f2fs: recover fallocated space
[deliverable/linux.git] / fs / f2fs / node.c
1 /*
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23
24 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
25
26 static struct kmem_cache *nat_entry_slab;
27 static struct kmem_cache *free_nid_slab;
28
29 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
30 {
31 struct f2fs_nm_info *nm_i = NM_I(sbi);
32 struct sysinfo val;
33 unsigned long mem_size = 0;
34 bool res = false;
35
36 si_meminfo(&val);
37 /* give 25%, 25%, 50% memory for each components respectively */
38 if (type == FREE_NIDS) {
39 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >> 12;
40 res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
41 } else if (type == NAT_ENTRIES) {
42 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 12;
43 res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
44 } else if (type == DIRTY_DENTS) {
45 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
46 res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 1);
47 }
48 return res;
49 }
50
51 static void clear_node_page_dirty(struct page *page)
52 {
53 struct address_space *mapping = page->mapping;
54 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
55 unsigned int long flags;
56
57 if (PageDirty(page)) {
58 spin_lock_irqsave(&mapping->tree_lock, flags);
59 radix_tree_tag_clear(&mapping->page_tree,
60 page_index(page),
61 PAGECACHE_TAG_DIRTY);
62 spin_unlock_irqrestore(&mapping->tree_lock, flags);
63
64 clear_page_dirty_for_io(page);
65 dec_page_count(sbi, F2FS_DIRTY_NODES);
66 }
67 ClearPageUptodate(page);
68 }
69
70 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
71 {
72 pgoff_t index = current_nat_addr(sbi, nid);
73 return get_meta_page(sbi, index);
74 }
75
76 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
77 {
78 struct page *src_page;
79 struct page *dst_page;
80 pgoff_t src_off;
81 pgoff_t dst_off;
82 void *src_addr;
83 void *dst_addr;
84 struct f2fs_nm_info *nm_i = NM_I(sbi);
85
86 src_off = current_nat_addr(sbi, nid);
87 dst_off = next_nat_addr(sbi, src_off);
88
89 /* get current nat block page with lock */
90 src_page = get_meta_page(sbi, src_off);
91
92 /* Dirty src_page means that it is already the new target NAT page. */
93 if (PageDirty(src_page))
94 return src_page;
95
96 dst_page = grab_meta_page(sbi, dst_off);
97
98 src_addr = page_address(src_page);
99 dst_addr = page_address(dst_page);
100 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
101 set_page_dirty(dst_page);
102 f2fs_put_page(src_page, 1);
103
104 set_to_next_nat(nm_i, nid);
105
106 return dst_page;
107 }
108
109 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
110 {
111 return radix_tree_lookup(&nm_i->nat_root, n);
112 }
113
114 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
115 nid_t start, unsigned int nr, struct nat_entry **ep)
116 {
117 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
118 }
119
120 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
121 {
122 list_del(&e->list);
123 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
124 nm_i->nat_cnt--;
125 kmem_cache_free(nat_entry_slab, e);
126 }
127
128 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
129 {
130 struct f2fs_nm_info *nm_i = NM_I(sbi);
131 struct nat_entry *e;
132 int is_cp = 1;
133
134 read_lock(&nm_i->nat_tree_lock);
135 e = __lookup_nat_cache(nm_i, nid);
136 if (e && !e->checkpointed)
137 is_cp = 0;
138 read_unlock(&nm_i->nat_tree_lock);
139 return is_cp;
140 }
141
142 bool fsync_mark_done(struct f2fs_sb_info *sbi, nid_t nid)
143 {
144 struct f2fs_nm_info *nm_i = NM_I(sbi);
145 struct nat_entry *e;
146 bool fsync_done = false;
147
148 read_lock(&nm_i->nat_tree_lock);
149 e = __lookup_nat_cache(nm_i, nid);
150 if (e)
151 fsync_done = e->fsync_done;
152 read_unlock(&nm_i->nat_tree_lock);
153 return fsync_done;
154 }
155
156 void fsync_mark_clear(struct f2fs_sb_info *sbi, nid_t nid)
157 {
158 struct f2fs_nm_info *nm_i = NM_I(sbi);
159 struct nat_entry *e;
160
161 write_lock(&nm_i->nat_tree_lock);
162 e = __lookup_nat_cache(nm_i, nid);
163 if (e)
164 e->fsync_done = false;
165 write_unlock(&nm_i->nat_tree_lock);
166 }
167
168 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
169 {
170 struct nat_entry *new;
171
172 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
173 if (!new)
174 return NULL;
175 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
176 kmem_cache_free(nat_entry_slab, new);
177 return NULL;
178 }
179 memset(new, 0, sizeof(struct nat_entry));
180 nat_set_nid(new, nid);
181 new->checkpointed = true;
182 list_add_tail(&new->list, &nm_i->nat_entries);
183 nm_i->nat_cnt++;
184 return new;
185 }
186
187 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
188 struct f2fs_nat_entry *ne)
189 {
190 struct nat_entry *e;
191 retry:
192 write_lock(&nm_i->nat_tree_lock);
193 e = __lookup_nat_cache(nm_i, nid);
194 if (!e) {
195 e = grab_nat_entry(nm_i, nid);
196 if (!e) {
197 write_unlock(&nm_i->nat_tree_lock);
198 goto retry;
199 }
200 node_info_from_raw_nat(&e->ni, ne);
201 }
202 write_unlock(&nm_i->nat_tree_lock);
203 }
204
205 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
206 block_t new_blkaddr, bool fsync_done)
207 {
208 struct f2fs_nm_info *nm_i = NM_I(sbi);
209 struct nat_entry *e;
210 retry:
211 write_lock(&nm_i->nat_tree_lock);
212 e = __lookup_nat_cache(nm_i, ni->nid);
213 if (!e) {
214 e = grab_nat_entry(nm_i, ni->nid);
215 if (!e) {
216 write_unlock(&nm_i->nat_tree_lock);
217 goto retry;
218 }
219 e->ni = *ni;
220 f2fs_bug_on(ni->blk_addr == NEW_ADDR);
221 } else if (new_blkaddr == NEW_ADDR) {
222 /*
223 * when nid is reallocated,
224 * previous nat entry can be remained in nat cache.
225 * So, reinitialize it with new information.
226 */
227 e->ni = *ni;
228 f2fs_bug_on(ni->blk_addr != NULL_ADDR);
229 }
230
231 /* sanity check */
232 f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
233 f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
234 new_blkaddr == NULL_ADDR);
235 f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
236 new_blkaddr == NEW_ADDR);
237 f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
238 nat_get_blkaddr(e) != NULL_ADDR &&
239 new_blkaddr == NEW_ADDR);
240
241 /* increament version no as node is removed */
242 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
243 unsigned char version = nat_get_version(e);
244 nat_set_version(e, inc_node_version(version));
245 }
246
247 /* change address */
248 nat_set_blkaddr(e, new_blkaddr);
249 __set_nat_cache_dirty(nm_i, e);
250
251 /* update fsync_mark if its inode nat entry is still alive */
252 e = __lookup_nat_cache(nm_i, ni->ino);
253 if (e)
254 e->fsync_done = fsync_done;
255 write_unlock(&nm_i->nat_tree_lock);
256 }
257
258 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
259 {
260 struct f2fs_nm_info *nm_i = NM_I(sbi);
261
262 if (available_free_memory(sbi, NAT_ENTRIES))
263 return 0;
264
265 write_lock(&nm_i->nat_tree_lock);
266 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
267 struct nat_entry *ne;
268 ne = list_first_entry(&nm_i->nat_entries,
269 struct nat_entry, list);
270 __del_from_nat_cache(nm_i, ne);
271 nr_shrink--;
272 }
273 write_unlock(&nm_i->nat_tree_lock);
274 return nr_shrink;
275 }
276
277 /*
278 * This function returns always success
279 */
280 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
281 {
282 struct f2fs_nm_info *nm_i = NM_I(sbi);
283 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
284 struct f2fs_summary_block *sum = curseg->sum_blk;
285 nid_t start_nid = START_NID(nid);
286 struct f2fs_nat_block *nat_blk;
287 struct page *page = NULL;
288 struct f2fs_nat_entry ne;
289 struct nat_entry *e;
290 int i;
291
292 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
293 ni->nid = nid;
294
295 /* Check nat cache */
296 read_lock(&nm_i->nat_tree_lock);
297 e = __lookup_nat_cache(nm_i, nid);
298 if (e) {
299 ni->ino = nat_get_ino(e);
300 ni->blk_addr = nat_get_blkaddr(e);
301 ni->version = nat_get_version(e);
302 }
303 read_unlock(&nm_i->nat_tree_lock);
304 if (e)
305 return;
306
307 /* Check current segment summary */
308 mutex_lock(&curseg->curseg_mutex);
309 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
310 if (i >= 0) {
311 ne = nat_in_journal(sum, i);
312 node_info_from_raw_nat(ni, &ne);
313 }
314 mutex_unlock(&curseg->curseg_mutex);
315 if (i >= 0)
316 goto cache;
317
318 /* Fill node_info from nat page */
319 page = get_current_nat_page(sbi, start_nid);
320 nat_blk = (struct f2fs_nat_block *)page_address(page);
321 ne = nat_blk->entries[nid - start_nid];
322 node_info_from_raw_nat(ni, &ne);
323 f2fs_put_page(page, 1);
324 cache:
325 /* cache nat entry */
326 cache_nat_entry(NM_I(sbi), nid, &ne);
327 }
328
329 /*
330 * The maximum depth is four.
331 * Offset[0] will have raw inode offset.
332 */
333 static int get_node_path(struct f2fs_inode_info *fi, long block,
334 int offset[4], unsigned int noffset[4])
335 {
336 const long direct_index = ADDRS_PER_INODE(fi);
337 const long direct_blks = ADDRS_PER_BLOCK;
338 const long dptrs_per_blk = NIDS_PER_BLOCK;
339 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
340 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
341 int n = 0;
342 int level = 0;
343
344 noffset[0] = 0;
345
346 if (block < direct_index) {
347 offset[n] = block;
348 goto got;
349 }
350 block -= direct_index;
351 if (block < direct_blks) {
352 offset[n++] = NODE_DIR1_BLOCK;
353 noffset[n] = 1;
354 offset[n] = block;
355 level = 1;
356 goto got;
357 }
358 block -= direct_blks;
359 if (block < direct_blks) {
360 offset[n++] = NODE_DIR2_BLOCK;
361 noffset[n] = 2;
362 offset[n] = block;
363 level = 1;
364 goto got;
365 }
366 block -= direct_blks;
367 if (block < indirect_blks) {
368 offset[n++] = NODE_IND1_BLOCK;
369 noffset[n] = 3;
370 offset[n++] = block / direct_blks;
371 noffset[n] = 4 + offset[n - 1];
372 offset[n] = block % direct_blks;
373 level = 2;
374 goto got;
375 }
376 block -= indirect_blks;
377 if (block < indirect_blks) {
378 offset[n++] = NODE_IND2_BLOCK;
379 noffset[n] = 4 + dptrs_per_blk;
380 offset[n++] = block / direct_blks;
381 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
382 offset[n] = block % direct_blks;
383 level = 2;
384 goto got;
385 }
386 block -= indirect_blks;
387 if (block < dindirect_blks) {
388 offset[n++] = NODE_DIND_BLOCK;
389 noffset[n] = 5 + (dptrs_per_blk * 2);
390 offset[n++] = block / indirect_blks;
391 noffset[n] = 6 + (dptrs_per_blk * 2) +
392 offset[n - 1] * (dptrs_per_blk + 1);
393 offset[n++] = (block / direct_blks) % dptrs_per_blk;
394 noffset[n] = 7 + (dptrs_per_blk * 2) +
395 offset[n - 2] * (dptrs_per_blk + 1) +
396 offset[n - 1];
397 offset[n] = block % direct_blks;
398 level = 3;
399 goto got;
400 } else {
401 BUG();
402 }
403 got:
404 return level;
405 }
406
407 /*
408 * Caller should call f2fs_put_dnode(dn).
409 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
410 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
411 * In the case of RDONLY_NODE, we don't need to care about mutex.
412 */
413 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
414 {
415 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
416 struct page *npage[4];
417 struct page *parent;
418 int offset[4];
419 unsigned int noffset[4];
420 nid_t nids[4];
421 int level, i;
422 int err = 0;
423
424 level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
425
426 nids[0] = dn->inode->i_ino;
427 npage[0] = dn->inode_page;
428
429 if (!npage[0]) {
430 npage[0] = get_node_page(sbi, nids[0]);
431 if (IS_ERR(npage[0]))
432 return PTR_ERR(npage[0]);
433 }
434 parent = npage[0];
435 if (level != 0)
436 nids[1] = get_nid(parent, offset[0], true);
437 dn->inode_page = npage[0];
438 dn->inode_page_locked = true;
439
440 /* get indirect or direct nodes */
441 for (i = 1; i <= level; i++) {
442 bool done = false;
443
444 if (!nids[i] && mode == ALLOC_NODE) {
445 /* alloc new node */
446 if (!alloc_nid(sbi, &(nids[i]))) {
447 err = -ENOSPC;
448 goto release_pages;
449 }
450
451 dn->nid = nids[i];
452 npage[i] = new_node_page(dn, noffset[i], NULL);
453 if (IS_ERR(npage[i])) {
454 alloc_nid_failed(sbi, nids[i]);
455 err = PTR_ERR(npage[i]);
456 goto release_pages;
457 }
458
459 set_nid(parent, offset[i - 1], nids[i], i == 1);
460 alloc_nid_done(sbi, nids[i]);
461 done = true;
462 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
463 npage[i] = get_node_page_ra(parent, offset[i - 1]);
464 if (IS_ERR(npage[i])) {
465 err = PTR_ERR(npage[i]);
466 goto release_pages;
467 }
468 done = true;
469 }
470 if (i == 1) {
471 dn->inode_page_locked = false;
472 unlock_page(parent);
473 } else {
474 f2fs_put_page(parent, 1);
475 }
476
477 if (!done) {
478 npage[i] = get_node_page(sbi, nids[i]);
479 if (IS_ERR(npage[i])) {
480 err = PTR_ERR(npage[i]);
481 f2fs_put_page(npage[0], 0);
482 goto release_out;
483 }
484 }
485 if (i < level) {
486 parent = npage[i];
487 nids[i + 1] = get_nid(parent, offset[i], false);
488 }
489 }
490 dn->nid = nids[level];
491 dn->ofs_in_node = offset[level];
492 dn->node_page = npage[level];
493 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
494 return 0;
495
496 release_pages:
497 f2fs_put_page(parent, 1);
498 if (i > 1)
499 f2fs_put_page(npage[0], 0);
500 release_out:
501 dn->inode_page = NULL;
502 dn->node_page = NULL;
503 return err;
504 }
505
506 static void truncate_node(struct dnode_of_data *dn)
507 {
508 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
509 struct node_info ni;
510
511 get_node_info(sbi, dn->nid, &ni);
512 if (dn->inode->i_blocks == 0) {
513 f2fs_bug_on(ni.blk_addr != NULL_ADDR);
514 goto invalidate;
515 }
516 f2fs_bug_on(ni.blk_addr == NULL_ADDR);
517
518 /* Deallocate node address */
519 invalidate_blocks(sbi, ni.blk_addr);
520 dec_valid_node_count(sbi, dn->inode);
521 set_node_addr(sbi, &ni, NULL_ADDR, false);
522
523 if (dn->nid == dn->inode->i_ino) {
524 remove_orphan_inode(sbi, dn->nid);
525 dec_valid_inode_count(sbi);
526 } else {
527 sync_inode_page(dn);
528 }
529 invalidate:
530 clear_node_page_dirty(dn->node_page);
531 F2FS_SET_SB_DIRT(sbi);
532
533 f2fs_put_page(dn->node_page, 1);
534
535 invalidate_mapping_pages(NODE_MAPPING(sbi),
536 dn->node_page->index, dn->node_page->index);
537
538 dn->node_page = NULL;
539 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
540 }
541
542 static int truncate_dnode(struct dnode_of_data *dn)
543 {
544 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
545 struct page *page;
546
547 if (dn->nid == 0)
548 return 1;
549
550 /* get direct node */
551 page = get_node_page(sbi, dn->nid);
552 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
553 return 1;
554 else if (IS_ERR(page))
555 return PTR_ERR(page);
556
557 /* Make dnode_of_data for parameter */
558 dn->node_page = page;
559 dn->ofs_in_node = 0;
560 truncate_data_blocks(dn);
561 truncate_node(dn);
562 return 1;
563 }
564
565 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
566 int ofs, int depth)
567 {
568 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
569 struct dnode_of_data rdn = *dn;
570 struct page *page;
571 struct f2fs_node *rn;
572 nid_t child_nid;
573 unsigned int child_nofs;
574 int freed = 0;
575 int i, ret;
576
577 if (dn->nid == 0)
578 return NIDS_PER_BLOCK + 1;
579
580 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
581
582 page = get_node_page(sbi, dn->nid);
583 if (IS_ERR(page)) {
584 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
585 return PTR_ERR(page);
586 }
587
588 rn = F2FS_NODE(page);
589 if (depth < 3) {
590 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
591 child_nid = le32_to_cpu(rn->in.nid[i]);
592 if (child_nid == 0)
593 continue;
594 rdn.nid = child_nid;
595 ret = truncate_dnode(&rdn);
596 if (ret < 0)
597 goto out_err;
598 set_nid(page, i, 0, false);
599 }
600 } else {
601 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
602 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
603 child_nid = le32_to_cpu(rn->in.nid[i]);
604 if (child_nid == 0) {
605 child_nofs += NIDS_PER_BLOCK + 1;
606 continue;
607 }
608 rdn.nid = child_nid;
609 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
610 if (ret == (NIDS_PER_BLOCK + 1)) {
611 set_nid(page, i, 0, false);
612 child_nofs += ret;
613 } else if (ret < 0 && ret != -ENOENT) {
614 goto out_err;
615 }
616 }
617 freed = child_nofs;
618 }
619
620 if (!ofs) {
621 /* remove current indirect node */
622 dn->node_page = page;
623 truncate_node(dn);
624 freed++;
625 } else {
626 f2fs_put_page(page, 1);
627 }
628 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
629 return freed;
630
631 out_err:
632 f2fs_put_page(page, 1);
633 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
634 return ret;
635 }
636
637 static int truncate_partial_nodes(struct dnode_of_data *dn,
638 struct f2fs_inode *ri, int *offset, int depth)
639 {
640 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
641 struct page *pages[2];
642 nid_t nid[3];
643 nid_t child_nid;
644 int err = 0;
645 int i;
646 int idx = depth - 2;
647
648 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
649 if (!nid[0])
650 return 0;
651
652 /* get indirect nodes in the path */
653 for (i = 0; i < idx + 1; i++) {
654 /* refernece count'll be increased */
655 pages[i] = get_node_page(sbi, nid[i]);
656 if (IS_ERR(pages[i])) {
657 err = PTR_ERR(pages[i]);
658 idx = i - 1;
659 goto fail;
660 }
661 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
662 }
663
664 /* free direct nodes linked to a partial indirect node */
665 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
666 child_nid = get_nid(pages[idx], i, false);
667 if (!child_nid)
668 continue;
669 dn->nid = child_nid;
670 err = truncate_dnode(dn);
671 if (err < 0)
672 goto fail;
673 set_nid(pages[idx], i, 0, false);
674 }
675
676 if (offset[idx + 1] == 0) {
677 dn->node_page = pages[idx];
678 dn->nid = nid[idx];
679 truncate_node(dn);
680 } else {
681 f2fs_put_page(pages[idx], 1);
682 }
683 offset[idx]++;
684 offset[idx + 1] = 0;
685 idx--;
686 fail:
687 for (i = idx; i >= 0; i--)
688 f2fs_put_page(pages[i], 1);
689
690 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
691
692 return err;
693 }
694
695 /*
696 * All the block addresses of data and nodes should be nullified.
697 */
698 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
699 {
700 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
701 int err = 0, cont = 1;
702 int level, offset[4], noffset[4];
703 unsigned int nofs = 0;
704 struct f2fs_inode *ri;
705 struct dnode_of_data dn;
706 struct page *page;
707
708 trace_f2fs_truncate_inode_blocks_enter(inode, from);
709
710 level = get_node_path(F2FS_I(inode), from, offset, noffset);
711 restart:
712 page = get_node_page(sbi, inode->i_ino);
713 if (IS_ERR(page)) {
714 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
715 return PTR_ERR(page);
716 }
717
718 set_new_dnode(&dn, inode, page, NULL, 0);
719 unlock_page(page);
720
721 ri = F2FS_INODE(page);
722 switch (level) {
723 case 0:
724 case 1:
725 nofs = noffset[1];
726 break;
727 case 2:
728 nofs = noffset[1];
729 if (!offset[level - 1])
730 goto skip_partial;
731 err = truncate_partial_nodes(&dn, ri, offset, level);
732 if (err < 0 && err != -ENOENT)
733 goto fail;
734 nofs += 1 + NIDS_PER_BLOCK;
735 break;
736 case 3:
737 nofs = 5 + 2 * NIDS_PER_BLOCK;
738 if (!offset[level - 1])
739 goto skip_partial;
740 err = truncate_partial_nodes(&dn, ri, offset, level);
741 if (err < 0 && err != -ENOENT)
742 goto fail;
743 break;
744 default:
745 BUG();
746 }
747
748 skip_partial:
749 while (cont) {
750 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
751 switch (offset[0]) {
752 case NODE_DIR1_BLOCK:
753 case NODE_DIR2_BLOCK:
754 err = truncate_dnode(&dn);
755 break;
756
757 case NODE_IND1_BLOCK:
758 case NODE_IND2_BLOCK:
759 err = truncate_nodes(&dn, nofs, offset[1], 2);
760 break;
761
762 case NODE_DIND_BLOCK:
763 err = truncate_nodes(&dn, nofs, offset[1], 3);
764 cont = 0;
765 break;
766
767 default:
768 BUG();
769 }
770 if (err < 0 && err != -ENOENT)
771 goto fail;
772 if (offset[1] == 0 &&
773 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
774 lock_page(page);
775 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
776 f2fs_put_page(page, 1);
777 goto restart;
778 }
779 f2fs_wait_on_page_writeback(page, NODE);
780 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
781 set_page_dirty(page);
782 unlock_page(page);
783 }
784 offset[1] = 0;
785 offset[0]++;
786 nofs += err;
787 }
788 fail:
789 f2fs_put_page(page, 0);
790 trace_f2fs_truncate_inode_blocks_exit(inode, err);
791 return err > 0 ? 0 : err;
792 }
793
794 int truncate_xattr_node(struct inode *inode, struct page *page)
795 {
796 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
797 nid_t nid = F2FS_I(inode)->i_xattr_nid;
798 struct dnode_of_data dn;
799 struct page *npage;
800
801 if (!nid)
802 return 0;
803
804 npage = get_node_page(sbi, nid);
805 if (IS_ERR(npage))
806 return PTR_ERR(npage);
807
808 F2FS_I(inode)->i_xattr_nid = 0;
809
810 /* need to do checkpoint during fsync */
811 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
812
813 set_new_dnode(&dn, inode, page, npage, nid);
814
815 if (page)
816 dn.inode_page_locked = true;
817 truncate_node(&dn);
818 return 0;
819 }
820
821 /*
822 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
823 * f2fs_unlock_op().
824 */
825 void remove_inode_page(struct inode *inode)
826 {
827 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
828 struct page *page;
829 nid_t ino = inode->i_ino;
830 struct dnode_of_data dn;
831
832 page = get_node_page(sbi, ino);
833 if (IS_ERR(page))
834 return;
835
836 if (truncate_xattr_node(inode, page)) {
837 f2fs_put_page(page, 1);
838 return;
839 }
840 /* 0 is possible, after f2fs_new_inode() is failed */
841 f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
842 set_new_dnode(&dn, inode, page, page, ino);
843 truncate_node(&dn);
844 }
845
846 struct page *new_inode_page(struct inode *inode, const struct qstr *name)
847 {
848 struct dnode_of_data dn;
849
850 /* allocate inode page for new inode */
851 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
852
853 /* caller should f2fs_put_page(page, 1); */
854 return new_node_page(&dn, 0, NULL);
855 }
856
857 struct page *new_node_page(struct dnode_of_data *dn,
858 unsigned int ofs, struct page *ipage)
859 {
860 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
861 struct node_info old_ni, new_ni;
862 struct page *page;
863 int err;
864
865 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
866 return ERR_PTR(-EPERM);
867
868 page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
869 if (!page)
870 return ERR_PTR(-ENOMEM);
871
872 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
873 err = -ENOSPC;
874 goto fail;
875 }
876
877 get_node_info(sbi, dn->nid, &old_ni);
878
879 /* Reinitialize old_ni with new node page */
880 f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
881 new_ni = old_ni;
882 new_ni.ino = dn->inode->i_ino;
883 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
884
885 f2fs_wait_on_page_writeback(page, NODE);
886 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
887 set_cold_node(dn->inode, page);
888 SetPageUptodate(page);
889 set_page_dirty(page);
890
891 if (f2fs_has_xattr_block(ofs))
892 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
893
894 dn->node_page = page;
895 if (ipage)
896 update_inode(dn->inode, ipage);
897 else
898 sync_inode_page(dn);
899 if (ofs == 0)
900 inc_valid_inode_count(sbi);
901
902 return page;
903
904 fail:
905 clear_node_page_dirty(page);
906 f2fs_put_page(page, 1);
907 return ERR_PTR(err);
908 }
909
910 /*
911 * Caller should do after getting the following values.
912 * 0: f2fs_put_page(page, 0)
913 * LOCKED_PAGE: f2fs_put_page(page, 1)
914 * error: nothing
915 */
916 static int read_node_page(struct page *page, int rw)
917 {
918 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
919 struct node_info ni;
920
921 get_node_info(sbi, page->index, &ni);
922
923 if (unlikely(ni.blk_addr == NULL_ADDR)) {
924 f2fs_put_page(page, 1);
925 return -ENOENT;
926 }
927
928 if (PageUptodate(page))
929 return LOCKED_PAGE;
930
931 return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
932 }
933
934 /*
935 * Readahead a node page
936 */
937 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
938 {
939 struct page *apage;
940 int err;
941
942 apage = find_get_page(NODE_MAPPING(sbi), nid);
943 if (apage && PageUptodate(apage)) {
944 f2fs_put_page(apage, 0);
945 return;
946 }
947 f2fs_put_page(apage, 0);
948
949 apage = grab_cache_page(NODE_MAPPING(sbi), nid);
950 if (!apage)
951 return;
952
953 err = read_node_page(apage, READA);
954 if (err == 0)
955 f2fs_put_page(apage, 0);
956 else if (err == LOCKED_PAGE)
957 f2fs_put_page(apage, 1);
958 }
959
960 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
961 {
962 struct page *page;
963 int err;
964 repeat:
965 page = grab_cache_page(NODE_MAPPING(sbi), nid);
966 if (!page)
967 return ERR_PTR(-ENOMEM);
968
969 err = read_node_page(page, READ_SYNC);
970 if (err < 0)
971 return ERR_PTR(err);
972 else if (err == LOCKED_PAGE)
973 goto got_it;
974
975 lock_page(page);
976 if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
977 f2fs_put_page(page, 1);
978 return ERR_PTR(-EIO);
979 }
980 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
981 f2fs_put_page(page, 1);
982 goto repeat;
983 }
984 got_it:
985 mark_page_accessed(page);
986 return page;
987 }
988
989 /*
990 * Return a locked page for the desired node page.
991 * And, readahead MAX_RA_NODE number of node pages.
992 */
993 struct page *get_node_page_ra(struct page *parent, int start)
994 {
995 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
996 struct blk_plug plug;
997 struct page *page;
998 int err, i, end;
999 nid_t nid;
1000
1001 /* First, try getting the desired direct node. */
1002 nid = get_nid(parent, start, false);
1003 if (!nid)
1004 return ERR_PTR(-ENOENT);
1005 repeat:
1006 page = grab_cache_page(NODE_MAPPING(sbi), nid);
1007 if (!page)
1008 return ERR_PTR(-ENOMEM);
1009
1010 err = read_node_page(page, READ_SYNC);
1011 if (err < 0)
1012 return ERR_PTR(err);
1013 else if (err == LOCKED_PAGE)
1014 goto page_hit;
1015
1016 blk_start_plug(&plug);
1017
1018 /* Then, try readahead for siblings of the desired node */
1019 end = start + MAX_RA_NODE;
1020 end = min(end, NIDS_PER_BLOCK);
1021 for (i = start + 1; i < end; i++) {
1022 nid = get_nid(parent, i, false);
1023 if (!nid)
1024 continue;
1025 ra_node_page(sbi, nid);
1026 }
1027
1028 blk_finish_plug(&plug);
1029
1030 lock_page(page);
1031 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1032 f2fs_put_page(page, 1);
1033 goto repeat;
1034 }
1035 page_hit:
1036 if (unlikely(!PageUptodate(page))) {
1037 f2fs_put_page(page, 1);
1038 return ERR_PTR(-EIO);
1039 }
1040 mark_page_accessed(page);
1041 return page;
1042 }
1043
1044 void sync_inode_page(struct dnode_of_data *dn)
1045 {
1046 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1047 update_inode(dn->inode, dn->node_page);
1048 } else if (dn->inode_page) {
1049 if (!dn->inode_page_locked)
1050 lock_page(dn->inode_page);
1051 update_inode(dn->inode, dn->inode_page);
1052 if (!dn->inode_page_locked)
1053 unlock_page(dn->inode_page);
1054 } else {
1055 update_inode_page(dn->inode);
1056 }
1057 }
1058
1059 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1060 struct writeback_control *wbc)
1061 {
1062 pgoff_t index, end;
1063 struct pagevec pvec;
1064 int step = ino ? 2 : 0;
1065 int nwritten = 0, wrote = 0;
1066
1067 pagevec_init(&pvec, 0);
1068
1069 next_step:
1070 index = 0;
1071 end = LONG_MAX;
1072
1073 while (index <= end) {
1074 int i, nr_pages;
1075 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1076 PAGECACHE_TAG_DIRTY,
1077 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1078 if (nr_pages == 0)
1079 break;
1080
1081 for (i = 0; i < nr_pages; i++) {
1082 struct page *page = pvec.pages[i];
1083
1084 /*
1085 * flushing sequence with step:
1086 * 0. indirect nodes
1087 * 1. dentry dnodes
1088 * 2. file dnodes
1089 */
1090 if (step == 0 && IS_DNODE(page))
1091 continue;
1092 if (step == 1 && (!IS_DNODE(page) ||
1093 is_cold_node(page)))
1094 continue;
1095 if (step == 2 && (!IS_DNODE(page) ||
1096 !is_cold_node(page)))
1097 continue;
1098
1099 /*
1100 * If an fsync mode,
1101 * we should not skip writing node pages.
1102 */
1103 if (ino && ino_of_node(page) == ino)
1104 lock_page(page);
1105 else if (!trylock_page(page))
1106 continue;
1107
1108 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1109 continue_unlock:
1110 unlock_page(page);
1111 continue;
1112 }
1113 if (ino && ino_of_node(page) != ino)
1114 goto continue_unlock;
1115
1116 if (!PageDirty(page)) {
1117 /* someone wrote it for us */
1118 goto continue_unlock;
1119 }
1120
1121 if (!clear_page_dirty_for_io(page))
1122 goto continue_unlock;
1123
1124 /* called by fsync() */
1125 if (ino && IS_DNODE(page)) {
1126 int mark = !is_checkpointed_node(sbi, ino);
1127 set_fsync_mark(page, 1);
1128 if (IS_INODE(page))
1129 set_dentry_mark(page, mark);
1130 nwritten++;
1131 } else {
1132 set_fsync_mark(page, 0);
1133 set_dentry_mark(page, 0);
1134 }
1135 NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1136 wrote++;
1137
1138 if (--wbc->nr_to_write == 0)
1139 break;
1140 }
1141 pagevec_release(&pvec);
1142 cond_resched();
1143
1144 if (wbc->nr_to_write == 0) {
1145 step = 2;
1146 break;
1147 }
1148 }
1149
1150 if (step < 2) {
1151 step++;
1152 goto next_step;
1153 }
1154
1155 if (wrote)
1156 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1157 return nwritten;
1158 }
1159
1160 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1161 {
1162 pgoff_t index = 0, end = LONG_MAX;
1163 struct pagevec pvec;
1164 int ret2 = 0, ret = 0;
1165
1166 pagevec_init(&pvec, 0);
1167
1168 while (index <= end) {
1169 int i, nr_pages;
1170 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1171 PAGECACHE_TAG_WRITEBACK,
1172 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1173 if (nr_pages == 0)
1174 break;
1175
1176 for (i = 0; i < nr_pages; i++) {
1177 struct page *page = pvec.pages[i];
1178
1179 /* until radix tree lookup accepts end_index */
1180 if (unlikely(page->index > end))
1181 continue;
1182
1183 if (ino && ino_of_node(page) == ino) {
1184 f2fs_wait_on_page_writeback(page, NODE);
1185 if (TestClearPageError(page))
1186 ret = -EIO;
1187 }
1188 }
1189 pagevec_release(&pvec);
1190 cond_resched();
1191 }
1192
1193 if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1194 ret2 = -ENOSPC;
1195 if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1196 ret2 = -EIO;
1197 if (!ret)
1198 ret = ret2;
1199 return ret;
1200 }
1201
1202 static int f2fs_write_node_page(struct page *page,
1203 struct writeback_control *wbc)
1204 {
1205 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1206 nid_t nid;
1207 block_t new_addr;
1208 struct node_info ni;
1209 struct f2fs_io_info fio = {
1210 .type = NODE,
1211 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1212 };
1213
1214 trace_f2fs_writepage(page, NODE);
1215
1216 if (unlikely(sbi->por_doing))
1217 goto redirty_out;
1218
1219 f2fs_wait_on_page_writeback(page, NODE);
1220
1221 /* get old block addr of this node page */
1222 nid = nid_of_node(page);
1223 f2fs_bug_on(page->index != nid);
1224
1225 get_node_info(sbi, nid, &ni);
1226
1227 /* This page is already truncated */
1228 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1229 dec_page_count(sbi, F2FS_DIRTY_NODES);
1230 unlock_page(page);
1231 return 0;
1232 }
1233
1234 if (wbc->for_reclaim)
1235 goto redirty_out;
1236
1237 mutex_lock(&sbi->node_write);
1238 set_page_writeback(page);
1239 write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
1240 set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
1241 dec_page_count(sbi, F2FS_DIRTY_NODES);
1242 mutex_unlock(&sbi->node_write);
1243 unlock_page(page);
1244 return 0;
1245
1246 redirty_out:
1247 redirty_page_for_writepage(wbc, page);
1248 return AOP_WRITEPAGE_ACTIVATE;
1249 }
1250
1251 static int f2fs_write_node_pages(struct address_space *mapping,
1252 struct writeback_control *wbc)
1253 {
1254 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1255 long diff;
1256
1257 trace_f2fs_writepages(mapping->host, wbc, NODE);
1258
1259 /* balancing f2fs's metadata in background */
1260 f2fs_balance_fs_bg(sbi);
1261
1262 /* collect a number of dirty node pages and write together */
1263 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1264 goto skip_write;
1265
1266 diff = nr_pages_to_write(sbi, NODE, wbc);
1267 wbc->sync_mode = WB_SYNC_NONE;
1268 sync_node_pages(sbi, 0, wbc);
1269 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1270 return 0;
1271
1272 skip_write:
1273 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1274 return 0;
1275 }
1276
1277 static int f2fs_set_node_page_dirty(struct page *page)
1278 {
1279 struct address_space *mapping = page->mapping;
1280 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1281
1282 trace_f2fs_set_page_dirty(page, NODE);
1283
1284 SetPageUptodate(page);
1285 if (!PageDirty(page)) {
1286 __set_page_dirty_nobuffers(page);
1287 inc_page_count(sbi, F2FS_DIRTY_NODES);
1288 SetPagePrivate(page);
1289 return 1;
1290 }
1291 return 0;
1292 }
1293
1294 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1295 unsigned int length)
1296 {
1297 struct inode *inode = page->mapping->host;
1298 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1299 if (PageDirty(page))
1300 dec_page_count(sbi, F2FS_DIRTY_NODES);
1301 ClearPagePrivate(page);
1302 }
1303
1304 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1305 {
1306 ClearPagePrivate(page);
1307 return 1;
1308 }
1309
1310 /*
1311 * Structure of the f2fs node operations
1312 */
1313 const struct address_space_operations f2fs_node_aops = {
1314 .writepage = f2fs_write_node_page,
1315 .writepages = f2fs_write_node_pages,
1316 .set_page_dirty = f2fs_set_node_page_dirty,
1317 .invalidatepage = f2fs_invalidate_node_page,
1318 .releasepage = f2fs_release_node_page,
1319 };
1320
1321 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1322 nid_t n)
1323 {
1324 return radix_tree_lookup(&nm_i->free_nid_root, n);
1325 }
1326
1327 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1328 struct free_nid *i)
1329 {
1330 list_del(&i->list);
1331 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1332 }
1333
1334 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1335 {
1336 struct f2fs_nm_info *nm_i = NM_I(sbi);
1337 struct free_nid *i;
1338 struct nat_entry *ne;
1339 bool allocated = false;
1340
1341 if (!available_free_memory(sbi, FREE_NIDS))
1342 return -1;
1343
1344 /* 0 nid should not be used */
1345 if (unlikely(nid == 0))
1346 return 0;
1347
1348 if (build) {
1349 /* do not add allocated nids */
1350 read_lock(&nm_i->nat_tree_lock);
1351 ne = __lookup_nat_cache(nm_i, nid);
1352 if (ne &&
1353 (!ne->checkpointed || nat_get_blkaddr(ne) != NULL_ADDR))
1354 allocated = true;
1355 read_unlock(&nm_i->nat_tree_lock);
1356 if (allocated)
1357 return 0;
1358 }
1359
1360 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1361 i->nid = nid;
1362 i->state = NID_NEW;
1363
1364 spin_lock(&nm_i->free_nid_list_lock);
1365 if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1366 spin_unlock(&nm_i->free_nid_list_lock);
1367 kmem_cache_free(free_nid_slab, i);
1368 return 0;
1369 }
1370 list_add_tail(&i->list, &nm_i->free_nid_list);
1371 nm_i->fcnt++;
1372 spin_unlock(&nm_i->free_nid_list_lock);
1373 return 1;
1374 }
1375
1376 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1377 {
1378 struct free_nid *i;
1379 bool need_free = false;
1380
1381 spin_lock(&nm_i->free_nid_list_lock);
1382 i = __lookup_free_nid_list(nm_i, nid);
1383 if (i && i->state == NID_NEW) {
1384 __del_from_free_nid_list(nm_i, i);
1385 nm_i->fcnt--;
1386 need_free = true;
1387 }
1388 spin_unlock(&nm_i->free_nid_list_lock);
1389
1390 if (need_free)
1391 kmem_cache_free(free_nid_slab, i);
1392 }
1393
1394 static void scan_nat_page(struct f2fs_sb_info *sbi,
1395 struct page *nat_page, nid_t start_nid)
1396 {
1397 struct f2fs_nm_info *nm_i = NM_I(sbi);
1398 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1399 block_t blk_addr;
1400 int i;
1401
1402 i = start_nid % NAT_ENTRY_PER_BLOCK;
1403
1404 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1405
1406 if (unlikely(start_nid >= nm_i->max_nid))
1407 break;
1408
1409 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1410 f2fs_bug_on(blk_addr == NEW_ADDR);
1411 if (blk_addr == NULL_ADDR) {
1412 if (add_free_nid(sbi, start_nid, true) < 0)
1413 break;
1414 }
1415 }
1416 }
1417
1418 static void build_free_nids(struct f2fs_sb_info *sbi)
1419 {
1420 struct f2fs_nm_info *nm_i = NM_I(sbi);
1421 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1422 struct f2fs_summary_block *sum = curseg->sum_blk;
1423 int i = 0;
1424 nid_t nid = nm_i->next_scan_nid;
1425
1426 /* Enough entries */
1427 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1428 return;
1429
1430 /* readahead nat pages to be scanned */
1431 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1432
1433 while (1) {
1434 struct page *page = get_current_nat_page(sbi, nid);
1435
1436 scan_nat_page(sbi, page, nid);
1437 f2fs_put_page(page, 1);
1438
1439 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1440 if (unlikely(nid >= nm_i->max_nid))
1441 nid = 0;
1442
1443 if (i++ == FREE_NID_PAGES)
1444 break;
1445 }
1446
1447 /* go to the next free nat pages to find free nids abundantly */
1448 nm_i->next_scan_nid = nid;
1449
1450 /* find free nids from current sum_pages */
1451 mutex_lock(&curseg->curseg_mutex);
1452 for (i = 0; i < nats_in_cursum(sum); i++) {
1453 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1454 nid = le32_to_cpu(nid_in_journal(sum, i));
1455 if (addr == NULL_ADDR)
1456 add_free_nid(sbi, nid, true);
1457 else
1458 remove_free_nid(nm_i, nid);
1459 }
1460 mutex_unlock(&curseg->curseg_mutex);
1461 }
1462
1463 /*
1464 * If this function returns success, caller can obtain a new nid
1465 * from second parameter of this function.
1466 * The returned nid could be used ino as well as nid when inode is created.
1467 */
1468 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1469 {
1470 struct f2fs_nm_info *nm_i = NM_I(sbi);
1471 struct free_nid *i = NULL;
1472 retry:
1473 if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1474 return false;
1475
1476 spin_lock(&nm_i->free_nid_list_lock);
1477
1478 /* We should not use stale free nids created by build_free_nids */
1479 if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1480 f2fs_bug_on(list_empty(&nm_i->free_nid_list));
1481 list_for_each_entry(i, &nm_i->free_nid_list, list)
1482 if (i->state == NID_NEW)
1483 break;
1484
1485 f2fs_bug_on(i->state != NID_NEW);
1486 *nid = i->nid;
1487 i->state = NID_ALLOC;
1488 nm_i->fcnt--;
1489 spin_unlock(&nm_i->free_nid_list_lock);
1490 return true;
1491 }
1492 spin_unlock(&nm_i->free_nid_list_lock);
1493
1494 /* Let's scan nat pages and its caches to get free nids */
1495 mutex_lock(&nm_i->build_lock);
1496 build_free_nids(sbi);
1497 mutex_unlock(&nm_i->build_lock);
1498 goto retry;
1499 }
1500
1501 /*
1502 * alloc_nid() should be called prior to this function.
1503 */
1504 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1505 {
1506 struct f2fs_nm_info *nm_i = NM_I(sbi);
1507 struct free_nid *i;
1508
1509 spin_lock(&nm_i->free_nid_list_lock);
1510 i = __lookup_free_nid_list(nm_i, nid);
1511 f2fs_bug_on(!i || i->state != NID_ALLOC);
1512 __del_from_free_nid_list(nm_i, i);
1513 spin_unlock(&nm_i->free_nid_list_lock);
1514
1515 kmem_cache_free(free_nid_slab, i);
1516 }
1517
1518 /*
1519 * alloc_nid() should be called prior to this function.
1520 */
1521 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1522 {
1523 struct f2fs_nm_info *nm_i = NM_I(sbi);
1524 struct free_nid *i;
1525 bool need_free = false;
1526
1527 if (!nid)
1528 return;
1529
1530 spin_lock(&nm_i->free_nid_list_lock);
1531 i = __lookup_free_nid_list(nm_i, nid);
1532 f2fs_bug_on(!i || i->state != NID_ALLOC);
1533 if (!available_free_memory(sbi, FREE_NIDS)) {
1534 __del_from_free_nid_list(nm_i, i);
1535 need_free = true;
1536 } else {
1537 i->state = NID_NEW;
1538 nm_i->fcnt++;
1539 }
1540 spin_unlock(&nm_i->free_nid_list_lock);
1541
1542 if (need_free)
1543 kmem_cache_free(free_nid_slab, i);
1544 }
1545
1546 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1547 struct f2fs_summary *sum, struct node_info *ni,
1548 block_t new_blkaddr)
1549 {
1550 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1551 set_node_addr(sbi, ni, new_blkaddr, false);
1552 clear_node_page_dirty(page);
1553 }
1554
1555 static void recover_inline_xattr(struct inode *inode, struct page *page)
1556 {
1557 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1558 void *src_addr, *dst_addr;
1559 size_t inline_size;
1560 struct page *ipage;
1561 struct f2fs_inode *ri;
1562
1563 if (!f2fs_has_inline_xattr(inode))
1564 return;
1565
1566 if (!IS_INODE(page))
1567 return;
1568
1569 ri = F2FS_INODE(page);
1570 if (!(ri->i_inline & F2FS_INLINE_XATTR))
1571 return;
1572
1573 ipage = get_node_page(sbi, inode->i_ino);
1574 f2fs_bug_on(IS_ERR(ipage));
1575
1576 dst_addr = inline_xattr_addr(ipage);
1577 src_addr = inline_xattr_addr(page);
1578 inline_size = inline_xattr_size(inode);
1579
1580 f2fs_wait_on_page_writeback(ipage, NODE);
1581 memcpy(dst_addr, src_addr, inline_size);
1582
1583 update_inode(inode, ipage);
1584 f2fs_put_page(ipage, 1);
1585 }
1586
1587 bool recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1588 {
1589 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1590 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1591 nid_t new_xnid = nid_of_node(page);
1592 struct node_info ni;
1593
1594 recover_inline_xattr(inode, page);
1595
1596 if (!f2fs_has_xattr_block(ofs_of_node(page)))
1597 return false;
1598
1599 /* 1: invalidate the previous xattr nid */
1600 if (!prev_xnid)
1601 goto recover_xnid;
1602
1603 /* Deallocate node address */
1604 get_node_info(sbi, prev_xnid, &ni);
1605 f2fs_bug_on(ni.blk_addr == NULL_ADDR);
1606 invalidate_blocks(sbi, ni.blk_addr);
1607 dec_valid_node_count(sbi, inode);
1608 set_node_addr(sbi, &ni, NULL_ADDR, false);
1609
1610 recover_xnid:
1611 /* 2: allocate new xattr nid */
1612 if (unlikely(!inc_valid_node_count(sbi, inode)))
1613 f2fs_bug_on(1);
1614
1615 remove_free_nid(NM_I(sbi), new_xnid);
1616 get_node_info(sbi, new_xnid, &ni);
1617 ni.ino = inode->i_ino;
1618 set_node_addr(sbi, &ni, NEW_ADDR, false);
1619 F2FS_I(inode)->i_xattr_nid = new_xnid;
1620
1621 /* 3: update xattr blkaddr */
1622 refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1623 set_node_addr(sbi, &ni, blkaddr, false);
1624
1625 update_inode_page(inode);
1626 return true;
1627 }
1628
1629 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1630 {
1631 struct f2fs_inode *src, *dst;
1632 nid_t ino = ino_of_node(page);
1633 struct node_info old_ni, new_ni;
1634 struct page *ipage;
1635
1636 get_node_info(sbi, ino, &old_ni);
1637
1638 if (unlikely(old_ni.blk_addr != NULL_ADDR))
1639 return -EINVAL;
1640
1641 ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1642 if (!ipage)
1643 return -ENOMEM;
1644
1645 /* Should not use this inode from free nid list */
1646 remove_free_nid(NM_I(sbi), ino);
1647
1648 SetPageUptodate(ipage);
1649 fill_node_footer(ipage, ino, ino, 0, true);
1650
1651 src = F2FS_INODE(page);
1652 dst = F2FS_INODE(ipage);
1653
1654 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1655 dst->i_size = 0;
1656 dst->i_blocks = cpu_to_le64(1);
1657 dst->i_links = cpu_to_le32(1);
1658 dst->i_xattr_nid = 0;
1659
1660 new_ni = old_ni;
1661 new_ni.ino = ino;
1662
1663 if (unlikely(!inc_valid_node_count(sbi, NULL)))
1664 WARN_ON(1);
1665 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1666 inc_valid_inode_count(sbi);
1667 f2fs_put_page(ipage, 1);
1668 return 0;
1669 }
1670
1671 /*
1672 * ra_sum_pages() merge contiguous pages into one bio and submit.
1673 * these pre-readed pages are alloced in bd_inode's mapping tree.
1674 */
1675 static int ra_sum_pages(struct f2fs_sb_info *sbi, struct page **pages,
1676 int start, int nrpages)
1677 {
1678 struct inode *inode = sbi->sb->s_bdev->bd_inode;
1679 struct address_space *mapping = inode->i_mapping;
1680 int i, page_idx = start;
1681 struct f2fs_io_info fio = {
1682 .type = META,
1683 .rw = READ_SYNC | REQ_META | REQ_PRIO
1684 };
1685
1686 for (i = 0; page_idx < start + nrpages; page_idx++, i++) {
1687 /* alloc page in bd_inode for reading node summary info */
1688 pages[i] = grab_cache_page(mapping, page_idx);
1689 if (!pages[i])
1690 break;
1691 f2fs_submit_page_mbio(sbi, pages[i], page_idx, &fio);
1692 }
1693
1694 f2fs_submit_merged_bio(sbi, META, READ);
1695 return i;
1696 }
1697
1698 int restore_node_summary(struct f2fs_sb_info *sbi,
1699 unsigned int segno, struct f2fs_summary_block *sum)
1700 {
1701 struct f2fs_node *rn;
1702 struct f2fs_summary *sum_entry;
1703 struct inode *inode = sbi->sb->s_bdev->bd_inode;
1704 block_t addr;
1705 int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1706 struct page *pages[bio_blocks];
1707 int i, idx, last_offset, nrpages, err = 0;
1708
1709 /* scan the node segment */
1710 last_offset = sbi->blocks_per_seg;
1711 addr = START_BLOCK(sbi, segno);
1712 sum_entry = &sum->entries[0];
1713
1714 for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
1715 nrpages = min(last_offset - i, bio_blocks);
1716
1717 /* read ahead node pages */
1718 nrpages = ra_sum_pages(sbi, pages, addr, nrpages);
1719 if (!nrpages)
1720 return -ENOMEM;
1721
1722 for (idx = 0; idx < nrpages; idx++) {
1723 if (err)
1724 goto skip;
1725
1726 lock_page(pages[idx]);
1727 if (unlikely(!PageUptodate(pages[idx]))) {
1728 err = -EIO;
1729 } else {
1730 rn = F2FS_NODE(pages[idx]);
1731 sum_entry->nid = rn->footer.nid;
1732 sum_entry->version = 0;
1733 sum_entry->ofs_in_node = 0;
1734 sum_entry++;
1735 }
1736 unlock_page(pages[idx]);
1737 skip:
1738 page_cache_release(pages[idx]);
1739 }
1740
1741 invalidate_mapping_pages(inode->i_mapping, addr,
1742 addr + nrpages);
1743 }
1744 return err;
1745 }
1746
1747 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1748 {
1749 struct f2fs_nm_info *nm_i = NM_I(sbi);
1750 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1751 struct f2fs_summary_block *sum = curseg->sum_blk;
1752 int i;
1753
1754 mutex_lock(&curseg->curseg_mutex);
1755
1756 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1757 mutex_unlock(&curseg->curseg_mutex);
1758 return false;
1759 }
1760
1761 for (i = 0; i < nats_in_cursum(sum); i++) {
1762 struct nat_entry *ne;
1763 struct f2fs_nat_entry raw_ne;
1764 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1765
1766 raw_ne = nat_in_journal(sum, i);
1767 retry:
1768 write_lock(&nm_i->nat_tree_lock);
1769 ne = __lookup_nat_cache(nm_i, nid);
1770 if (ne) {
1771 __set_nat_cache_dirty(nm_i, ne);
1772 write_unlock(&nm_i->nat_tree_lock);
1773 continue;
1774 }
1775 ne = grab_nat_entry(nm_i, nid);
1776 if (!ne) {
1777 write_unlock(&nm_i->nat_tree_lock);
1778 goto retry;
1779 }
1780 node_info_from_raw_nat(&ne->ni, &raw_ne);
1781 __set_nat_cache_dirty(nm_i, ne);
1782 write_unlock(&nm_i->nat_tree_lock);
1783 }
1784 update_nats_in_cursum(sum, -i);
1785 mutex_unlock(&curseg->curseg_mutex);
1786 return true;
1787 }
1788
1789 /*
1790 * This function is called during the checkpointing process.
1791 */
1792 void flush_nat_entries(struct f2fs_sb_info *sbi)
1793 {
1794 struct f2fs_nm_info *nm_i = NM_I(sbi);
1795 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1796 struct f2fs_summary_block *sum = curseg->sum_blk;
1797 struct nat_entry *ne, *cur;
1798 struct page *page = NULL;
1799 struct f2fs_nat_block *nat_blk = NULL;
1800 nid_t start_nid = 0, end_nid = 0;
1801 bool flushed;
1802
1803 flushed = flush_nats_in_journal(sbi);
1804
1805 if (!flushed)
1806 mutex_lock(&curseg->curseg_mutex);
1807
1808 /* 1) flush dirty nat caches */
1809 list_for_each_entry_safe(ne, cur, &nm_i->dirty_nat_entries, list) {
1810 nid_t nid;
1811 struct f2fs_nat_entry raw_ne;
1812 int offset = -1;
1813
1814 if (nat_get_blkaddr(ne) == NEW_ADDR)
1815 continue;
1816
1817 nid = nat_get_nid(ne);
1818
1819 if (flushed)
1820 goto to_nat_page;
1821
1822 /* if there is room for nat enries in curseg->sumpage */
1823 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1824 if (offset >= 0) {
1825 raw_ne = nat_in_journal(sum, offset);
1826 goto flush_now;
1827 }
1828 to_nat_page:
1829 if (!page || (start_nid > nid || nid > end_nid)) {
1830 if (page) {
1831 f2fs_put_page(page, 1);
1832 page = NULL;
1833 }
1834 start_nid = START_NID(nid);
1835 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1836
1837 /*
1838 * get nat block with dirty flag, increased reference
1839 * count, mapped and lock
1840 */
1841 page = get_next_nat_page(sbi, start_nid);
1842 nat_blk = page_address(page);
1843 }
1844
1845 f2fs_bug_on(!nat_blk);
1846 raw_ne = nat_blk->entries[nid - start_nid];
1847 flush_now:
1848 raw_nat_from_node_info(&raw_ne, &ne->ni);
1849
1850 if (offset < 0) {
1851 nat_blk->entries[nid - start_nid] = raw_ne;
1852 } else {
1853 nat_in_journal(sum, offset) = raw_ne;
1854 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1855 }
1856
1857 if (nat_get_blkaddr(ne) == NULL_ADDR &&
1858 add_free_nid(sbi, nid, false) <= 0) {
1859 write_lock(&nm_i->nat_tree_lock);
1860 __del_from_nat_cache(nm_i, ne);
1861 write_unlock(&nm_i->nat_tree_lock);
1862 } else {
1863 write_lock(&nm_i->nat_tree_lock);
1864 __clear_nat_cache_dirty(nm_i, ne);
1865 write_unlock(&nm_i->nat_tree_lock);
1866 }
1867 }
1868 if (!flushed)
1869 mutex_unlock(&curseg->curseg_mutex);
1870 f2fs_put_page(page, 1);
1871 }
1872
1873 static int init_node_manager(struct f2fs_sb_info *sbi)
1874 {
1875 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1876 struct f2fs_nm_info *nm_i = NM_I(sbi);
1877 unsigned char *version_bitmap;
1878 unsigned int nat_segs, nat_blocks;
1879
1880 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1881
1882 /* segment_count_nat includes pair segment so divide to 2. */
1883 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1884 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1885
1886 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1887
1888 /* not used nids: 0, node, meta, (and root counted as valid node) */
1889 nm_i->available_nids = nm_i->max_nid - 3;
1890 nm_i->fcnt = 0;
1891 nm_i->nat_cnt = 0;
1892 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
1893
1894 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1895 INIT_LIST_HEAD(&nm_i->free_nid_list);
1896 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1897 INIT_LIST_HEAD(&nm_i->nat_entries);
1898 INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1899
1900 mutex_init(&nm_i->build_lock);
1901 spin_lock_init(&nm_i->free_nid_list_lock);
1902 rwlock_init(&nm_i->nat_tree_lock);
1903
1904 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1905 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1906 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1907 if (!version_bitmap)
1908 return -EFAULT;
1909
1910 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1911 GFP_KERNEL);
1912 if (!nm_i->nat_bitmap)
1913 return -ENOMEM;
1914 return 0;
1915 }
1916
1917 int build_node_manager(struct f2fs_sb_info *sbi)
1918 {
1919 int err;
1920
1921 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1922 if (!sbi->nm_info)
1923 return -ENOMEM;
1924
1925 err = init_node_manager(sbi);
1926 if (err)
1927 return err;
1928
1929 build_free_nids(sbi);
1930 return 0;
1931 }
1932
1933 void destroy_node_manager(struct f2fs_sb_info *sbi)
1934 {
1935 struct f2fs_nm_info *nm_i = NM_I(sbi);
1936 struct free_nid *i, *next_i;
1937 struct nat_entry *natvec[NATVEC_SIZE];
1938 nid_t nid = 0;
1939 unsigned int found;
1940
1941 if (!nm_i)
1942 return;
1943
1944 /* destroy free nid list */
1945 spin_lock(&nm_i->free_nid_list_lock);
1946 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1947 f2fs_bug_on(i->state == NID_ALLOC);
1948 __del_from_free_nid_list(nm_i, i);
1949 nm_i->fcnt--;
1950 spin_unlock(&nm_i->free_nid_list_lock);
1951 kmem_cache_free(free_nid_slab, i);
1952 spin_lock(&nm_i->free_nid_list_lock);
1953 }
1954 f2fs_bug_on(nm_i->fcnt);
1955 spin_unlock(&nm_i->free_nid_list_lock);
1956
1957 /* destroy nat cache */
1958 write_lock(&nm_i->nat_tree_lock);
1959 while ((found = __gang_lookup_nat_cache(nm_i,
1960 nid, NATVEC_SIZE, natvec))) {
1961 unsigned idx;
1962 nid = nat_get_nid(natvec[found - 1]) + 1;
1963 for (idx = 0; idx < found; idx++)
1964 __del_from_nat_cache(nm_i, natvec[idx]);
1965 }
1966 f2fs_bug_on(nm_i->nat_cnt);
1967 write_unlock(&nm_i->nat_tree_lock);
1968
1969 kfree(nm_i->nat_bitmap);
1970 sbi->nm_info = NULL;
1971 kfree(nm_i);
1972 }
1973
1974 int __init create_node_manager_caches(void)
1975 {
1976 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1977 sizeof(struct nat_entry));
1978 if (!nat_entry_slab)
1979 return -ENOMEM;
1980
1981 free_nid_slab = f2fs_kmem_cache_create("free_nid",
1982 sizeof(struct free_nid));
1983 if (!free_nid_slab) {
1984 kmem_cache_destroy(nat_entry_slab);
1985 return -ENOMEM;
1986 }
1987 return 0;
1988 }
1989
1990 void destroy_node_manager_caches(void)
1991 {
1992 kmem_cache_destroy(free_nid_slab);
1993 kmem_cache_destroy(nat_entry_slab);
1994 }
This page took 0.07599 seconds and 5 git commands to generate.