)
54 {
55 struct address_space *mapping = page->mapping;
56 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
57 unsigned int long flags;
58
59 if (PageDirty(page)) {
60 spin_lock_irqsave(&mapping->tree_lock, flags);
61 radix_tree_tag_clear(&mapping->page_tree,
62 page_index(page),
63 PAGECACHE_TAG_DIRTY);
64 spin_unlock_irqrestore(&mapping->tree_lock, flags);
65
66 clear_page_dirty_for_io(page);
67 dec_page_count(sbi, F2FS_DIRTY_NODES);
68 }
69 ClearPageUptodate(page);
70 }
71
72 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
73 {
74 pgoff_t index = current_nat_addr(sbi, nid);
75 return get_meta_page(sbi, index);
76 }
77
78 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
79 {
80 struct page *src_page;
81 struct page *dst_page;
82 pgoff_t src_off;
83 pgoff_t dst_off;
84 void *src_addr;
85 void *dst_addr;
86 struct f2fs_nm_info *nm_i = NM_I(sbi);
87
88 src_off = current_nat_addr(sbi, nid);
89 dst_off = next_nat_addr(sbi, src_off);
90
91 /* get current nat block page with lock */
92 src_page = get_meta_page(sbi, src_off);
93
94 /* Dirty src_page means that it is already the new target NAT page. */
95 if (PageDirty(src_page))
96 return src_page;
97
98 dst_page = grab_meta_page(sbi, dst_off);
99
100 src_addr = page_address(src_page);
101 dst_addr = page_address(dst_page);
102 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
103 set_page_dirty(dst_page);
104 f2fs_put_page(src_page, 1);
105
106 set_to_next_nat(nm_i, nid);
107
108 return dst_page;
109 }
110
111 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
112 {
113 return radix_tree_lookup(&nm_i->nat_root, n);
114 }
115
116 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
117 nid_t start, unsigned int nr, struct nat_entry **ep)
118 {
119 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
120 }
121
122 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
123 {
124 list_del(&e->list);
125 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
126 nm_i->nat_cnt--;
127 kmem_cache_free(nat_entry_slab, e);
128 }
129
130 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
131 {
132 struct f2fs_nm_info *nm_i = NM_I(sbi);
133 struct nat_entry *e;
134 int is_cp = 1;
135
136 read_lock(&nm_i->nat_tree_lock);
137 e = __lookup_nat_cache(nm_i, nid);
138 if (e && !e->checkpointed)
139 is_cp = 0;
140 read_unlock(&nm_i->nat_tree_lock);
141 return is_cp;
142 }
143
144 bool fsync_mark_done(struct f2fs_sb_info *sbi, nid_t nid)
145 {
146 struct f2fs_nm_info *nm_i = NM_I(sbi);
147 struct nat_entry *e;
148 bool fsync_done = false;
149
150 read_lock(&nm_i->nat_tree_lock);
151 e = __lookup_nat_cache(nm_i, nid);
152 if (e)
153 fsync_done = e->fsync_done;
154 read_unlock(&nm_i->nat_tree_lock);
155 return fsync_done;
156 }
157
158 void fsync_mark_clear(struct f2fs_sb_info *sbi, nid_t nid)
159 {
160 struct f2fs_nm_info *nm_i = NM_I(sbi);
161 struct nat_entry *e;
162
163 write_lock(&nm_i->nat_tree_lock);
164 e = __lookup_nat_cache(nm_i, nid);
165 if (e)
166 e->fsync_done = false;
167 write_unlock(&nm_i->nat_tree_lock);
168 }
169
170 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
171 {
172 struct nat_entry *new;
173
174 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
175 if (!new)
176 return NULL;
177 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
178 kmem_cache_free(nat_entry_slab, new);
179 return NULL;
180 }
181 memset(new, 0, sizeof(struct nat_entry));
182 nat_set_nid(new, nid);
183 new->checkpointed = true;
184 list_add_tail(&new->list, &nm_i->nat_entries);
185 nm_i->nat_cnt++;
186 return new;
187 }
188
189 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
190 struct f2fs_nat_entry *ne)
191 {
192 struct nat_entry *e;
193 retry:
194 write_lock(&nm_i->nat_tree_lock);
195 e = __lookup_nat_cache(nm_i, nid);
196 if (!e) {
197 e = grab_nat_entry(nm_i, nid);
198 if (!e) {
199 write_unlock(&nm_i->nat_tree_lock);
200 goto retry;
201 }
202 node_info_from_raw_nat(&e->ni, ne);
203 }
204 write_unlock(&nm_i->nat_tree_lock);
205 }
206
207 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
208 block_t new_blkaddr, bool fsync_done)
209 {
210 struct f2fs_nm_info *nm_i = NM_I(sbi);
211 struct nat_entry *e;
212 retry:
213 write_lock(&nm_i->nat_tree_lock);
214 e = __lookup_nat_cache(nm_i, ni->nid);
215 if (!e) {
216 e = grab_nat_entry(nm_i, ni->nid);
217 if (!e) {
218 write_unlock(&nm_i->nat_tree_lock);
219 goto retry;
220 }
221 e->ni = *ni;
222 f2fs_bug_on(ni->blk_addr == NEW_ADDR);
223 } else if (new_blkaddr == NEW_ADDR) {
224 /*
225 * when nid is reallocated,
226 * previous nat entry can be remained in nat cache.
227 * So, reinitialize it with new information.
228 */
229 e->ni = *ni;
230 f2fs_bug_on(ni->blk_addr != NULL_ADDR);
231 }
232
233 /* sanity check */
234 f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
235 f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
236 new_blkaddr == NULL_ADDR);
237 f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
238 new_blkaddr == NEW_ADDR);
239 f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
240 nat_get_blkaddr(e) != NULL_ADDR &&
241 new_blkaddr == NEW_ADDR);
242
243 /* increament version no as node is removed */
244 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
245 unsigned char version = nat_get_version(e);
246 nat_set_version(e, inc_node_version(version));
247 }
248
249 /* change address */
250 nat_set_blkaddr(e, new_blkaddr);
251 __set_nat_cache_dirty(nm_i, e);
252
253 /* update fsync_mark if its inode nat entry is still alive */
254 e = __lookup_nat_cache(nm_i, ni->ino);
255 if (e)
256 e->fsync_done = fsync_done;
257 write_unlock(&nm_i->nat_tree_lock);
258 }
259
260 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
261 {
262 struct f2fs_nm_info *nm_i = NM_I(sbi);
263
264 if (available_free_memory(sbi, NAT_ENTRIES))
265 return 0;
266
267 write_lock(&nm_i->nat_tree_lock);
268 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
269 struct nat_entry *ne;
270 ne = list_first_entry(&nm_i->nat_entries,
271 struct nat_entry, list);
272 __del_from_nat_cache(nm_i, ne);
273 nr_shrink--;
274 }
275 write_unlock(&nm_i->nat_tree_lock);
276 return nr_shrink;
277 }
278
279 /*
280 * This function returns always success
281 */
282 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
283 {
284 struct f2fs_nm_info *nm_i = NM_I(sbi);
285 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
286 struct f2fs_summary_block *sum = curseg->sum_blk;
287 nid_t start_nid = START_NID(nid);
288 struct f2fs_nat_block *nat_blk;
289 struct page *page = NULL;
290 struct f2fs_nat_entry ne;
291 struct nat_entry *e;
292 int i;
293
294 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
295 ni->nid = nid;
296
297 /* Check nat cache */
298 read_lock(&nm_i->nat_tree_lock);
299 e = __lookup_nat_cache(nm_i, nid);
300 if (e) {
301 ni->ino = nat_get_ino(e);
302 ni->blk_addr = nat_get_blkaddr(e);
303 ni->version = nat_get_version(e);
304 }
305 read_unlock(&nm_i->nat_tree_lock);
306 if (e)
307 return;
308
309 /* Check current segment summary */
310 mutex_lock(&curseg->curseg_mutex);
311 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
312 if (i >= 0) {
313 ne = nat_in_journal(sum, i);
314 node_info_from_raw_nat(ni, &ne);
315 }
316 mutex_unlock(&curseg->curseg_mutex);
317 if (i >= 0)
318 goto cache;
319
320 /* Fill node_info from nat page */
321 page = get_current_nat_page(sbi, start_nid);
322 nat_blk = (struct f2fs_nat_block *)page_address(page);
323 ne = nat_blk->entries[nid - start_nid];
324 node_info_from_raw_nat(ni, &ne);
325 f2fs_put_page(page, 1);
326 cache:
327 /* cache nat entry */
328 cache_nat_entry(NM_I(sbi), nid, &ne);
329 }
330
331 /*
332 * The maximum depth is four.
333 * Offset[0] will have raw inode offset.
334 */
335 static int get_node_path(struct f2fs_inode_info *fi, long block,
336 int offset[4], unsigned int noffset[4])
337 {
338 const long direct_index = ADDRS_PER_INODE(fi);
339 const long direct_blks = ADDRS_PER_BLOCK;
340 const long dptrs_per_blk = NIDS_PER_BLOCK;
341 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
342 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
343 int n = 0;
344 int level = 0;
345
346 noffset[0] = 0;
347
348 if (block < direct_index) {
349 offset[n] = block;
350 goto got;
351 }
352 block -= direct_index;
353 if (block < direct_blks) {
354 offset[n++] = NODE_DIR1_BLOCK;
355 noffset[n] = 1;
356 offset[n] = block;
357 level = 1;
358 goto got;
359 }
360 block -= direct_blks;
361 if (block < direct_blks) {
362 offset[n++] = NODE_DIR2_BLOCK;
363 noffset[n] = 2;
364 offset[n] = block;
365 level = 1;
366 goto got;
367 }
368 block -= direct_blks;
369 if (block < indirect_blks) {
370 offset[n++] = NODE_IND1_BLOCK;
371 noffset[n] = 3;
372 offset[n++] = block / direct_blks;
373 noffset[n] = 4 + offset[n - 1];
374 offset[n] = block % direct_blks;
375 level = 2;
376 goto got;
377 }
378 block -= indirect_blks;
379 if (block < indirect_blks) {
380 offset[n++] = NODE_IND2_BLOCK;
381 noffset[n] = 4 + dptrs_per_blk;
382 offset[n++] = block / direct_blks;
383 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
384 offset[n] = block % direct_blks;
385 level = 2;
386 goto got;
387 }
388 block -= indirect_blks;
389 if (block < dindirect_blks) {
390 offset[n++] = NODE_DIND_BLOCK;
391 noffset[n] = 5 + (dptrs_per_blk * 2);
392 offset[n++] = block / indirect_blks;
393 noffset[n] = 6 + (dptrs_per_blk * 2) +
394 offset[n - 1] * (dptrs_per_blk + 1);
395 offset[n++] = (block / direct_blks) % dptrs_per_blk;
396 noffset[n] = 7 + (dptrs_per_blk * 2) +
397 offset[n - 2] * (dptrs_per_blk + 1) +
398 offset[n - 1];
399 offset[n] = block % direct_blks;
400 level = 3;
401 goto got;
402 } else {
403 BUG();
404 }
405 got:
406 return level;
407 }
408
409 /*
410 * Caller should call f2fs_put_dnode(dn).
411 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
412 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
413 * In the case of RDONLY_NODE, we don't need to care about mutex.
414 */
415 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
416 {
417 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
418 struct page *npage[4];
419 struct page *parent;
420 int offset[4];
421 unsigned int noffset[4];
422 nid_t nids[4];
423 int level, i;
424 int err = 0;
425
426 level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
427
428 nids[0] = dn->inode->i_ino;
429 npage[0] = dn->inode_page;
430
431 if (!npage[0]) {
432 npage[0] = get_node_page(sbi, nids[0]);
433 if (IS_ERR(npage[0]))
434 return PTR_ERR(npage[0]);
435 }
436 parent = npage[0];
437 if (level != 0)
438 nids[1] = get_nid(parent, offset[0], true);
439 dn->inode_page = npage[0];
440 dn->inode_page_locked = true;
441
442 /* get indirect or direct nodes */
443 for (i = 1; i <= level; i++) {
444 bool done = false;
445
446 if (!nids[i] && mode == ALLOC_NODE) {
447 /* alloc new node */
448 if (!alloc_nid(sbi, &(nids[i]))) {
449 err = -ENOSPC;
450 goto release_pages;
451 }
452
453 dn->nid = nids[i];
454 npage[i] = new_node_page(dn, noffset[i], NULL);
455 if (IS_ERR(npage[i])) {
456 alloc_nid_failed(sbi, nids[i]);
457 err = PTR_ERR(npage[i]);
458 goto release_pages;
459 }
460
461 set_nid(parent, offset[i - 1], nids[i], i == 1);
462 alloc_nid_done(sbi, nids[i]);
463 done = true;
464 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
465 npage[i] = get_node_page_ra(parent, offset[i - 1]);
466 if (IS_ERR(npage[i])) {
467 err = PTR_ERR(npage[i]);
468 goto release_pages;
469 }
470 done = true;
471 }
472 if (i == 1) {
473 dn->inode_page_locked = false;
474 unlock_page(parent);
475 } else {
476 f2fs_put_page(parent, 1);
477 }
478
479 if (!done) {
480 npage[i] = get_node_page(sbi, nids[i]);
481 if (IS_ERR(npage[i])) {
482 err = PTR_ERR(npage[i]);
483 f2fs_put_page(npage[0], 0);
484 goto release_out;
485 }
486 }
487 if (i < level) {
488 parent = npage[i];
489 nids[i + 1] = get_nid(parent, offset[i], false);
490 }
491 }
492 dn->nid = nids[level];
493 dn->ofs_in_node = offset[level];
494 dn->node_page = npage[level];
495 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
496 return 0;
497
498 release_pages:
499 f2fs_put_page(parent, 1);
500 if (i > 1)
501 f2fs_put_page(npage[0], 0);
502 release_out:
503 dn->inode_page = NULL;
504 dn->node_page = NULL;
505 return err;
506 }
507
508 static void truncate_node(struct dnode_of_data *dn)
509 {
510 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
511 struct node_info ni;
512
513 get_node_info(sbi, dn->nid, &ni);
514 if (dn->inode->i_blocks == 0) {
515 f2fs_bug_on(ni.blk_addr != NULL_ADDR);
516 goto invalidate;
517 }
518 f2fs_bug_on(ni.blk_addr == NULL_ADDR);
519
520 /* Deallocate node address */
521 invalidate_blocks(sbi, ni.blk_addr);
522 dec_valid_node_count(sbi, dn->inode);
523 set_node_addr(sbi, &ni, NULL_ADDR, false);
524
525 if (dn->nid == dn->inode->i_ino) {
526 remove_orphan_inode(sbi, dn->nid);
527 dec_valid_inode_count(sbi);
528 } else {
529 sync_inode_page(dn);
530 }
531 invalidate:
532 clear_node_page_dirty(dn->node_page);
533 F2FS_SET_SB_DIRT(sbi);
534
535 f2fs_put_page(dn->node_page, 1);
536
537 invalidate_mapping_pages(NODE_MAPPING(sbi),
538 dn->node_page->index, dn->node_page->index);
539
540 dn->node_page = NULL;
541 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
542 }
543
544 static int truncate_dnode(struct dnode_of_data *dn)
545 {
546 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
547 struct page *page;
548
549 if (dn->nid == 0)
550 return 1;
551
552 /* get direct node */
553 page = get_node_page(sbi, dn->nid);
554 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
555 return 1;
556 else if (IS_ERR(page))
557 return PTR_ERR(page);
558
559 /* Make dnode_of_data for parameter */
560 dn->node_page = page;
561 dn->ofs_in_node = 0;
562 truncate_data_blocks(dn);
563 truncate_node(dn);
564 return 1;
565 }
566
567 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
568 int ofs, int depth)
569 {
570 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
571 struct dnode_of_data rdn = *dn;
572 struct page *page;
573 struct f2fs_node *rn;
574 nid_t child_nid;
575 unsigned int child_nofs;
576 int freed = 0;
577 int i, ret;
578
579 if (dn->nid == 0)
580 return NIDS_PER_BLOCK + 1;
581
582 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
583
584 page = get_node_page(sbi, dn->nid);
585 if (IS_ERR(page)) {
586 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
587 return PTR_ERR(page);
588 }
589
590 rn = F2FS_NODE(page);
591 if (depth < 3) {
592 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
593 child_nid = le32_to_cpu(rn->in.nid[i]);
594 if (child_nid == 0)
595 continue;
596 rdn.nid = child_nid;
597 ret = truncate_dnode(&rdn);
598 if (ret < 0)
599 goto out_err;
600 set_nid(page, i, 0, false);
601 }
602 } else {
603 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
604 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
605 child_nid = le32_to_cpu(rn->in.nid[i]);
606 if (child_nid == 0) {
607 child_nofs += NIDS_PER_BLOCK + 1;
608 continue;
609 }
610 rdn.nid = child_nid;
611 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
612 if (ret == (NIDS_PER_BLOCK + 1)) {
613 set_nid(page, i, 0, false);
614 child_nofs += ret;
615 } else if (ret < 0 && ret != -ENOENT) {
616 goto out_err;
617 }
618 }
619 freed = child_nofs;
620 }
621
622 if (!ofs) {
623 /* remove current indirect node */
624 dn->node_page = page;
625 truncate_node(dn);
626 freed++;
627 } else {
628 f2fs_put_page(page, 1);
629 }
630 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
631 return freed;
632
633 out_err:
634 f2fs_put_page(page, 1);
635 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
636 return ret;
637 }
638
639 static int truncate_partial_nodes(struct dnode_of_data *dn,
640 struct f2fs_inode *ri, int *offset, int depth)
641 {
642 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
643 struct page *pages[2];
644 nid_t nid[3];
645 nid_t child_nid;
646 int err = 0;
647 int i;
648 int idx = depth - 2;
649
650 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
651 if (!nid[0])
652 return 0;
653
654 /* get indirect nodes in the path */
655 for (i = 0; i < idx + 1; i++) {
656 /* refernece count'll be increased */
657 pages[i] = get_node_page(sbi, nid[i]);
658 if (IS_ERR(pages[i])) {
659 err = PTR_ERR(pages[i]);
660 idx = i - 1;
661 goto fail;
662 }
663 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
664 }
665
666 /* free direct nodes linked to a partial indirect node */
667 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
668 child_nid = get_nid(pages[idx], i, false);
669 if (!child_nid)
670 continue;
671 dn->nid = child_nid;
672 err = truncate_dnode(dn);
673 if (err < 0)
674 goto fail;
675 set_nid(pages[idx], i, 0, false);
676 }
677
678 if (offset[idx + 1] == 0) {
679 dn->node_page = pages[idx];
680 dn->nid = nid[idx];
681 truncate_node(dn);
682 } else {
683 f2fs_put_page(pages[idx], 1);
684 }
685 offset[idx]++;
686 offset[idx + 1] = 0;
687 idx--;
688 fail:
689 for (i = idx; i >= 0; i--)
690 f2fs_put_page(pages[i], 1);
691
692 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
693
694 return err;
695 }
696
697 /*
698 * All the block addresses of data and nodes should be nullified.
699 */
700 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
701 {
702 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
703 int err = 0, cont = 1;
704 int level, offset[4], noffset[4];
705 unsigned int nofs = 0;
706 struct f2fs_inode *ri;
707 struct dnode_of_data dn;
708 struct page *page;
709
710 trace_f2fs_truncate_inode_blocks_enter(inode, from);
711
712 level = get_node_path(F2FS_I(inode), from, offset, noffset);
713 restart:
714 page = get_node_page(sbi, inode->i_ino);
715 if (IS_ERR(page)) {
716 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
717 return PTR_ERR(page);
718 }
719
720 set_new_dnode(&dn, inode, page, NULL, 0);
721 unlock_page(page);
722
723 ri = F2FS_INODE(page);
724 switch (level) {
725 case 0:
726 case 1:
727 nofs = noffset[1];
728 break;
729 case 2:
730 nofs = noffset[1];
731 if (!offset[level - 1])
732 goto skip_partial;
733 err = truncate_partial_nodes(&dn, ri, offset, level);
734 if (err < 0 && err != -ENOENT)
735 goto fail;
736 nofs += 1 + NIDS_PER_BLOCK;
737 break;
738 case 3:
739 nofs = 5 + 2 * NIDS_PER_BLOCK;
740 if (!offset[level - 1])
741 goto skip_partial;
742 err = truncate_partial_nodes(&dn, ri, offset, level);
743 if (err < 0 && err != -ENOENT)
744 goto fail;
745 break;
746 default:
747 BUG();
748 }
749
750 skip_partial:
751 while (cont) {
752 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
753 switch (offset[0]) {
754 case NODE_DIR1_BLOCK:
755 case NODE_DIR2_BLOCK:
756 err = truncate_dnode(&dn);
757 break;
758
759 case NODE_IND1_BLOCK:
760 case NODE_IND2_BLOCK:
761 err = truncate_nodes(&dn, nofs, offset[1], 2);
762 break;
763
764 case NODE_DIND_BLOCK:
765 err = truncate_nodes(&dn, nofs, offset[1], 3);
766 cont = 0;
767 break;
768
769 default:
770 BUG();
771 }
772 if (err < 0 && err != -ENOENT)
773 goto fail;
774 if (offset[1] == 0 &&
775 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
776 lock_page(page);
777 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
778 f2fs_put_page(page, 1);
779 goto restart;
780 }
781 f2fs_wait_on_page_writeback(page, NODE);
782 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
783 set_page_dirty(page);
784 unlock_page(page);
785 }
786 offset[1] = 0;
787 offset[0]++;
788 nofs += err;
789 }
790 fail:
791 f2fs_put_page(page, 0);
792 trace_f2fs_truncate_inode_blocks_exit(inode, err);
793 return err > 0 ? 0 : err;
794 }
795
796 int truncate_xattr_node(struct inode *inode, struct page *page)
797 {
798 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
799 nid_t nid = F2FS_I(inode)->i_xattr_nid;
800 struct dnode_of_data dn;
801 struct page *npage;
802
803 if (!nid)
804 return 0;
805
806 npage = get_node_page(sbi, nid);
807 if (IS_ERR(npage))
808 return PTR_ERR(npage);
809
810 F2FS_I(inode)->i_xattr_nid = 0;
811
812 /* need to do checkpoint during fsync */
813 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
814
815 set_new_dnode(&dn, inode, page, npage, nid);
816
817 if (page)
818 dn.inode_page_locked = true;
819 truncate_node(&dn);
820 return 0;
821 }
822
823 /*
824 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
825 * f2fs_unlock_op().
826 */
827 void remove_inode_page(struct inode *inode)
828 {
829 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
830 struct page *page;
831 nid_t ino = inode->i_ino;
832 struct dnode_of_data dn;
833
834 page = get_node_page(sbi, ino);
835 if (IS_ERR(page))
836 return;
837
838 if (truncate_xattr_node(inode, page)) {
839 f2fs_put_page(page, 1);
840 return;
841 }
842 /* 0 is possible, after f2fs_new_inode() is failed */
843 f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
844 set_new_dnode(&dn, inode, page, page, ino);
845 truncate_node(&dn);
846 }
847
848 struct page *new_inode_page(struct inode *inode, const struct qstr *name)
849 {
850 struct dnode_of_data dn;
851
852 /* allocate inode page for new inode */
853 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
854
855 /* caller should f2fs_put_page(page, 1); */
856 return new_node_page(&dn, 0, NULL);
857 }
858
859 struct page *new_node_page(struct dnode_of_data *dn,
860 unsigned int ofs, struct page *ipage)
861 {
862 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
863 struct node_info old_ni, new_ni;
864 struct page *page;
865 int err;
866
867 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
868 return ERR_PTR(-EPERM);
869
870 page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
871 if (!page)
872 return ERR_PTR(-ENOMEM);
873
874 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
875 err = -ENOSPC;
876 goto fail;
877 }
878
879 get_node_info(sbi, dn->nid, &old_ni);
880
881 /* Reinitialize old_ni with new node page */
882 f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
883 new_ni = old_ni;
884 new_ni.ino = dn->inode->i_ino;
885 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
886
887 f2fs_wait_on_page_writeback(page, NODE);
888 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
889 set_cold_node(dn->inode, page);
890 SetPageUptodate(page);
891 set_page_dirty(page);
892
893 if (f2fs_has_xattr_block(ofs))
894 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
895
896 dn->node_page = page;
897 if (ipage)
898 update_inode(dn->inode, ipage);
899 else
900 sync_inode_page(dn);
901 if (ofs == 0)
902 inc_valid_inode_count(sbi);
903
904 return page;
905
906 fail:
907 clear_node_page_dirty(page);
908 f2fs_put_page(page, 1);
909 return ERR_PTR(err);
910 }
911
912 /*
913 * Caller should do after getting the following values.
914 * 0: f2fs_put_page(page, 0)
915 * LOCKED_PAGE: f2fs_put_page(page, 1)
916 * error: nothing
917 */
918 static int read_node_page(struct page *page, int rw)
919 {
920 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
921 struct node_info ni;
922
923 get_node_info(sbi, page->index, &ni);
924
925 if (unlikely(ni.blk_addr == NULL_ADDR)) {
926 f2fs_put_page(page, 1);
927 return -ENOENT;
928 }
929
930 if (PageUptodate(page))
931 return LOCKED_PAGE;
932
933 return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
934 }
935
936 /*
937 * Readahead a node page
938 */
939 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
940 {
941 struct page *apage;
942 int err;
943
944 apage = find_get_page(NODE_MAPPING(sbi), nid);
945 if (apage && PageUptodate(apage)) {
946 f2fs_put_page(apage, 0);
947 return;
948 }
949 f2fs_put_page(apage, 0);
950
951 apage = grab_cache_page(NODE_MAPPING(sbi), nid);
952 if (!apage)
953 return;
954
955 err = read_node_page(apage, READA);
956 if (err == 0)
957 f2fs_put_page(apage, 0);
958 else if (err == LOCKED_PAGE)
959 f2fs_put_page(apage, 1);
960 }
961
962 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
963 {
964 struct page *page;
965 int err;
966 repeat:
967 page = grab_cache_page(NODE_MAPPING(sbi), nid);
968 if (!page)
969 return ERR_PTR(-ENOMEM);
970
971 err = read_node_page(page, READ_SYNC);
972 if (err < 0)
973 return ERR_PTR(err);
974 else if (err == LOCKED_PAGE)
975 goto got_it;
976
977 lock_page(page);
978 if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
979 f2fs_put_page(page, 1);
980 return ERR_PTR(-EIO);
981 }
982 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
983 f2fs_put_page(page, 1);
984 goto repeat;
985 }
986 got_it:
987 return page;
988 }
989
990 /*
991 * Return a locked page for the desired node page.
992 * And, readahead MAX_RA_NODE number of node pages.
993 */
994 struct page *get_node_page_ra(struct page *parent, int start)
995 {
996 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
997 struct blk_plug plug;
998 struct page *page;
999 int err, i, end;
1000 nid_t nid;
1001
1002 /* First, try getting the desired direct node. */
1003 nid = get_nid(parent, start, false);
1004 if (!nid)
1005 return ERR_PTR(-ENOENT);
1006 repeat:
1007 page = grab_cache_page(NODE_MAPPING(sbi), nid);
1008 if (!page)
1009 return ERR_PTR(-ENOMEM);
1010
1011 err = read_node_page(page, READ_SYNC);
1012 if (err < 0)
1013 return ERR_PTR(err);
1014 else if (err == LOCKED_PAGE)
1015 goto page_hit;
1016
1017 blk_start_plug(&plug);
1018
1019 /* Then, try readahead for siblings of the desired node */
1020 end = start + MAX_RA_NODE;
1021 end = min(end, NIDS_PER_BLOCK);
1022 for (i = start + 1; i < end; i++) {
1023 nid = get_nid(parent, i, false);
1024 if (!nid)
1025 continue;
1026 ra_node_page(sbi, nid);
1027 }
1028
1029 blk_finish_plug(&plug);
1030
1031 lock_page(page);
1032 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1033 f2fs_put_page(page, 1);
1034 goto repeat;
1035 }
1036 page_hit:
1037 if (unlikely(!PageUptodate(page))) {
1038 f2fs_put_page(page, 1);
1039 return ERR_PTR(-EIO);
1040 }
1041 return page;
1042 }
1043
1044 void sync_inode_page(struct dnode_of_data *dn)
1045 {
1046 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1047 update_inode(dn->inode, dn->node_page);
1048 } else if (dn->inode_page) {
1049 if (!dn->inode_page_locked)
1050 lock_page(dn->inode_page);
1051 update_inode(dn->inode, dn->inode_page);
1052 if (!dn->inode_page_locked)
1053 unlock_page(dn->inode_page);
1054 } else {
1055 update_inode_page(dn->inode);
1056 }
1057 }
1058
1059 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1060 struct writeback_control *wbc)
1061 {
1062 pgoff_t index, end;
1063 struct pagevec pvec;
1064 int step = ino ? 2 : 0;
1065 int nwritten = 0, wrote = 0;
1066
1067 pagevec_init(&pvec, 0);
1068
1069 next_step:
1070 index = 0;
1071 end = LONG_MAX;
1072
1073 while (index <= end) {
1074 int i, nr_pages;
1075 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1076 PAGECACHE_TAG_DIRTY,
1077 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1078 if (nr_pages == 0)
1079 break;
1080
1081 for (i = 0; i < nr_pages; i++) {
1082 struct page *page = pvec.pages[i];
1083
1084 /*
1085 * flushing sequence with step:
1086 * 0. indirect nodes
1087 * 1. dentry dnodes
1088 * 2. file dnodes
1089 */
1090 if (step == 0 && IS_DNODE(page))
1091 continue;
1092 if (step == 1 && (!IS_DNODE(page) ||
1093 is_cold_node(page)))
1094 continue;
1095 if (step == 2 && (!IS_DNODE(page) ||
1096 !is_cold_node(page)))
1097 continue;
1098
1099 /*
1100 * If an fsync mode,
1101 * we should not skip writing node pages.
1102 */
1103 if (ino && ino_of_node(page) == ino)
1104 lock_page(page);
1105 else if (!trylock_page(page))
1106 continue;
1107
1108 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1109 continue_unlock:
1110 unlock_page(page);
1111 continue;
1112 }
1113 if (ino && ino_of_node(page) != ino)
1114 goto continue_unlock;
1115
1116 if (!PageDirty(page)) {
1117 /* someone wrote it for us */
1118 goto continue_unlock;
1119 }
1120
1121 if (!clear_page_dirty_for_io(page))
1122 goto continue_unlock;
1123
1124 /* called by fsync() */
1125 if (ino && IS_DNODE(page)) {
1126 int mark = !is_checkpointed_node(sbi, ino);
1127 set_fsync_mark(page, 1);
1128 if (IS_INODE(page))
1129 set_dentry_mark(page, mark);
1130 nwritten++;
1131 } else {
1132 set_fsync_mark(page, 0);
1133 set_dentry_mark(page, 0);
1134 }
1135 NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1136 wrote++;
1137
1138 if (--wbc->nr_to_write == 0)
1139 break;
1140 }
1141 pagevec_release(&pvec);
1142 cond_resched();
1143
1144 if (wbc->nr_to_write == 0) {
1145 step = 2;
1146 break;
1147 }
1148 }
1149
1150 if (step < 2) {
1151 step++;
1152 goto next_step;
1153 }
1154
1155 if (wrote)
1156 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1157 return nwritten;
1158 }
1159
1160 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1161 {
1162 pgoff_t index = 0, end = LONG_MAX;
1163 struct pagevec pvec;
1164 int ret2 = 0, ret = 0;
1165
1166 pagevec_init(&pvec, 0);
1167
1168 while (index <= end) {
1169 int i, nr_pages;
1170 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1171 PAGECACHE_TAG_WRITEBACK,
1172 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1173 if (nr_pages == 0)
1174 break;
1175
1176 for (i = 0; i < nr_pages; i++) {
1177 struct page *page = pvec.pages[i];
1178
1179 /* until radix tree lookup accepts end_index */
1180 if (unlikely(page->index > end))
1181 continue;
1182
1183 if (ino && ino_of_node(page) == ino) {
1184 f2fs_wait_on_page_writeback(page, NODE);
1185 if (TestClearPageError(page))
1186 ret = -EIO;
1187 }
1188 }
1189 pagevec_release(&pvec);
1190 cond_resched();
1191 }
1192
1193 if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1194 ret2 = -ENOSPC;
1195 if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1196 ret2 = -EIO;
1197 if (!ret)
1198 ret = ret2;
1199 return ret;
1200 }
1201
1202 static int f2fs_write_node_page(struct page *page,
1203 struct writeback_control *wbc)
1204 {
1205 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1206 nid_t nid;
1207 block_t new_addr;
1208 struct node_info ni;
1209 struct f2fs_io_info fio = {
1210 .type = NODE,
1211 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1212 };
1213
1214 trace_f2fs_writepage(page, NODE);
1215
1216 if (unlikely(sbi->por_doing))
1217 goto redirty_out;
1218
1219 f2fs_wait_on_page_writeback(page, NODE);
1220
1221 /* get old block addr of this node page */
1222 nid = nid_of_node(page);
1223 f2fs_bug_on(page->index != nid);
1224
1225 get_node_info(sbi, nid, &ni);
1226
1227 /* This page is already truncated */
1228 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1229 dec_page_count(sbi, F2FS_DIRTY_NODES);
1230 unlock_page(page);
1231 return 0;
1232 }
1233
1234 if (wbc->for_reclaim)
1235 goto redirty_out;
1236
1237 mutex_lock(&sbi->node_write);
1238 set_page_writeback(page);
1239 write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
1240 set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
1241 dec_page_count(sbi, F2FS_DIRTY_NODES);
1242 mutex_unlock(&sbi->node_write);
1243 unlock_page(page);
1244 return 0;
1245
1246 redirty_out:
1247 redirty_page_for_writepage(wbc, page);
1248 return AOP_WRITEPAGE_ACTIVATE;
1249 }
1250
1251 static int f2fs_write_node_pages(struct address_space *mapping,
1252 struct writeback_control *wbc)
1253 {
1254 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1255 long diff;
1256
1257 trace_f2fs_writepages(mapping->host, wbc, NODE);
1258
1259 /* balancing f2fs's metadata in background */
1260 f2fs_balance_fs_bg(sbi);
1261
1262 /* collect a number of dirty node pages and write together */
1263 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1264 goto skip_write;
1265
1266 diff = nr_pages_to_write(sbi, NODE, wbc);
1267 wbc->sync_mode = WB_SYNC_NONE;
1268 sync_node_pages(sbi, 0, wbc);
1269 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1270 return 0;
1271
1272 skip_write:
1273 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1274 return 0;
1275 }
1276
1277 static int f2fs_set_node_page_dirty(struct page *page)
1278 {
1279 struct address_space *mapping = page->mapping;
1280 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1281
1282 trace_f2fs_set_page_dirty(page, NODE);
1283
1284 SetPageUptodate(page);
1285 if (!PageDirty(page)) {
1286 __set_page_dirty_nobuffers(page);
1287 inc_page_count(sbi, F2FS_DIRTY_NODES);
1288 SetPagePrivate(page);
1289 return 1;
1290 }
1291 return 0;
1292 }
1293
1294 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1295 unsigned int length)
1296 {
1297 struct inode *inode = page->mapping->host;
1298 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1299 if (PageDirty(page))
1300 dec_page_count(sbi, F2FS_DIRTY_NODES);
1301 ClearPagePrivate(page);
1302 }
1303
1304 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1305 {
1306 ClearPagePrivate(page);
1307 return 1;
1308 }
1309
1310 /*
1311 * Structure of the f2fs node operations
1312 */
1313 const struct address_space_operations f2fs_node_aops = {
1314 .writepage = f2fs_write_node_page,
1315 .writepages = f2fs_write_node_pages,
1316 .set_page_dirty = f2fs_set_node_page_dirty,
1317 .invalidatepage = f2fs_invalidate_node_page,
1318 .releasepage = f2fs_release_node_page,
1319 };
1320
1321 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1322 nid_t n)
1323 {
1324 return radix_tree_lookup(&nm_i->free_nid_root, n);
1325 }
1326
1327 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1328 struct free_nid *i)
1329 {
1330 list_del(&i->list);
1331 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1332 }
1333
1334 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1335 {
1336 struct f2fs_nm_info *nm_i = NM_I(sbi);
1337 struct free_nid *i;
1338 struct nat_entry *ne;
1339 bool allocated = false;
1340
1341 if (!available_free_memory(sbi, FREE_NIDS))
1342 return -1;
1343
1344 /* 0 nid should not be used */
1345 if (unlikely(nid == 0))
1346 return 0;
1347
1348 if (build) {
1349 /* do not add allocated nids */
1350 read_lock(&nm_i->nat_tree_lock);
1351 ne = __lookup_nat_cache(nm_i, nid);
1352 if (ne &&
1353 (!ne->checkpointed || nat_get_blkaddr(ne) != NULL_ADDR))
1354 allocated = true;
1355 read_unlock(&nm_i->nat_tree_lock);
1356 if (allocated)
1357 return 0;
1358 }
1359
1360 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1361 i->nid = nid;
1362 i->state = NID_NEW;
1363
1364 spin_lock(&nm_i->free_nid_list_lock);
1365 if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1366 spin_unlock(&nm_i->free_nid_list_lock);
1367 kmem_cache_free(free_nid_slab, i);
1368 return 0;
1369 }
1370 list_add_tail(&i->list, &nm_i->free_nid_list);
1371 nm_i->fcnt++;
1372 spin_unlock(&nm_i->free_nid_list_lock);
1373 return 1;
1374 }
1375
1376 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1377 {
1378 struct free_nid *i;
1379 bool need_free = false;
1380
1381 spin_lock(&nm_i->free_nid_list_lock);
1382 i = __lookup_free_nid_list(nm_i, nid);
1383 if (i && i->state == NID_NEW) {
1384 __del_from_free_nid_list(nm_i, i);
1385 nm_i->fcnt--;
1386 need_free = true;
1387 }
1388 spin_unlock(&nm_i->free_nid_list_lock);
1389
1390 if (need_free)
1391 kmem_cache_free(free_nid_slab, i);
1392 }
1393
1394 static void scan_nat_page(struct f2fs_sb_info *sbi,
1395 struct page *nat_page, nid_t start_nid)
1396 {
1397 struct f2fs_nm_info *nm_i = NM_I(sbi);
1398 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1399 block_t blk_addr;
1400 int i;
1401
1402 i = start_nid % NAT_ENTRY_PER_BLOCK;
1403
1404 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1405
1406 if (unlikely(start_nid >= nm_i->max_nid))
1407 break;
1408
1409 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1410 f2fs_bug_on(blk_addr == NEW_ADDR);
1411 if (blk_addr == NULL_ADDR) {
1412 if (add_free_nid(sbi, start_nid, true) < 0)
1413 break;
1414 }
1415 }
1416 }
1417
1418 static void build_free_nids(struct f2fs_sb_info *sbi)
1419 {
1420 struct f2fs_nm_info *nm_i = NM_I(sbi);
1421 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1422 struct f2fs_summary_block *sum = curseg->sum_blk;
1423 int i = 0;
1424 nid_t nid = nm_i->next_scan_nid;
1425
1426 /* Enough entries */
1427 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1428 return;
1429
1430 /* readahead nat pages to be scanned */
1431 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1432
1433 while (1) {
1434 struct page *page = get_current_nat_page(sbi, nid);
1435
1436 scan_nat_page(sbi, page, nid);
1437 f2fs_put_page(page, 1);
1438
1439 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1440 if (unlikely(nid >= nm_i->max_nid))
1441 nid = 0;
1442
1443 if (i++ == FREE_NID_PAGES)
1444 break;
1445 }
1446
1447 /* go to the next free nat pages to find free nids abundantly */
1448 nm_i->next_scan_nid = nid;
1449
1450 /* find free nids from current sum_pages */
1451 mutex_lock(&curseg->curseg_mutex);
1452 for (i = 0; i < nats_in_cursum(sum); i++) {
1453 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1454 nid = le32_to_cpu(nid_in_journal(sum, i));
1455 if (addr == NULL_ADDR)
1456 add_free_nid(sbi, nid, true);
1457 else
1458 remove_free_nid(nm_i, nid);
1459 }
1460 mutex_unlock(&curseg->curseg_mutex);
1461 }
1462
1463 /*
1464 * If this function returns success, caller can obtain a new nid
1465 * from second parameter of this function.
1466 * The returned nid could be used ino as well as nid when inode is created.
1467 */
1468 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1469 {
1470 struct f2fs_nm_info *nm_i = NM_I(sbi);
1471 struct free_nid *i = NULL;
1472 retry:
1473 if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1474 return false;
1475
1476 spin_lock(&nm_i->free_nid_list_lock);
1477
1478 /* We should not use stale free nids created by build_free_nids */
1479 if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1480 f2fs_bug_on(list_empty(&nm_i->free_nid_list));
1481 list_for_each_entry(i, &nm_i->free_nid_list, list)
1482 if (i->state == NID_NEW)
1483 break;
1484
1485 f2fs_bug_on(i->state != NID_NEW);
1486 *nid = i->nid;
1487 i->state = NID_ALLOC;
1488 nm_i->fcnt--;
1489 spin_unlock(&nm_i->free_nid_list_lock);
1490 return true;
1491 }
1492 spin_unlock(&nm_i->free_nid_list_lock);
1493
1494 /* Let's scan nat pages and its caches to get free nids */
1495 mutex_lock(&nm_i->build_lock);
1496 build_free_nids(sbi);
1497 mutex_unlock(&nm_i->build_lock);
1498 goto retry;
1499 }
1500
1501 /*
1502 * alloc_nid() should be called prior to this function.
1503 */
1504 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1505 {
1506 struct f2fs_nm_info *nm_i = NM_I(sbi);
1507 struct free_nid *i;
1508
1509 spin_lock(&nm_i->free_nid_list_lock);
1510 i = __lookup_free_nid_list(nm_i, nid);
1511 f2fs_bug_on(!i || i->state != NID_ALLOC);
1512 __del_from_free_nid_list(nm_i, i);
1513 spin_unlock(&nm_i->free_nid_list_lock);
1514
1515 kmem_cache_free(free_nid_slab, i);
1516 }
1517
1518 /*
1519 * alloc_nid() should be called prior to this function.
1520 */
1521 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1522 {
1523 struct f2fs_nm_info *nm_i = NM_I(sbi);
1524 struct free_nid *i;
1525 bool need_free = false;
1526
1527 if (!nid)
1528 return;
1529
1530 spin_lock(&nm_i->free_nid_list_lock);
1531 i = __lookup_free_nid_list(nm_i, nid);
1532 f2fs_bug_on(!i || i->state != NID_ALLOC);
1533 if (!available_free_memory(sbi, FREE_NIDS)) {
1534 __del_from_free_nid_list(nm_i, i);
1535 need_free = true;
1536 } else {
1537 i->state = NID_NEW;
1538 nm_i->fcnt++;
1539 }
1540 spin_unlock(&nm_i->free_nid_list_lock);
1541
1542 if (need_free)
1543 kmem_cache_free(free_nid_slab, i);
1544 }
1545
1546 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1547 struct f2fs_summary *sum, struct node_info *ni,
1548 block_t new_blkaddr)
1549 {
1550 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1551 set_node_addr(sbi, ni, new_blkaddr, false);
1552 clear_node_page_dirty(page);
1553 }
1554
1555 static void recover_inline_xattr(struct inode *inode, struct page *page)
1556 {
1557 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1558 void *src_addr, *dst_addr;
1559 size_t inline_size;
1560 struct page *ipage;
1561 struct f2fs_inode *ri;
1562
1563 if (!f2fs_has_inline_xattr(inode))
1564 return;
1565
1566 if (!IS_INODE(page))
1567 return;
1568
1569 ri = F2FS_INODE(page);
1570 if (!(ri->i_inline & F2FS_INLINE_XATTR))
1571 return;
1572
1573 ipage = get_node_page(sbi, inode->i_ino);
1574 f2fs_bug_on(IS_ERR(ipage));
1575
1576 dst_addr = inline_xattr_addr(ipage);
1577 src_addr = inline_xattr_addr(page);
1578 inline_size = inline_xattr_size(inode);
1579
1580 f2fs_wait_on_page_writeback(ipage, NODE);
1581 memcpy(dst_addr, src_addr, inline_size);
1582
1583 update_inode(inode, ipage);
1584 f2fs_put_page(ipage, 1);
1585 }
1586
1587 bool recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1588 {
1589 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1590 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1591 nid_t new_xnid = nid_of_node(page);
1592 struct node_info ni;
1593
1594 recover_inline_xattr(inode, page);
1595
1596 if (!f2fs_has_xattr_block(ofs_of_node(page)))
1597 return false;
1598
1599 /* 1: invalidate the previous xattr nid */
1600 if (!prev_xnid)
1601 goto recover_xnid;
1602
1603 /* Deallocate node address */
1604 get_node_info(sbi, prev_xnid, &ni);
1605 f2fs_bug_on(ni.blk_addr == NULL_ADDR);
1606 invalidate_blocks(sbi, ni.blk_addr);
1607 dec_valid_node_count(sbi, inode);
1608 set_node_addr(sbi, &ni, NULL_ADDR, false);
1609
1610 recover_xnid:
1611 /* 2: allocate new xattr nid */
1612 if (unlikely(!inc_valid_node_count(sbi, inode)))
1613 f2fs_bug_on(1);
1614
1615 remove_free_nid(NM_I(sbi), new_xnid);
1616 get_node_info(sbi, new_xnid, &ni);
1617 ni.ino = inode->i_ino;
1618 set_node_addr(sbi, &ni, NEW_ADDR, false);
1619 F2FS_I(inode)->i_xattr_nid = new_xnid;
1620
1621 /* 3: update xattr blkaddr */
1622 refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1623 set_node_addr(sbi, &ni, blkaddr, false);
1624
1625 update_inode_page(inode);
1626 return true;
1627 }
1628
1629 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1630 {
1631 struct f2fs_inode *src, *dst;
1632 nid_t ino = ino_of_node(page);
1633 struct node_info old_ni, new_ni;
1634 struct page *ipage;
1635
1636 get_node_info(sbi, ino, &old_ni);
1637
1638 if (unlikely(old_ni.blk_addr != NULL_ADDR))
1639 return -EINVAL;
1640
1641 ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1642 if (!ipage)
1643 return -ENOMEM;
1644
1645 /* Should not use this inode from free nid list */
1646 remove_free_nid(NM_I(sbi), ino);
1647
1648 SetPageUptodate(ipage);
1649 fill_node_footer(ipage, ino, ino, 0, true);
1650
1651 src = F2FS_INODE(page);
1652 dst = F2FS_INODE(ipage);
1653
1654 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1655 dst->i_size = 0;
1656 dst->i_blocks = cpu_to_le64(1);
1657 dst->i_links = cpu_to_le32(1);
1658 dst->i_xattr_nid = 0;
1659
1660 new_ni = old_ni;
1661 new_ni.ino = ino;
1662
1663 if (unlikely(!inc_valid_node_count(sbi, NULL)))
1664 WARN_ON(1);
1665 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1666 inc_valid_inode_count(sbi);
1667 f2fs_put_page(ipage, 1);
1668 return 0;
1669 }
1670
1671 /*
1672 * ra_sum_pages() merge contiguous pages into one bio and submit.
1673 * these pre-readed pages are alloced in bd_inode's mapping tree.
1674 */
1675 static int ra_sum_pages(struct f2fs_sb_info *sbi, struct page **pages,
1676 int start, int nrpages)
1677 {
1678 struct inode *inode = sbi->sb->s_bdev->bd_inode;
1679 struct address_space *mapping = inode->i_mapping;
1680 int i, page_idx = start;
1681 struct f2fs_io_info fio = {
1682 .type = META,
1683 .rw = READ_SYNC | REQ_META | REQ_PRIO
1684 };
1685
1686 for (i = 0; page_idx < start + nrpages; page_idx++, i++) {
1687 /* alloc page in bd_inode for reading node summary info */
1688 pages[i] = grab_cache_page(mapping, page_idx);
1689 if (!pages[i])
1690 break;
1691 f2fs_submit_page_mbio(sbi, pages[i], page_idx, &fio);
1692 }
1693
1694 f2fs_submit_merged_bio(sbi, META, READ);
1695 return i;
1696 }
1697
1698 int restore_node_summary(struct f2fs_sb_info *sbi,
1699 unsigned int segno, struct f2fs_summary_block *sum)
1700 {
1701 struct f2fs_node *rn;
1702 struct f2fs_summary *sum_entry;
1703 struct inode *inode = sbi->sb->s_bdev->bd_inode;
1704 block_t addr;
1705 int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1706 struct page *pages[bio_blocks];
1707 int i, idx, last_offset, nrpages, err = 0;
1708
1709 /* scan the node segment */
1710 last_offset = sbi->blocks_per_seg;
1711 addr = START_BLOCK(sbi, segno);
1712 sum_entry = &sum->entries[0];
1713
1714 for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
1715 nrpages = min(last_offset - i, bio_blocks);
1716
1717 /* read ahead node pages */
1718 nrpages = ra_sum_pages(sbi, pages, addr, nrpages);
1719 if (!nrpages)
1720 return -ENOMEM;
1721
1722 for (idx = 0; idx < nrpages; idx++) {
1723 if (err)
1724 goto skip;
1725
1726 lock_page(pages[idx]);
1727 if (unlikely(!PageUptodate(pages[idx]))) {
1728 err = -EIO;
1729 } else {
1730 rn = F2FS_NODE(pages[idx]);
1731 sum_entry->nid = rn->footer.nid;
1732 sum_entry->version = 0;
1733 sum_entry->ofs_in_node = 0;
1734 sum_entry++;
1735 }
1736 unlock_page(pages[idx]);
1737 skip:
1738 page_cache_release(pages[idx]);
1739 }
1740
1741 invalidate_mapping_pages(inode->i_mapping, addr,
1742 addr + nrpages);
1743 }
1744 return err;
1745 }
1746
1747 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1748 {
1749 struct f2fs_nm_info *nm_i = NM_I(sbi);
1750 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1751 struct f2fs_summary_block *sum = curseg->sum_blk;
1752 int i;
1753
1754 mutex_lock(&curseg->curseg_mutex);
1755
1756 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1757 mutex_unlock(&curseg->curseg_mutex);
1758 return false;
1759 }
1760
1761 for (i = 0; i < nats_in_cursum(sum); i++) {
1762 struct nat_entry *ne;
1763 struct f2fs_nat_entry raw_ne;
1764 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1765
1766 raw_ne = nat_in_journal(sum, i);
1767 retry:
1768 write_lock(&nm_i->nat_tree_lock);
1769 ne = __lookup_nat_cache(nm_i, nid);
1770 if (ne) {
1771 __set_nat_cache_dirty(nm_i, ne);
1772 write_unlock(&nm_i->nat_tree_lock);
1773 continue;
1774 }
1775 ne = grab_nat_entry(nm_i, nid);
1776 if (!ne) {
1777 write_unlock(&nm_i->nat_tree_lock);
1778 goto retry;
1779 }
1780 node_info_from_raw_nat(&ne->ni, &raw_ne);
1781 __set_nat_cache_dirty(nm_i, ne);
1782 write_unlock(&nm_i->nat_tree_lock);
1783 }
1784 update_nats_in_cursum(sum, -i);
1785 mutex_unlock(&curseg->curseg_mutex);
1786 return true;
1787 }
1788
1789 /*
1790 * This function is called during the checkpointing process.
1791 */
1792 void flush_nat_entries(struct f2fs_sb_info *sbi)
1793 {
1794 struct f2fs_nm_info *nm_i = NM_I(sbi);
1795 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1796 struct f2fs_summary_block *sum = curseg->sum_blk;
1797 struct nat_entry *ne, *cur;
1798 struct page *page = NULL;
1799 struct f2fs_nat_block *nat_blk = NULL;
1800 nid_t start_nid = 0, end_nid = 0;
1801 bool flushed;
1802
1803 flushed = flush_nats_in_journal(sbi);
1804
1805 if (!flushed)
1806 mutex_lock(&curseg->curseg_mutex);
1807
1808 /* 1) flush dirty nat caches */
1809 list_for_each_entry_safe(ne, cur, &nm_i->dirty_nat_entries, list) {
1810 nid_t nid;
1811 struct f2fs_nat_entry raw_ne;
1812 int offset = -1;
1813
1814 if (nat_get_blkaddr(ne) == NEW_ADDR)
1815 continue;
1816
1817 nid = nat_get_nid(ne);
1818
1819 if (flushed)
1820 goto to_nat_page;
1821
1822 /* if there is room for nat enries in curseg->sumpage */
1823 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1824 if (offset >= 0) {
1825 raw_ne = nat_in_journal(sum, offset);
1826 goto flush_now;
1827 }
1828 to_nat_page:
1829 if (!page || (start_nid > nid || nid > end_nid)) {
1830 if (page) {
1831 f2fs_put_page(page, 1);
1832 page = NULL;
1833 }
1834 start_nid = START_NID(nid);
1835 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1836
1837 /*
1838 * get nat block with dirty flag, increased reference
1839 * count, mapped and lock
1840 */
1841 page = get_next_nat_page(sbi, start_nid);
1842 nat_blk = page_address(page);
1843 }
1844
1845 f2fs_bug_on(!nat_blk);
1846 raw_ne = nat_blk->entries[nid - start_nid];
1847 flush_now:
1848 raw_nat_from_node_info(&raw_ne, &ne->ni);
1849
1850 if (offset < 0) {
1851 nat_blk->entries[nid - start_nid] = raw_ne;
1852 } else {
1853 nat_in_journal(sum, offset) = raw_ne;
1854 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1855 }
1856
1857 if (nat_get_blkaddr(ne) == NULL_ADDR &&
1858 add_free_nid(sbi, nid, false) <= 0) {
1859 write_lock(&nm_i->nat_tree_lock);
1860 __del_from_nat_cache(nm_i, ne);
1861 write_unlock(&nm_i->nat_tree_lock);
1862 } else {
1863 write_lock(&nm_i->nat_tree_lock);
1864 __clear_nat_cache_dirty(nm_i, ne);
1865 write_unlock(&nm_i->nat_tree_lock);
1866 }
1867 }
1868 if (!flushed)
1869 mutex_unlock(&curseg->curseg_mutex);
1870 f2fs_put_page(page, 1);
1871 }
1872
1873 static int init_node_manager(struct f2fs_sb_info *sbi)
1874 {
1875 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1876 struct f2fs_nm_info *nm_i = NM_I(sbi);
1877 unsigned char *version_bitmap;
1878 unsigned int nat_segs, nat_blocks;
1879
1880 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1881
1882 /* segment_count_nat includes pair segment so divide to 2. */
1883 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1884 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1885
1886 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1887
1888 /* not used nids: 0, node, meta, (and root counted as valid node) */
1889 nm_i->available_nids = nm_i->max_nid - 3;
1890 nm_i->fcnt = 0;
1891 nm_i->nat_cnt = 0;
1892 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
1893
1894 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1895 INIT_LIST_HEAD(&nm_i->free_nid_list);
1896 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1897 INIT_LIST_HEAD(&nm_i->nat_entries);
1898 INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1899
1900 mutex_init(&nm_i->build_lock);
1901 spin_lock_init(&nm_i->free_nid_list_lock);
1902 rwlock_init(&nm_i->nat_tree_lock);
1903
1904 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1905 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1906 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1907 if (!version_bitmap)
1908 return -EFAULT;
1909
1910 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1911 GFP_KERNEL);
1912 if (!nm_i->nat_bitmap)
1913 return -ENOMEM;
1914 return 0;
1915 }
1916
1917 int build_node_manager(struct f2fs_sb_info *sbi)
1918 {
1919 int err;
1920
1921 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1922 if (!sbi->nm_info)
1923 return -ENOMEM;
1924
1925 err = init_node_manager(sbi);
1926 if (err)
1927 return err;
1928
1929 build_free_nids(sbi);
1930 return 0;
1931 }
1932
1933 void destroy_node_manager(struct f2fs_sb_info *sbi)
1934 {
1935 struct f2fs_nm_info *nm_i = NM_I(sbi);
1936 struct free_nid *i, *next_i;
1937 struct nat_entry *natvec[NATVEC_SIZE];
1938 nid_t nid = 0;
1939 unsigned int found;
1940
1941 if (!nm_i)
1942 return;
1943
1944 /* destroy free nid list */
1945 spin_lock(&nm_i->free_nid_list_lock);
1946 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1947 f2fs_bug_on(i->state == NID_ALLOC);
1948 __del_from_free_nid_list(nm_i, i);
1949 nm_i->fcnt--;
1950 spin_unlock(&nm_i->free_nid_list_lock);
1951 kmem_cache_free(free_nid_slab, i);
1952 spin_lock(&nm_i->free_nid_list_lock);
1953 }
1954 f2fs_bug_on(nm_i->fcnt);
1955 spin_unlock(&nm_i->free_nid_list_lock);
1956
1957 /* destroy nat cache */
1958 write_lock(&nm_i->nat_tree_lock);
1959 while ((found = __gang_lookup_nat_cache(nm_i,
1960 nid, NATVEC_SIZE, natvec))) {
1961 unsigned idx;
1962 nid = nat_get_nid(natvec[found - 1]) + 1;
1963 for (idx = 0; idx < found; idx++)
1964 __del_from_nat_cache(nm_i, natvec[idx]);
1965 }
1966 f2fs_bug_on(nm_i->nat_cnt);
1967 write_unlock(&nm_i->nat_tree_lock);
1968
1969 kfree(nm_i->nat_bitmap);
1970 sbi->nm_info = NULL;
1971 kfree(nm_i);
1972 }
1973
1974 int __init create_node_manager_caches(void)
1975 {
1976 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1977 sizeof(struct nat_entry));
1978 if (!nat_entry_slab)
1979 return -ENOMEM;
1980
1981 free_nid_slab = f2fs_kmem_cache_create("free_nid",
1982 sizeof(struct free_nid));
1983 if (!free_nid_slab) {
1984 kmem_cache_destroy(nat_entry_slab);
1985 return -ENOMEM;
1986 }
1987 return 0;
1988 }
1989
1990 void destroy_node_manager_caches(void)
1991 {
1992 kmem_cache_destroy(free_nid_slab);
1993 kmem_cache_destroy(nat_entry_slab);
1994 }
This page took 0.102816 seconds and 5 git commands to generate.