511c0e7c3ae182e53d37437cd307b2594f82545f
[deliverable/linux.git] / fs / f2fs / node.c
1 /*
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
24
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
26
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
30
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32 {
33 struct f2fs_nm_info *nm_i = NM_I(sbi);
34 struct sysinfo val;
35 unsigned long avail_ram;
36 unsigned long mem_size = 0;
37 bool res = false;
38
39 si_meminfo(&val);
40
41 /* only uses low memory */
42 avail_ram = val.totalram - val.totalhigh;
43
44 /*
45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
46 */
47 if (type == FREE_NIDS) {
48 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
49 PAGE_CACHE_SHIFT;
50 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51 } else if (type == NAT_ENTRIES) {
52 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53 PAGE_CACHE_SHIFT;
54 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55 } else if (type == DIRTY_DENTS) {
56 if (sbi->sb->s_bdi->wb.dirty_exceeded)
57 return false;
58 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
59 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
60 } else if (type == INO_ENTRIES) {
61 int i;
62
63 for (i = 0; i <= UPDATE_INO; i++)
64 mem_size += (sbi->im[i].ino_num *
65 sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
66 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
67 } else if (type == EXTENT_CACHE) {
68 mem_size = (atomic_read(&sbi->total_ext_tree) *
69 sizeof(struct extent_tree) +
70 atomic_read(&sbi->total_ext_node) *
71 sizeof(struct extent_node)) >> PAGE_CACHE_SHIFT;
72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
73 } else {
74 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
75 return true;
76 }
77 return res;
78 }
79
80 static void clear_node_page_dirty(struct page *page)
81 {
82 struct address_space *mapping = page->mapping;
83 unsigned int long flags;
84
85 if (PageDirty(page)) {
86 spin_lock_irqsave(&mapping->tree_lock, flags);
87 radix_tree_tag_clear(&mapping->page_tree,
88 page_index(page),
89 PAGECACHE_TAG_DIRTY);
90 spin_unlock_irqrestore(&mapping->tree_lock, flags);
91
92 clear_page_dirty_for_io(page);
93 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
94 }
95 ClearPageUptodate(page);
96 }
97
98 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
99 {
100 pgoff_t index = current_nat_addr(sbi, nid);
101 return get_meta_page(sbi, index);
102 }
103
104 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
105 {
106 struct page *src_page;
107 struct page *dst_page;
108 pgoff_t src_off;
109 pgoff_t dst_off;
110 void *src_addr;
111 void *dst_addr;
112 struct f2fs_nm_info *nm_i = NM_I(sbi);
113
114 src_off = current_nat_addr(sbi, nid);
115 dst_off = next_nat_addr(sbi, src_off);
116
117 /* get current nat block page with lock */
118 src_page = get_meta_page(sbi, src_off);
119 dst_page = grab_meta_page(sbi, dst_off);
120 f2fs_bug_on(sbi, PageDirty(src_page));
121
122 src_addr = page_address(src_page);
123 dst_addr = page_address(dst_page);
124 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
125 set_page_dirty(dst_page);
126 f2fs_put_page(src_page, 1);
127
128 set_to_next_nat(nm_i, nid);
129
130 return dst_page;
131 }
132
133 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
134 {
135 return radix_tree_lookup(&nm_i->nat_root, n);
136 }
137
138 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
139 nid_t start, unsigned int nr, struct nat_entry **ep)
140 {
141 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
142 }
143
144 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
145 {
146 list_del(&e->list);
147 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
148 nm_i->nat_cnt--;
149 kmem_cache_free(nat_entry_slab, e);
150 }
151
152 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
153 struct nat_entry *ne)
154 {
155 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
156 struct nat_entry_set *head;
157
158 if (get_nat_flag(ne, IS_DIRTY))
159 return;
160
161 head = radix_tree_lookup(&nm_i->nat_set_root, set);
162 if (!head) {
163 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
164
165 INIT_LIST_HEAD(&head->entry_list);
166 INIT_LIST_HEAD(&head->set_list);
167 head->set = set;
168 head->entry_cnt = 0;
169 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
170 }
171 list_move_tail(&ne->list, &head->entry_list);
172 nm_i->dirty_nat_cnt++;
173 head->entry_cnt++;
174 set_nat_flag(ne, IS_DIRTY, true);
175 }
176
177 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
178 struct nat_entry *ne)
179 {
180 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
181 struct nat_entry_set *head;
182
183 head = radix_tree_lookup(&nm_i->nat_set_root, set);
184 if (head) {
185 list_move_tail(&ne->list, &nm_i->nat_entries);
186 set_nat_flag(ne, IS_DIRTY, false);
187 head->entry_cnt--;
188 nm_i->dirty_nat_cnt--;
189 }
190 }
191
192 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
193 nid_t start, unsigned int nr, struct nat_entry_set **ep)
194 {
195 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
196 start, nr);
197 }
198
199 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
200 {
201 struct f2fs_nm_info *nm_i = NM_I(sbi);
202 struct nat_entry *e;
203 bool need = false;
204
205 down_read(&nm_i->nat_tree_lock);
206 e = __lookup_nat_cache(nm_i, nid);
207 if (e) {
208 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
209 !get_nat_flag(e, HAS_FSYNCED_INODE))
210 need = true;
211 }
212 up_read(&nm_i->nat_tree_lock);
213 return need;
214 }
215
216 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
217 {
218 struct f2fs_nm_info *nm_i = NM_I(sbi);
219 struct nat_entry *e;
220 bool is_cp = true;
221
222 down_read(&nm_i->nat_tree_lock);
223 e = __lookup_nat_cache(nm_i, nid);
224 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
225 is_cp = false;
226 up_read(&nm_i->nat_tree_lock);
227 return is_cp;
228 }
229
230 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
231 {
232 struct f2fs_nm_info *nm_i = NM_I(sbi);
233 struct nat_entry *e;
234 bool need_update = true;
235
236 down_read(&nm_i->nat_tree_lock);
237 e = __lookup_nat_cache(nm_i, ino);
238 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
239 (get_nat_flag(e, IS_CHECKPOINTED) ||
240 get_nat_flag(e, HAS_FSYNCED_INODE)))
241 need_update = false;
242 up_read(&nm_i->nat_tree_lock);
243 return need_update;
244 }
245
246 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
247 {
248 struct nat_entry *new;
249
250 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
251 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
252 memset(new, 0, sizeof(struct nat_entry));
253 nat_set_nid(new, nid);
254 nat_reset_flag(new);
255 list_add_tail(&new->list, &nm_i->nat_entries);
256 nm_i->nat_cnt++;
257 return new;
258 }
259
260 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
261 struct f2fs_nat_entry *ne)
262 {
263 struct nat_entry *e;
264
265 e = __lookup_nat_cache(nm_i, nid);
266 if (!e) {
267 e = grab_nat_entry(nm_i, nid);
268 node_info_from_raw_nat(&e->ni, ne);
269 }
270 }
271
272 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
273 block_t new_blkaddr, bool fsync_done)
274 {
275 struct f2fs_nm_info *nm_i = NM_I(sbi);
276 struct nat_entry *e;
277
278 down_write(&nm_i->nat_tree_lock);
279 e = __lookup_nat_cache(nm_i, ni->nid);
280 if (!e) {
281 e = grab_nat_entry(nm_i, ni->nid);
282 copy_node_info(&e->ni, ni);
283 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
284 } else if (new_blkaddr == NEW_ADDR) {
285 /*
286 * when nid is reallocated,
287 * previous nat entry can be remained in nat cache.
288 * So, reinitialize it with new information.
289 */
290 copy_node_info(&e->ni, ni);
291 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
292 }
293
294 /* sanity check */
295 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
296 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
297 new_blkaddr == NULL_ADDR);
298 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
299 new_blkaddr == NEW_ADDR);
300 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
301 nat_get_blkaddr(e) != NULL_ADDR &&
302 new_blkaddr == NEW_ADDR);
303
304 /* increment version no as node is removed */
305 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
306 unsigned char version = nat_get_version(e);
307 nat_set_version(e, inc_node_version(version));
308
309 /* in order to reuse the nid */
310 if (nm_i->next_scan_nid > ni->nid)
311 nm_i->next_scan_nid = ni->nid;
312 }
313
314 /* change address */
315 nat_set_blkaddr(e, new_blkaddr);
316 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
317 set_nat_flag(e, IS_CHECKPOINTED, false);
318 __set_nat_cache_dirty(nm_i, e);
319
320 /* update fsync_mark if its inode nat entry is still alive */
321 if (ni->nid != ni->ino)
322 e = __lookup_nat_cache(nm_i, ni->ino);
323 if (e) {
324 if (fsync_done && ni->nid == ni->ino)
325 set_nat_flag(e, HAS_FSYNCED_INODE, true);
326 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
327 }
328 up_write(&nm_i->nat_tree_lock);
329 }
330
331 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
332 {
333 struct f2fs_nm_info *nm_i = NM_I(sbi);
334 int nr = nr_shrink;
335
336 if (!down_write_trylock(&nm_i->nat_tree_lock))
337 return 0;
338
339 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
340 struct nat_entry *ne;
341 ne = list_first_entry(&nm_i->nat_entries,
342 struct nat_entry, list);
343 __del_from_nat_cache(nm_i, ne);
344 nr_shrink--;
345 }
346 up_write(&nm_i->nat_tree_lock);
347 return nr - nr_shrink;
348 }
349
350 /*
351 * This function always returns success
352 */
353 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
354 {
355 struct f2fs_nm_info *nm_i = NM_I(sbi);
356 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
357 struct f2fs_summary_block *sum = curseg->sum_blk;
358 nid_t start_nid = START_NID(nid);
359 struct f2fs_nat_block *nat_blk;
360 struct page *page = NULL;
361 struct f2fs_nat_entry ne;
362 struct nat_entry *e;
363 int i;
364
365 ni->nid = nid;
366
367 /* Check nat cache */
368 down_read(&nm_i->nat_tree_lock);
369 e = __lookup_nat_cache(nm_i, nid);
370 if (e) {
371 ni->ino = nat_get_ino(e);
372 ni->blk_addr = nat_get_blkaddr(e);
373 ni->version = nat_get_version(e);
374 }
375 up_read(&nm_i->nat_tree_lock);
376 if (e)
377 return;
378
379 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
380
381 down_write(&nm_i->nat_tree_lock);
382
383 /* Check current segment summary */
384 mutex_lock(&curseg->curseg_mutex);
385 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
386 if (i >= 0) {
387 ne = nat_in_journal(sum, i);
388 node_info_from_raw_nat(ni, &ne);
389 }
390 mutex_unlock(&curseg->curseg_mutex);
391 if (i >= 0)
392 goto cache;
393
394 /* Fill node_info from nat page */
395 page = get_current_nat_page(sbi, start_nid);
396 nat_blk = (struct f2fs_nat_block *)page_address(page);
397 ne = nat_blk->entries[nid - start_nid];
398 node_info_from_raw_nat(ni, &ne);
399 f2fs_put_page(page, 1);
400 cache:
401 /* cache nat entry */
402 cache_nat_entry(NM_I(sbi), nid, &ne);
403 up_write(&nm_i->nat_tree_lock);
404 }
405
406 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
407 {
408 const long direct_index = ADDRS_PER_INODE(dn->inode);
409 const long direct_blks = ADDRS_PER_BLOCK;
410 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
411 unsigned int skipped_unit = ADDRS_PER_BLOCK;
412 int cur_level = dn->cur_level;
413 int max_level = dn->max_level;
414 pgoff_t base = 0;
415
416 if (!dn->max_level)
417 return pgofs + 1;
418
419 while (max_level-- > cur_level)
420 skipped_unit *= NIDS_PER_BLOCK;
421
422 switch (dn->max_level) {
423 case 3:
424 base += 2 * indirect_blks;
425 case 2:
426 base += 2 * direct_blks;
427 case 1:
428 base += direct_index;
429 break;
430 default:
431 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
432 }
433
434 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
435 }
436
437 /*
438 * The maximum depth is four.
439 * Offset[0] will have raw inode offset.
440 */
441 static int get_node_path(struct inode *inode, long block,
442 int offset[4], unsigned int noffset[4])
443 {
444 const long direct_index = ADDRS_PER_INODE(inode);
445 const long direct_blks = ADDRS_PER_BLOCK;
446 const long dptrs_per_blk = NIDS_PER_BLOCK;
447 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
448 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
449 int n = 0;
450 int level = 0;
451
452 noffset[0] = 0;
453
454 if (block < direct_index) {
455 offset[n] = block;
456 goto got;
457 }
458 block -= direct_index;
459 if (block < direct_blks) {
460 offset[n++] = NODE_DIR1_BLOCK;
461 noffset[n] = 1;
462 offset[n] = block;
463 level = 1;
464 goto got;
465 }
466 block -= direct_blks;
467 if (block < direct_blks) {
468 offset[n++] = NODE_DIR2_BLOCK;
469 noffset[n] = 2;
470 offset[n] = block;
471 level = 1;
472 goto got;
473 }
474 block -= direct_blks;
475 if (block < indirect_blks) {
476 offset[n++] = NODE_IND1_BLOCK;
477 noffset[n] = 3;
478 offset[n++] = block / direct_blks;
479 noffset[n] = 4 + offset[n - 1];
480 offset[n] = block % direct_blks;
481 level = 2;
482 goto got;
483 }
484 block -= indirect_blks;
485 if (block < indirect_blks) {
486 offset[n++] = NODE_IND2_BLOCK;
487 noffset[n] = 4 + dptrs_per_blk;
488 offset[n++] = block / direct_blks;
489 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
490 offset[n] = block % direct_blks;
491 level = 2;
492 goto got;
493 }
494 block -= indirect_blks;
495 if (block < dindirect_blks) {
496 offset[n++] = NODE_DIND_BLOCK;
497 noffset[n] = 5 + (dptrs_per_blk * 2);
498 offset[n++] = block / indirect_blks;
499 noffset[n] = 6 + (dptrs_per_blk * 2) +
500 offset[n - 1] * (dptrs_per_blk + 1);
501 offset[n++] = (block / direct_blks) % dptrs_per_blk;
502 noffset[n] = 7 + (dptrs_per_blk * 2) +
503 offset[n - 2] * (dptrs_per_blk + 1) +
504 offset[n - 1];
505 offset[n] = block % direct_blks;
506 level = 3;
507 goto got;
508 } else {
509 BUG();
510 }
511 got:
512 return level;
513 }
514
515 /*
516 * Caller should call f2fs_put_dnode(dn).
517 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
518 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
519 * In the case of RDONLY_NODE, we don't need to care about mutex.
520 */
521 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
522 {
523 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
524 struct page *npage[4];
525 struct page *parent = NULL;
526 int offset[4];
527 unsigned int noffset[4];
528 nid_t nids[4];
529 int level, i = 0;
530 int err = 0;
531
532 level = get_node_path(dn->inode, index, offset, noffset);
533
534 nids[0] = dn->inode->i_ino;
535 npage[0] = dn->inode_page;
536
537 if (!npage[0]) {
538 npage[0] = get_node_page(sbi, nids[0]);
539 if (IS_ERR(npage[0]))
540 return PTR_ERR(npage[0]);
541 }
542
543 /* if inline_data is set, should not report any block indices */
544 if (f2fs_has_inline_data(dn->inode) && index) {
545 err = -ENOENT;
546 f2fs_put_page(npage[0], 1);
547 goto release_out;
548 }
549
550 parent = npage[0];
551 if (level != 0)
552 nids[1] = get_nid(parent, offset[0], true);
553 dn->inode_page = npage[0];
554 dn->inode_page_locked = true;
555
556 /* get indirect or direct nodes */
557 for (i = 1; i <= level; i++) {
558 bool done = false;
559
560 if (!nids[i] && mode == ALLOC_NODE) {
561 /* alloc new node */
562 if (!alloc_nid(sbi, &(nids[i]))) {
563 err = -ENOSPC;
564 goto release_pages;
565 }
566
567 dn->nid = nids[i];
568 npage[i] = new_node_page(dn, noffset[i], NULL);
569 if (IS_ERR(npage[i])) {
570 alloc_nid_failed(sbi, nids[i]);
571 err = PTR_ERR(npage[i]);
572 goto release_pages;
573 }
574
575 set_nid(parent, offset[i - 1], nids[i], i == 1);
576 alloc_nid_done(sbi, nids[i]);
577 done = true;
578 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
579 npage[i] = get_node_page_ra(parent, offset[i - 1]);
580 if (IS_ERR(npage[i])) {
581 err = PTR_ERR(npage[i]);
582 goto release_pages;
583 }
584 done = true;
585 }
586 if (i == 1) {
587 dn->inode_page_locked = false;
588 unlock_page(parent);
589 } else {
590 f2fs_put_page(parent, 1);
591 }
592
593 if (!done) {
594 npage[i] = get_node_page(sbi, nids[i]);
595 if (IS_ERR(npage[i])) {
596 err = PTR_ERR(npage[i]);
597 f2fs_put_page(npage[0], 0);
598 goto release_out;
599 }
600 }
601 if (i < level) {
602 parent = npage[i];
603 nids[i + 1] = get_nid(parent, offset[i], false);
604 }
605 }
606 dn->nid = nids[level];
607 dn->ofs_in_node = offset[level];
608 dn->node_page = npage[level];
609 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
610 return 0;
611
612 release_pages:
613 f2fs_put_page(parent, 1);
614 if (i > 1)
615 f2fs_put_page(npage[0], 0);
616 release_out:
617 dn->inode_page = NULL;
618 dn->node_page = NULL;
619 if (err == -ENOENT) {
620 dn->cur_level = i;
621 dn->max_level = level;
622 }
623 return err;
624 }
625
626 static void truncate_node(struct dnode_of_data *dn)
627 {
628 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
629 struct node_info ni;
630
631 get_node_info(sbi, dn->nid, &ni);
632 if (dn->inode->i_blocks == 0) {
633 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
634 goto invalidate;
635 }
636 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
637
638 /* Deallocate node address */
639 invalidate_blocks(sbi, ni.blk_addr);
640 dec_valid_node_count(sbi, dn->inode);
641 set_node_addr(sbi, &ni, NULL_ADDR, false);
642
643 if (dn->nid == dn->inode->i_ino) {
644 remove_orphan_inode(sbi, dn->nid);
645 dec_valid_inode_count(sbi);
646 } else {
647 sync_inode_page(dn);
648 }
649 invalidate:
650 clear_node_page_dirty(dn->node_page);
651 set_sbi_flag(sbi, SBI_IS_DIRTY);
652
653 f2fs_put_page(dn->node_page, 1);
654
655 invalidate_mapping_pages(NODE_MAPPING(sbi),
656 dn->node_page->index, dn->node_page->index);
657
658 dn->node_page = NULL;
659 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
660 }
661
662 static int truncate_dnode(struct dnode_of_data *dn)
663 {
664 struct page *page;
665
666 if (dn->nid == 0)
667 return 1;
668
669 /* get direct node */
670 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
671 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
672 return 1;
673 else if (IS_ERR(page))
674 return PTR_ERR(page);
675
676 /* Make dnode_of_data for parameter */
677 dn->node_page = page;
678 dn->ofs_in_node = 0;
679 truncate_data_blocks(dn);
680 truncate_node(dn);
681 return 1;
682 }
683
684 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
685 int ofs, int depth)
686 {
687 struct dnode_of_data rdn = *dn;
688 struct page *page;
689 struct f2fs_node *rn;
690 nid_t child_nid;
691 unsigned int child_nofs;
692 int freed = 0;
693 int i, ret;
694
695 if (dn->nid == 0)
696 return NIDS_PER_BLOCK + 1;
697
698 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
699
700 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
701 if (IS_ERR(page)) {
702 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
703 return PTR_ERR(page);
704 }
705
706 rn = F2FS_NODE(page);
707 if (depth < 3) {
708 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
709 child_nid = le32_to_cpu(rn->in.nid[i]);
710 if (child_nid == 0)
711 continue;
712 rdn.nid = child_nid;
713 ret = truncate_dnode(&rdn);
714 if (ret < 0)
715 goto out_err;
716 if (set_nid(page, i, 0, false))
717 dn->node_changed = true;
718 }
719 } else {
720 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
721 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
722 child_nid = le32_to_cpu(rn->in.nid[i]);
723 if (child_nid == 0) {
724 child_nofs += NIDS_PER_BLOCK + 1;
725 continue;
726 }
727 rdn.nid = child_nid;
728 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
729 if (ret == (NIDS_PER_BLOCK + 1)) {
730 if (set_nid(page, i, 0, false))
731 dn->node_changed = true;
732 child_nofs += ret;
733 } else if (ret < 0 && ret != -ENOENT) {
734 goto out_err;
735 }
736 }
737 freed = child_nofs;
738 }
739
740 if (!ofs) {
741 /* remove current indirect node */
742 dn->node_page = page;
743 truncate_node(dn);
744 freed++;
745 } else {
746 f2fs_put_page(page, 1);
747 }
748 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
749 return freed;
750
751 out_err:
752 f2fs_put_page(page, 1);
753 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
754 return ret;
755 }
756
757 static int truncate_partial_nodes(struct dnode_of_data *dn,
758 struct f2fs_inode *ri, int *offset, int depth)
759 {
760 struct page *pages[2];
761 nid_t nid[3];
762 nid_t child_nid;
763 int err = 0;
764 int i;
765 int idx = depth - 2;
766
767 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
768 if (!nid[0])
769 return 0;
770
771 /* get indirect nodes in the path */
772 for (i = 0; i < idx + 1; i++) {
773 /* reference count'll be increased */
774 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
775 if (IS_ERR(pages[i])) {
776 err = PTR_ERR(pages[i]);
777 idx = i - 1;
778 goto fail;
779 }
780 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
781 }
782
783 /* free direct nodes linked to a partial indirect node */
784 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
785 child_nid = get_nid(pages[idx], i, false);
786 if (!child_nid)
787 continue;
788 dn->nid = child_nid;
789 err = truncate_dnode(dn);
790 if (err < 0)
791 goto fail;
792 if (set_nid(pages[idx], i, 0, false))
793 dn->node_changed = true;
794 }
795
796 if (offset[idx + 1] == 0) {
797 dn->node_page = pages[idx];
798 dn->nid = nid[idx];
799 truncate_node(dn);
800 } else {
801 f2fs_put_page(pages[idx], 1);
802 }
803 offset[idx]++;
804 offset[idx + 1] = 0;
805 idx--;
806 fail:
807 for (i = idx; i >= 0; i--)
808 f2fs_put_page(pages[i], 1);
809
810 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
811
812 return err;
813 }
814
815 /*
816 * All the block addresses of data and nodes should be nullified.
817 */
818 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
819 {
820 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
821 int err = 0, cont = 1;
822 int level, offset[4], noffset[4];
823 unsigned int nofs = 0;
824 struct f2fs_inode *ri;
825 struct dnode_of_data dn;
826 struct page *page;
827
828 trace_f2fs_truncate_inode_blocks_enter(inode, from);
829
830 level = get_node_path(inode, from, offset, noffset);
831 restart:
832 page = get_node_page(sbi, inode->i_ino);
833 if (IS_ERR(page)) {
834 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
835 return PTR_ERR(page);
836 }
837
838 set_new_dnode(&dn, inode, page, NULL, 0);
839 unlock_page(page);
840
841 ri = F2FS_INODE(page);
842 switch (level) {
843 case 0:
844 case 1:
845 nofs = noffset[1];
846 break;
847 case 2:
848 nofs = noffset[1];
849 if (!offset[level - 1])
850 goto skip_partial;
851 err = truncate_partial_nodes(&dn, ri, offset, level);
852 if (err < 0 && err != -ENOENT)
853 goto fail;
854 nofs += 1 + NIDS_PER_BLOCK;
855 break;
856 case 3:
857 nofs = 5 + 2 * NIDS_PER_BLOCK;
858 if (!offset[level - 1])
859 goto skip_partial;
860 err = truncate_partial_nodes(&dn, ri, offset, level);
861 if (err < 0 && err != -ENOENT)
862 goto fail;
863 break;
864 default:
865 BUG();
866 }
867
868 skip_partial:
869 while (cont) {
870 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
871 switch (offset[0]) {
872 case NODE_DIR1_BLOCK:
873 case NODE_DIR2_BLOCK:
874 err = truncate_dnode(&dn);
875 break;
876
877 case NODE_IND1_BLOCK:
878 case NODE_IND2_BLOCK:
879 err = truncate_nodes(&dn, nofs, offset[1], 2);
880 break;
881
882 case NODE_DIND_BLOCK:
883 err = truncate_nodes(&dn, nofs, offset[1], 3);
884 cont = 0;
885 break;
886
887 default:
888 BUG();
889 }
890 if (err < 0 && err != -ENOENT)
891 goto fail;
892 if (offset[1] == 0 &&
893 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
894 lock_page(page);
895 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
896 f2fs_put_page(page, 1);
897 goto restart;
898 }
899 f2fs_wait_on_page_writeback(page, NODE, true);
900 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
901 set_page_dirty(page);
902 unlock_page(page);
903 }
904 offset[1] = 0;
905 offset[0]++;
906 nofs += err;
907 }
908 fail:
909 f2fs_put_page(page, 0);
910 trace_f2fs_truncate_inode_blocks_exit(inode, err);
911 return err > 0 ? 0 : err;
912 }
913
914 int truncate_xattr_node(struct inode *inode, struct page *page)
915 {
916 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
917 nid_t nid = F2FS_I(inode)->i_xattr_nid;
918 struct dnode_of_data dn;
919 struct page *npage;
920
921 if (!nid)
922 return 0;
923
924 npage = get_node_page(sbi, nid);
925 if (IS_ERR(npage))
926 return PTR_ERR(npage);
927
928 F2FS_I(inode)->i_xattr_nid = 0;
929
930 /* need to do checkpoint during fsync */
931 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
932
933 set_new_dnode(&dn, inode, page, npage, nid);
934
935 if (page)
936 dn.inode_page_locked = true;
937 truncate_node(&dn);
938 return 0;
939 }
940
941 /*
942 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
943 * f2fs_unlock_op().
944 */
945 int remove_inode_page(struct inode *inode)
946 {
947 struct dnode_of_data dn;
948 int err;
949
950 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
951 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
952 if (err)
953 return err;
954
955 err = truncate_xattr_node(inode, dn.inode_page);
956 if (err) {
957 f2fs_put_dnode(&dn);
958 return err;
959 }
960
961 /* remove potential inline_data blocks */
962 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
963 S_ISLNK(inode->i_mode))
964 truncate_data_blocks_range(&dn, 1);
965
966 /* 0 is possible, after f2fs_new_inode() has failed */
967 f2fs_bug_on(F2FS_I_SB(inode),
968 inode->i_blocks != 0 && inode->i_blocks != 1);
969
970 /* will put inode & node pages */
971 truncate_node(&dn);
972 return 0;
973 }
974
975 struct page *new_inode_page(struct inode *inode)
976 {
977 struct dnode_of_data dn;
978
979 /* allocate inode page for new inode */
980 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
981
982 /* caller should f2fs_put_page(page, 1); */
983 return new_node_page(&dn, 0, NULL);
984 }
985
986 struct page *new_node_page(struct dnode_of_data *dn,
987 unsigned int ofs, struct page *ipage)
988 {
989 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
990 struct node_info old_ni, new_ni;
991 struct page *page;
992 int err;
993
994 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
995 return ERR_PTR(-EPERM);
996
997 page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
998 if (!page)
999 return ERR_PTR(-ENOMEM);
1000
1001 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1002 err = -ENOSPC;
1003 goto fail;
1004 }
1005
1006 get_node_info(sbi, dn->nid, &old_ni);
1007
1008 /* Reinitialize old_ni with new node page */
1009 f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
1010 new_ni = old_ni;
1011 new_ni.ino = dn->inode->i_ino;
1012 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1013
1014 f2fs_wait_on_page_writeback(page, NODE, true);
1015 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1016 set_cold_node(dn->inode, page);
1017 SetPageUptodate(page);
1018 if (set_page_dirty(page))
1019 dn->node_changed = true;
1020
1021 if (f2fs_has_xattr_block(ofs))
1022 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
1023
1024 dn->node_page = page;
1025 if (ipage)
1026 update_inode(dn->inode, ipage);
1027 else
1028 sync_inode_page(dn);
1029 if (ofs == 0)
1030 inc_valid_inode_count(sbi);
1031
1032 return page;
1033
1034 fail:
1035 clear_node_page_dirty(page);
1036 f2fs_put_page(page, 1);
1037 return ERR_PTR(err);
1038 }
1039
1040 /*
1041 * Caller should do after getting the following values.
1042 * 0: f2fs_put_page(page, 0)
1043 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1044 */
1045 static int read_node_page(struct page *page, int rw)
1046 {
1047 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1048 struct node_info ni;
1049 struct f2fs_io_info fio = {
1050 .sbi = sbi,
1051 .type = NODE,
1052 .rw = rw,
1053 .page = page,
1054 .encrypted_page = NULL,
1055 };
1056
1057 get_node_info(sbi, page->index, &ni);
1058
1059 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1060 ClearPageUptodate(page);
1061 return -ENOENT;
1062 }
1063
1064 if (PageUptodate(page))
1065 return LOCKED_PAGE;
1066
1067 fio.blk_addr = ni.blk_addr;
1068 return f2fs_submit_page_bio(&fio);
1069 }
1070
1071 /*
1072 * Readahead a node page
1073 */
1074 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1075 {
1076 struct page *apage;
1077 int err;
1078
1079 if (!nid)
1080 return;
1081 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1082
1083 apage = find_get_page(NODE_MAPPING(sbi), nid);
1084 if (apage && PageUptodate(apage)) {
1085 f2fs_put_page(apage, 0);
1086 return;
1087 }
1088 f2fs_put_page(apage, 0);
1089
1090 apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1091 if (!apage)
1092 return;
1093
1094 err = read_node_page(apage, READA);
1095 f2fs_put_page(apage, err ? 1 : 0);
1096 }
1097
1098 /*
1099 * readahead MAX_RA_NODE number of node pages.
1100 */
1101 void ra_node_pages(struct page *parent, int start)
1102 {
1103 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1104 struct blk_plug plug;
1105 int i, end;
1106 nid_t nid;
1107
1108 blk_start_plug(&plug);
1109
1110 /* Then, try readahead for siblings of the desired node */
1111 end = start + MAX_RA_NODE;
1112 end = min(end, NIDS_PER_BLOCK);
1113 for (i = start; i < end; i++) {
1114 nid = get_nid(parent, i, false);
1115 ra_node_page(sbi, nid);
1116 }
1117
1118 blk_finish_plug(&plug);
1119 }
1120
1121 struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1122 struct page *parent, int start)
1123 {
1124 struct page *page;
1125 int err;
1126
1127 if (!nid)
1128 return ERR_PTR(-ENOENT);
1129 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1130 repeat:
1131 page = grab_cache_page(NODE_MAPPING(sbi), nid);
1132 if (!page)
1133 return ERR_PTR(-ENOMEM);
1134
1135 err = read_node_page(page, READ_SYNC);
1136 if (err < 0) {
1137 f2fs_put_page(page, 1);
1138 return ERR_PTR(err);
1139 } else if (err == LOCKED_PAGE) {
1140 goto page_hit;
1141 }
1142
1143 if (parent)
1144 ra_node_pages(parent, start + 1);
1145
1146 lock_page(page);
1147
1148 if (unlikely(!PageUptodate(page))) {
1149 f2fs_put_page(page, 1);
1150 return ERR_PTR(-EIO);
1151 }
1152 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1153 f2fs_put_page(page, 1);
1154 goto repeat;
1155 }
1156 page_hit:
1157 f2fs_bug_on(sbi, nid != nid_of_node(page));
1158 return page;
1159 }
1160
1161 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1162 {
1163 return __get_node_page(sbi, nid, NULL, 0);
1164 }
1165
1166 struct page *get_node_page_ra(struct page *parent, int start)
1167 {
1168 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1169 nid_t nid = get_nid(parent, start, false);
1170
1171 return __get_node_page(sbi, nid, parent, start);
1172 }
1173
1174 void sync_inode_page(struct dnode_of_data *dn)
1175 {
1176 int ret = 0;
1177
1178 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1179 ret = update_inode(dn->inode, dn->node_page);
1180 } else if (dn->inode_page) {
1181 if (!dn->inode_page_locked)
1182 lock_page(dn->inode_page);
1183 ret = update_inode(dn->inode, dn->inode_page);
1184 if (!dn->inode_page_locked)
1185 unlock_page(dn->inode_page);
1186 } else {
1187 ret = update_inode_page(dn->inode);
1188 }
1189 dn->node_changed = ret ? true: false;
1190 }
1191
1192 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1193 {
1194 struct inode *inode;
1195 struct page *page;
1196
1197 /* should flush inline_data before evict_inode */
1198 inode = ilookup(sbi->sb, ino);
1199 if (!inode)
1200 return;
1201
1202 page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
1203 if (!page)
1204 goto iput_out;
1205
1206 if (!PageUptodate(page))
1207 goto page_out;
1208
1209 if (!PageDirty(page))
1210 goto page_out;
1211
1212 if (!clear_page_dirty_for_io(page))
1213 goto page_out;
1214
1215 if (!f2fs_write_inline_data(inode, page))
1216 inode_dec_dirty_pages(inode);
1217 else
1218 set_page_dirty(page);
1219 page_out:
1220 f2fs_put_page(page, 1);
1221 iput_out:
1222 iput(inode);
1223 }
1224
1225 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1226 struct writeback_control *wbc)
1227 {
1228 pgoff_t index, end;
1229 struct pagevec pvec;
1230 int step = ino ? 2 : 0;
1231 int nwritten = 0, wrote = 0;
1232
1233 pagevec_init(&pvec, 0);
1234
1235 next_step:
1236 index = 0;
1237 end = LONG_MAX;
1238
1239 while (index <= end) {
1240 int i, nr_pages;
1241 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1242 PAGECACHE_TAG_DIRTY,
1243 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1244 if (nr_pages == 0)
1245 break;
1246
1247 for (i = 0; i < nr_pages; i++) {
1248 struct page *page = pvec.pages[i];
1249
1250 if (unlikely(f2fs_cp_error(sbi))) {
1251 pagevec_release(&pvec);
1252 return -EIO;
1253 }
1254
1255 /*
1256 * flushing sequence with step:
1257 * 0. indirect nodes
1258 * 1. dentry dnodes
1259 * 2. file dnodes
1260 */
1261 if (step == 0 && IS_DNODE(page))
1262 continue;
1263 if (step == 1 && (!IS_DNODE(page) ||
1264 is_cold_node(page)))
1265 continue;
1266 if (step == 2 && (!IS_DNODE(page) ||
1267 !is_cold_node(page)))
1268 continue;
1269
1270 /*
1271 * If an fsync mode,
1272 * we should not skip writing node pages.
1273 */
1274 if (ino && ino_of_node(page) == ino)
1275 lock_page(page);
1276 else if (!trylock_page(page))
1277 continue;
1278
1279 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1280 continue_unlock:
1281 unlock_page(page);
1282 continue;
1283 }
1284 if (ino && ino_of_node(page) != ino)
1285 goto continue_unlock;
1286
1287 if (!PageDirty(page)) {
1288 /* someone wrote it for us */
1289 goto continue_unlock;
1290 }
1291
1292 /* flush inline_data */
1293 if (!ino && is_inline_node(page)) {
1294 clear_inline_node(page);
1295 unlock_page(page);
1296 flush_inline_data(sbi, ino_of_node(page));
1297 continue;
1298 }
1299
1300 f2fs_wait_on_page_writeback(page, NODE, true);
1301
1302 BUG_ON(PageWriteback(page));
1303 if (!clear_page_dirty_for_io(page))
1304 goto continue_unlock;
1305
1306 /* called by fsync() */
1307 if (ino && IS_DNODE(page)) {
1308 set_fsync_mark(page, 1);
1309 if (IS_INODE(page))
1310 set_dentry_mark(page,
1311 need_dentry_mark(sbi, ino));
1312 nwritten++;
1313 } else {
1314 set_fsync_mark(page, 0);
1315 set_dentry_mark(page, 0);
1316 }
1317
1318 if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1319 unlock_page(page);
1320 else
1321 wrote++;
1322
1323 if (--wbc->nr_to_write == 0)
1324 break;
1325 }
1326 pagevec_release(&pvec);
1327 cond_resched();
1328
1329 if (wbc->nr_to_write == 0) {
1330 step = 2;
1331 break;
1332 }
1333 }
1334
1335 if (step < 2) {
1336 step++;
1337 goto next_step;
1338 }
1339
1340 if (wrote)
1341 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1342 return nwritten;
1343 }
1344
1345 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1346 {
1347 pgoff_t index = 0, end = LONG_MAX;
1348 struct pagevec pvec;
1349 int ret2 = 0, ret = 0;
1350
1351 pagevec_init(&pvec, 0);
1352
1353 while (index <= end) {
1354 int i, nr_pages;
1355 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1356 PAGECACHE_TAG_WRITEBACK,
1357 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1358 if (nr_pages == 0)
1359 break;
1360
1361 for (i = 0; i < nr_pages; i++) {
1362 struct page *page = pvec.pages[i];
1363
1364 /* until radix tree lookup accepts end_index */
1365 if (unlikely(page->index > end))
1366 continue;
1367
1368 if (ino && ino_of_node(page) == ino) {
1369 f2fs_wait_on_page_writeback(page, NODE, true);
1370 if (TestClearPageError(page))
1371 ret = -EIO;
1372 }
1373 }
1374 pagevec_release(&pvec);
1375 cond_resched();
1376 }
1377
1378 if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1379 ret2 = -ENOSPC;
1380 if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1381 ret2 = -EIO;
1382 if (!ret)
1383 ret = ret2;
1384 return ret;
1385 }
1386
1387 static int f2fs_write_node_page(struct page *page,
1388 struct writeback_control *wbc)
1389 {
1390 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1391 nid_t nid;
1392 struct node_info ni;
1393 struct f2fs_io_info fio = {
1394 .sbi = sbi,
1395 .type = NODE,
1396 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1397 .page = page,
1398 .encrypted_page = NULL,
1399 };
1400
1401 trace_f2fs_writepage(page, NODE);
1402
1403 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1404 goto redirty_out;
1405 if (unlikely(f2fs_cp_error(sbi)))
1406 goto redirty_out;
1407
1408 /* get old block addr of this node page */
1409 nid = nid_of_node(page);
1410 f2fs_bug_on(sbi, page->index != nid);
1411
1412 if (wbc->for_reclaim) {
1413 if (!down_read_trylock(&sbi->node_write))
1414 goto redirty_out;
1415 } else {
1416 down_read(&sbi->node_write);
1417 }
1418
1419 get_node_info(sbi, nid, &ni);
1420
1421 /* This page is already truncated */
1422 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1423 ClearPageUptodate(page);
1424 dec_page_count(sbi, F2FS_DIRTY_NODES);
1425 up_read(&sbi->node_write);
1426 unlock_page(page);
1427 return 0;
1428 }
1429
1430 set_page_writeback(page);
1431 fio.blk_addr = ni.blk_addr;
1432 write_node_page(nid, &fio);
1433 set_node_addr(sbi, &ni, fio.blk_addr, is_fsync_dnode(page));
1434 dec_page_count(sbi, F2FS_DIRTY_NODES);
1435 up_read(&sbi->node_write);
1436 unlock_page(page);
1437
1438 if (wbc->for_reclaim || unlikely(f2fs_cp_error(sbi)))
1439 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1440
1441 return 0;
1442
1443 redirty_out:
1444 redirty_page_for_writepage(wbc, page);
1445 return AOP_WRITEPAGE_ACTIVATE;
1446 }
1447
1448 static int f2fs_write_node_pages(struct address_space *mapping,
1449 struct writeback_control *wbc)
1450 {
1451 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1452 long diff;
1453
1454 trace_f2fs_writepages(mapping->host, wbc, NODE);
1455
1456 /* balancing f2fs's metadata in background */
1457 f2fs_balance_fs_bg(sbi);
1458
1459 /* collect a number of dirty node pages and write together */
1460 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1461 goto skip_write;
1462
1463 diff = nr_pages_to_write(sbi, NODE, wbc);
1464 wbc->sync_mode = WB_SYNC_NONE;
1465 sync_node_pages(sbi, 0, wbc);
1466 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1467 return 0;
1468
1469 skip_write:
1470 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1471 return 0;
1472 }
1473
1474 static int f2fs_set_node_page_dirty(struct page *page)
1475 {
1476 trace_f2fs_set_page_dirty(page, NODE);
1477
1478 SetPageUptodate(page);
1479 if (!PageDirty(page)) {
1480 __set_page_dirty_nobuffers(page);
1481 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1482 SetPagePrivate(page);
1483 f2fs_trace_pid(page);
1484 return 1;
1485 }
1486 return 0;
1487 }
1488
1489 /*
1490 * Structure of the f2fs node operations
1491 */
1492 const struct address_space_operations f2fs_node_aops = {
1493 .writepage = f2fs_write_node_page,
1494 .writepages = f2fs_write_node_pages,
1495 .set_page_dirty = f2fs_set_node_page_dirty,
1496 .invalidatepage = f2fs_invalidate_page,
1497 .releasepage = f2fs_release_page,
1498 };
1499
1500 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1501 nid_t n)
1502 {
1503 return radix_tree_lookup(&nm_i->free_nid_root, n);
1504 }
1505
1506 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1507 struct free_nid *i)
1508 {
1509 list_del(&i->list);
1510 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1511 }
1512
1513 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1514 {
1515 struct f2fs_nm_info *nm_i = NM_I(sbi);
1516 struct free_nid *i;
1517 struct nat_entry *ne;
1518 bool allocated = false;
1519
1520 if (!available_free_memory(sbi, FREE_NIDS))
1521 return -1;
1522
1523 /* 0 nid should not be used */
1524 if (unlikely(nid == 0))
1525 return 0;
1526
1527 if (build) {
1528 /* do not add allocated nids */
1529 ne = __lookup_nat_cache(nm_i, nid);
1530 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1531 nat_get_blkaddr(ne) != NULL_ADDR))
1532 allocated = true;
1533 if (allocated)
1534 return 0;
1535 }
1536
1537 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1538 i->nid = nid;
1539 i->state = NID_NEW;
1540
1541 if (radix_tree_preload(GFP_NOFS)) {
1542 kmem_cache_free(free_nid_slab, i);
1543 return 0;
1544 }
1545
1546 spin_lock(&nm_i->free_nid_list_lock);
1547 if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1548 spin_unlock(&nm_i->free_nid_list_lock);
1549 radix_tree_preload_end();
1550 kmem_cache_free(free_nid_slab, i);
1551 return 0;
1552 }
1553 list_add_tail(&i->list, &nm_i->free_nid_list);
1554 nm_i->fcnt++;
1555 spin_unlock(&nm_i->free_nid_list_lock);
1556 radix_tree_preload_end();
1557 return 1;
1558 }
1559
1560 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1561 {
1562 struct free_nid *i;
1563 bool need_free = false;
1564
1565 spin_lock(&nm_i->free_nid_list_lock);
1566 i = __lookup_free_nid_list(nm_i, nid);
1567 if (i && i->state == NID_NEW) {
1568 __del_from_free_nid_list(nm_i, i);
1569 nm_i->fcnt--;
1570 need_free = true;
1571 }
1572 spin_unlock(&nm_i->free_nid_list_lock);
1573
1574 if (need_free)
1575 kmem_cache_free(free_nid_slab, i);
1576 }
1577
1578 static void scan_nat_page(struct f2fs_sb_info *sbi,
1579 struct page *nat_page, nid_t start_nid)
1580 {
1581 struct f2fs_nm_info *nm_i = NM_I(sbi);
1582 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1583 block_t blk_addr;
1584 int i;
1585
1586 i = start_nid % NAT_ENTRY_PER_BLOCK;
1587
1588 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1589
1590 if (unlikely(start_nid >= nm_i->max_nid))
1591 break;
1592
1593 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1594 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1595 if (blk_addr == NULL_ADDR) {
1596 if (add_free_nid(sbi, start_nid, true) < 0)
1597 break;
1598 }
1599 }
1600 }
1601
1602 static void build_free_nids(struct f2fs_sb_info *sbi)
1603 {
1604 struct f2fs_nm_info *nm_i = NM_I(sbi);
1605 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1606 struct f2fs_summary_block *sum = curseg->sum_blk;
1607 int i = 0;
1608 nid_t nid = nm_i->next_scan_nid;
1609
1610 /* Enough entries */
1611 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1612 return;
1613
1614 /* readahead nat pages to be scanned */
1615 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1616 META_NAT, true);
1617
1618 down_read(&nm_i->nat_tree_lock);
1619
1620 while (1) {
1621 struct page *page = get_current_nat_page(sbi, nid);
1622
1623 scan_nat_page(sbi, page, nid);
1624 f2fs_put_page(page, 1);
1625
1626 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1627 if (unlikely(nid >= nm_i->max_nid))
1628 nid = 0;
1629
1630 if (++i >= FREE_NID_PAGES)
1631 break;
1632 }
1633
1634 /* go to the next free nat pages to find free nids abundantly */
1635 nm_i->next_scan_nid = nid;
1636
1637 /* find free nids from current sum_pages */
1638 mutex_lock(&curseg->curseg_mutex);
1639 for (i = 0; i < nats_in_cursum(sum); i++) {
1640 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1641 nid = le32_to_cpu(nid_in_journal(sum, i));
1642 if (addr == NULL_ADDR)
1643 add_free_nid(sbi, nid, true);
1644 else
1645 remove_free_nid(nm_i, nid);
1646 }
1647 mutex_unlock(&curseg->curseg_mutex);
1648 up_read(&nm_i->nat_tree_lock);
1649
1650 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1651 nm_i->ra_nid_pages, META_NAT, false);
1652 }
1653
1654 /*
1655 * If this function returns success, caller can obtain a new nid
1656 * from second parameter of this function.
1657 * The returned nid could be used ino as well as nid when inode is created.
1658 */
1659 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1660 {
1661 struct f2fs_nm_info *nm_i = NM_I(sbi);
1662 struct free_nid *i = NULL;
1663 retry:
1664 if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1665 return false;
1666
1667 spin_lock(&nm_i->free_nid_list_lock);
1668
1669 /* We should not use stale free nids created by build_free_nids */
1670 if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1671 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1672 list_for_each_entry(i, &nm_i->free_nid_list, list)
1673 if (i->state == NID_NEW)
1674 break;
1675
1676 f2fs_bug_on(sbi, i->state != NID_NEW);
1677 *nid = i->nid;
1678 i->state = NID_ALLOC;
1679 nm_i->fcnt--;
1680 spin_unlock(&nm_i->free_nid_list_lock);
1681 return true;
1682 }
1683 spin_unlock(&nm_i->free_nid_list_lock);
1684
1685 /* Let's scan nat pages and its caches to get free nids */
1686 mutex_lock(&nm_i->build_lock);
1687 build_free_nids(sbi);
1688 mutex_unlock(&nm_i->build_lock);
1689 goto retry;
1690 }
1691
1692 /*
1693 * alloc_nid() should be called prior to this function.
1694 */
1695 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1696 {
1697 struct f2fs_nm_info *nm_i = NM_I(sbi);
1698 struct free_nid *i;
1699
1700 spin_lock(&nm_i->free_nid_list_lock);
1701 i = __lookup_free_nid_list(nm_i, nid);
1702 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1703 __del_from_free_nid_list(nm_i, i);
1704 spin_unlock(&nm_i->free_nid_list_lock);
1705
1706 kmem_cache_free(free_nid_slab, i);
1707 }
1708
1709 /*
1710 * alloc_nid() should be called prior to this function.
1711 */
1712 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1713 {
1714 struct f2fs_nm_info *nm_i = NM_I(sbi);
1715 struct free_nid *i;
1716 bool need_free = false;
1717
1718 if (!nid)
1719 return;
1720
1721 spin_lock(&nm_i->free_nid_list_lock);
1722 i = __lookup_free_nid_list(nm_i, nid);
1723 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1724 if (!available_free_memory(sbi, FREE_NIDS)) {
1725 __del_from_free_nid_list(nm_i, i);
1726 need_free = true;
1727 } else {
1728 i->state = NID_NEW;
1729 nm_i->fcnt++;
1730 }
1731 spin_unlock(&nm_i->free_nid_list_lock);
1732
1733 if (need_free)
1734 kmem_cache_free(free_nid_slab, i);
1735 }
1736
1737 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1738 {
1739 struct f2fs_nm_info *nm_i = NM_I(sbi);
1740 struct free_nid *i, *next;
1741 int nr = nr_shrink;
1742
1743 if (!mutex_trylock(&nm_i->build_lock))
1744 return 0;
1745
1746 spin_lock(&nm_i->free_nid_list_lock);
1747 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
1748 if (nr_shrink <= 0 || nm_i->fcnt <= NAT_ENTRY_PER_BLOCK)
1749 break;
1750 if (i->state == NID_ALLOC)
1751 continue;
1752 __del_from_free_nid_list(nm_i, i);
1753 kmem_cache_free(free_nid_slab, i);
1754 nm_i->fcnt--;
1755 nr_shrink--;
1756 }
1757 spin_unlock(&nm_i->free_nid_list_lock);
1758 mutex_unlock(&nm_i->build_lock);
1759
1760 return nr - nr_shrink;
1761 }
1762
1763 void recover_inline_xattr(struct inode *inode, struct page *page)
1764 {
1765 void *src_addr, *dst_addr;
1766 size_t inline_size;
1767 struct page *ipage;
1768 struct f2fs_inode *ri;
1769
1770 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1771 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1772
1773 ri = F2FS_INODE(page);
1774 if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1775 clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1776 goto update_inode;
1777 }
1778
1779 dst_addr = inline_xattr_addr(ipage);
1780 src_addr = inline_xattr_addr(page);
1781 inline_size = inline_xattr_size(inode);
1782
1783 f2fs_wait_on_page_writeback(ipage, NODE, true);
1784 memcpy(dst_addr, src_addr, inline_size);
1785 update_inode:
1786 update_inode(inode, ipage);
1787 f2fs_put_page(ipage, 1);
1788 }
1789
1790 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1791 {
1792 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1793 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1794 nid_t new_xnid = nid_of_node(page);
1795 struct node_info ni;
1796
1797 /* 1: invalidate the previous xattr nid */
1798 if (!prev_xnid)
1799 goto recover_xnid;
1800
1801 /* Deallocate node address */
1802 get_node_info(sbi, prev_xnid, &ni);
1803 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1804 invalidate_blocks(sbi, ni.blk_addr);
1805 dec_valid_node_count(sbi, inode);
1806 set_node_addr(sbi, &ni, NULL_ADDR, false);
1807
1808 recover_xnid:
1809 /* 2: allocate new xattr nid */
1810 if (unlikely(!inc_valid_node_count(sbi, inode)))
1811 f2fs_bug_on(sbi, 1);
1812
1813 remove_free_nid(NM_I(sbi), new_xnid);
1814 get_node_info(sbi, new_xnid, &ni);
1815 ni.ino = inode->i_ino;
1816 set_node_addr(sbi, &ni, NEW_ADDR, false);
1817 F2FS_I(inode)->i_xattr_nid = new_xnid;
1818
1819 /* 3: update xattr blkaddr */
1820 refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1821 set_node_addr(sbi, &ni, blkaddr, false);
1822
1823 update_inode_page(inode);
1824 }
1825
1826 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1827 {
1828 struct f2fs_inode *src, *dst;
1829 nid_t ino = ino_of_node(page);
1830 struct node_info old_ni, new_ni;
1831 struct page *ipage;
1832
1833 get_node_info(sbi, ino, &old_ni);
1834
1835 if (unlikely(old_ni.blk_addr != NULL_ADDR))
1836 return -EINVAL;
1837
1838 ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1839 if (!ipage)
1840 return -ENOMEM;
1841
1842 /* Should not use this inode from free nid list */
1843 remove_free_nid(NM_I(sbi), ino);
1844
1845 SetPageUptodate(ipage);
1846 fill_node_footer(ipage, ino, ino, 0, true);
1847
1848 src = F2FS_INODE(page);
1849 dst = F2FS_INODE(ipage);
1850
1851 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1852 dst->i_size = 0;
1853 dst->i_blocks = cpu_to_le64(1);
1854 dst->i_links = cpu_to_le32(1);
1855 dst->i_xattr_nid = 0;
1856 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
1857
1858 new_ni = old_ni;
1859 new_ni.ino = ino;
1860
1861 if (unlikely(!inc_valid_node_count(sbi, NULL)))
1862 WARN_ON(1);
1863 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1864 inc_valid_inode_count(sbi);
1865 set_page_dirty(ipage);
1866 f2fs_put_page(ipage, 1);
1867 return 0;
1868 }
1869
1870 int restore_node_summary(struct f2fs_sb_info *sbi,
1871 unsigned int segno, struct f2fs_summary_block *sum)
1872 {
1873 struct f2fs_node *rn;
1874 struct f2fs_summary *sum_entry;
1875 block_t addr;
1876 int bio_blocks = MAX_BIO_BLOCKS(sbi);
1877 int i, idx, last_offset, nrpages;
1878
1879 /* scan the node segment */
1880 last_offset = sbi->blocks_per_seg;
1881 addr = START_BLOCK(sbi, segno);
1882 sum_entry = &sum->entries[0];
1883
1884 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
1885 nrpages = min(last_offset - i, bio_blocks);
1886
1887 /* readahead node pages */
1888 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
1889
1890 for (idx = addr; idx < addr + nrpages; idx++) {
1891 struct page *page = get_tmp_page(sbi, idx);
1892
1893 rn = F2FS_NODE(page);
1894 sum_entry->nid = rn->footer.nid;
1895 sum_entry->version = 0;
1896 sum_entry->ofs_in_node = 0;
1897 sum_entry++;
1898 f2fs_put_page(page, 1);
1899 }
1900
1901 invalidate_mapping_pages(META_MAPPING(sbi), addr,
1902 addr + nrpages);
1903 }
1904 return 0;
1905 }
1906
1907 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1908 {
1909 struct f2fs_nm_info *nm_i = NM_I(sbi);
1910 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1911 struct f2fs_summary_block *sum = curseg->sum_blk;
1912 int i;
1913
1914 mutex_lock(&curseg->curseg_mutex);
1915 for (i = 0; i < nats_in_cursum(sum); i++) {
1916 struct nat_entry *ne;
1917 struct f2fs_nat_entry raw_ne;
1918 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1919
1920 raw_ne = nat_in_journal(sum, i);
1921
1922 ne = __lookup_nat_cache(nm_i, nid);
1923 if (!ne) {
1924 ne = grab_nat_entry(nm_i, nid);
1925 node_info_from_raw_nat(&ne->ni, &raw_ne);
1926 }
1927 __set_nat_cache_dirty(nm_i, ne);
1928 }
1929 update_nats_in_cursum(sum, -i);
1930 mutex_unlock(&curseg->curseg_mutex);
1931 }
1932
1933 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1934 struct list_head *head, int max)
1935 {
1936 struct nat_entry_set *cur;
1937
1938 if (nes->entry_cnt >= max)
1939 goto add_out;
1940
1941 list_for_each_entry(cur, head, set_list) {
1942 if (cur->entry_cnt >= nes->entry_cnt) {
1943 list_add(&nes->set_list, cur->set_list.prev);
1944 return;
1945 }
1946 }
1947 add_out:
1948 list_add_tail(&nes->set_list, head);
1949 }
1950
1951 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1952 struct nat_entry_set *set)
1953 {
1954 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1955 struct f2fs_summary_block *sum = curseg->sum_blk;
1956 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1957 bool to_journal = true;
1958 struct f2fs_nat_block *nat_blk;
1959 struct nat_entry *ne, *cur;
1960 struct page *page = NULL;
1961
1962 /*
1963 * there are two steps to flush nat entries:
1964 * #1, flush nat entries to journal in current hot data summary block.
1965 * #2, flush nat entries to nat page.
1966 */
1967 if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL))
1968 to_journal = false;
1969
1970 if (to_journal) {
1971 mutex_lock(&curseg->curseg_mutex);
1972 } else {
1973 page = get_next_nat_page(sbi, start_nid);
1974 nat_blk = page_address(page);
1975 f2fs_bug_on(sbi, !nat_blk);
1976 }
1977
1978 /* flush dirty nats in nat entry set */
1979 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
1980 struct f2fs_nat_entry *raw_ne;
1981 nid_t nid = nat_get_nid(ne);
1982 int offset;
1983
1984 if (nat_get_blkaddr(ne) == NEW_ADDR)
1985 continue;
1986
1987 if (to_journal) {
1988 offset = lookup_journal_in_cursum(sum,
1989 NAT_JOURNAL, nid, 1);
1990 f2fs_bug_on(sbi, offset < 0);
1991 raw_ne = &nat_in_journal(sum, offset);
1992 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1993 } else {
1994 raw_ne = &nat_blk->entries[nid - start_nid];
1995 }
1996 raw_nat_from_node_info(raw_ne, &ne->ni);
1997 nat_reset_flag(ne);
1998 __clear_nat_cache_dirty(NM_I(sbi), ne);
1999 if (nat_get_blkaddr(ne) == NULL_ADDR)
2000 add_free_nid(sbi, nid, false);
2001 }
2002
2003 if (to_journal)
2004 mutex_unlock(&curseg->curseg_mutex);
2005 else
2006 f2fs_put_page(page, 1);
2007
2008 f2fs_bug_on(sbi, set->entry_cnt);
2009
2010 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2011 kmem_cache_free(nat_entry_set_slab, set);
2012 }
2013
2014 /*
2015 * This function is called during the checkpointing process.
2016 */
2017 void flush_nat_entries(struct f2fs_sb_info *sbi)
2018 {
2019 struct f2fs_nm_info *nm_i = NM_I(sbi);
2020 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2021 struct f2fs_summary_block *sum = curseg->sum_blk;
2022 struct nat_entry_set *setvec[SETVEC_SIZE];
2023 struct nat_entry_set *set, *tmp;
2024 unsigned int found;
2025 nid_t set_idx = 0;
2026 LIST_HEAD(sets);
2027
2028 if (!nm_i->dirty_nat_cnt)
2029 return;
2030
2031 down_write(&nm_i->nat_tree_lock);
2032
2033 /*
2034 * if there are no enough space in journal to store dirty nat
2035 * entries, remove all entries from journal and merge them
2036 * into nat entry set.
2037 */
2038 if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2039 remove_nats_in_journal(sbi);
2040
2041 while ((found = __gang_lookup_nat_set(nm_i,
2042 set_idx, SETVEC_SIZE, setvec))) {
2043 unsigned idx;
2044 set_idx = setvec[found - 1]->set + 1;
2045 for (idx = 0; idx < found; idx++)
2046 __adjust_nat_entry_set(setvec[idx], &sets,
2047 MAX_NAT_JENTRIES(sum));
2048 }
2049
2050 /* flush dirty nats in nat entry set */
2051 list_for_each_entry_safe(set, tmp, &sets, set_list)
2052 __flush_nat_entry_set(sbi, set);
2053
2054 up_write(&nm_i->nat_tree_lock);
2055
2056 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
2057 }
2058
2059 static int init_node_manager(struct f2fs_sb_info *sbi)
2060 {
2061 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2062 struct f2fs_nm_info *nm_i = NM_I(sbi);
2063 unsigned char *version_bitmap;
2064 unsigned int nat_segs, nat_blocks;
2065
2066 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2067
2068 /* segment_count_nat includes pair segment so divide to 2. */
2069 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2070 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2071
2072 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
2073
2074 /* not used nids: 0, node, meta, (and root counted as valid node) */
2075 nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
2076 nm_i->fcnt = 0;
2077 nm_i->nat_cnt = 0;
2078 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2079 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2080 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2081
2082 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2083 INIT_LIST_HEAD(&nm_i->free_nid_list);
2084 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2085 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2086 INIT_LIST_HEAD(&nm_i->nat_entries);
2087
2088 mutex_init(&nm_i->build_lock);
2089 spin_lock_init(&nm_i->free_nid_list_lock);
2090 init_rwsem(&nm_i->nat_tree_lock);
2091
2092 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2093 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2094 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2095 if (!version_bitmap)
2096 return -EFAULT;
2097
2098 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2099 GFP_KERNEL);
2100 if (!nm_i->nat_bitmap)
2101 return -ENOMEM;
2102 return 0;
2103 }
2104
2105 int build_node_manager(struct f2fs_sb_info *sbi)
2106 {
2107 int err;
2108
2109 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2110 if (!sbi->nm_info)
2111 return -ENOMEM;
2112
2113 err = init_node_manager(sbi);
2114 if (err)
2115 return err;
2116
2117 build_free_nids(sbi);
2118 return 0;
2119 }
2120
2121 void destroy_node_manager(struct f2fs_sb_info *sbi)
2122 {
2123 struct f2fs_nm_info *nm_i = NM_I(sbi);
2124 struct free_nid *i, *next_i;
2125 struct nat_entry *natvec[NATVEC_SIZE];
2126 struct nat_entry_set *setvec[SETVEC_SIZE];
2127 nid_t nid = 0;
2128 unsigned int found;
2129
2130 if (!nm_i)
2131 return;
2132
2133 /* destroy free nid list */
2134 spin_lock(&nm_i->free_nid_list_lock);
2135 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2136 f2fs_bug_on(sbi, i->state == NID_ALLOC);
2137 __del_from_free_nid_list(nm_i, i);
2138 nm_i->fcnt--;
2139 spin_unlock(&nm_i->free_nid_list_lock);
2140 kmem_cache_free(free_nid_slab, i);
2141 spin_lock(&nm_i->free_nid_list_lock);
2142 }
2143 f2fs_bug_on(sbi, nm_i->fcnt);
2144 spin_unlock(&nm_i->free_nid_list_lock);
2145
2146 /* destroy nat cache */
2147 down_write(&nm_i->nat_tree_lock);
2148 while ((found = __gang_lookup_nat_cache(nm_i,
2149 nid, NATVEC_SIZE, natvec))) {
2150 unsigned idx;
2151
2152 nid = nat_get_nid(natvec[found - 1]) + 1;
2153 for (idx = 0; idx < found; idx++)
2154 __del_from_nat_cache(nm_i, natvec[idx]);
2155 }
2156 f2fs_bug_on(sbi, nm_i->nat_cnt);
2157
2158 /* destroy nat set cache */
2159 nid = 0;
2160 while ((found = __gang_lookup_nat_set(nm_i,
2161 nid, SETVEC_SIZE, setvec))) {
2162 unsigned idx;
2163
2164 nid = setvec[found - 1]->set + 1;
2165 for (idx = 0; idx < found; idx++) {
2166 /* entry_cnt is not zero, when cp_error was occurred */
2167 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2168 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2169 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2170 }
2171 }
2172 up_write(&nm_i->nat_tree_lock);
2173
2174 kfree(nm_i->nat_bitmap);
2175 sbi->nm_info = NULL;
2176 kfree(nm_i);
2177 }
2178
2179 int __init create_node_manager_caches(void)
2180 {
2181 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2182 sizeof(struct nat_entry));
2183 if (!nat_entry_slab)
2184 goto fail;
2185
2186 free_nid_slab = f2fs_kmem_cache_create("free_nid",
2187 sizeof(struct free_nid));
2188 if (!free_nid_slab)
2189 goto destroy_nat_entry;
2190
2191 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2192 sizeof(struct nat_entry_set));
2193 if (!nat_entry_set_slab)
2194 goto destroy_free_nid;
2195 return 0;
2196
2197 destroy_free_nid:
2198 kmem_cache_destroy(free_nid_slab);
2199 destroy_nat_entry:
2200 kmem_cache_destroy(nat_entry_slab);
2201 fail:
2202 return -ENOMEM;
2203 }
2204
2205 void destroy_node_manager_caches(void)
2206 {
2207 kmem_cache_destroy(nat_entry_set_slab);
2208 kmem_cache_destroy(free_nid_slab);
2209 kmem_cache_destroy(nat_entry_slab);
2210 }
This page took 0.087518 seconds and 4 git commands to generate.