f2fs: fix to avoid deadlock when merging inline data
[deliverable/linux.git] / fs / f2fs / node.c
1 /*
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
24
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
26
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
30
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32 {
33 struct f2fs_nm_info *nm_i = NM_I(sbi);
34 struct sysinfo val;
35 unsigned long avail_ram;
36 unsigned long mem_size = 0;
37 bool res = false;
38
39 si_meminfo(&val);
40
41 /* only uses low memory */
42 avail_ram = val.totalram - val.totalhigh;
43
44 /*
45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
46 */
47 if (type == FREE_NIDS) {
48 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
49 PAGE_CACHE_SHIFT;
50 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51 } else if (type == NAT_ENTRIES) {
52 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53 PAGE_CACHE_SHIFT;
54 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55 } else if (type == DIRTY_DENTS) {
56 if (sbi->sb->s_bdi->wb.dirty_exceeded)
57 return false;
58 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
59 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
60 } else if (type == INO_ENTRIES) {
61 int i;
62
63 for (i = 0; i <= UPDATE_INO; i++)
64 mem_size += (sbi->im[i].ino_num *
65 sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
66 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
67 } else if (type == EXTENT_CACHE) {
68 mem_size = (atomic_read(&sbi->total_ext_tree) *
69 sizeof(struct extent_tree) +
70 atomic_read(&sbi->total_ext_node) *
71 sizeof(struct extent_node)) >> PAGE_CACHE_SHIFT;
72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
73 } else {
74 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
75 return true;
76 }
77 return res;
78 }
79
80 static void clear_node_page_dirty(struct page *page)
81 {
82 struct address_space *mapping = page->mapping;
83 unsigned int long flags;
84
85 if (PageDirty(page)) {
86 spin_lock_irqsave(&mapping->tree_lock, flags);
87 radix_tree_tag_clear(&mapping->page_tree,
88 page_index(page),
89 PAGECACHE_TAG_DIRTY);
90 spin_unlock_irqrestore(&mapping->tree_lock, flags);
91
92 clear_page_dirty_for_io(page);
93 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
94 }
95 ClearPageUptodate(page);
96 }
97
98 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
99 {
100 pgoff_t index = current_nat_addr(sbi, nid);
101 return get_meta_page(sbi, index);
102 }
103
104 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
105 {
106 struct page *src_page;
107 struct page *dst_page;
108 pgoff_t src_off;
109 pgoff_t dst_off;
110 void *src_addr;
111 void *dst_addr;
112 struct f2fs_nm_info *nm_i = NM_I(sbi);
113
114 src_off = current_nat_addr(sbi, nid);
115 dst_off = next_nat_addr(sbi, src_off);
116
117 /* get current nat block page with lock */
118 src_page = get_meta_page(sbi, src_off);
119 dst_page = grab_meta_page(sbi, dst_off);
120 f2fs_bug_on(sbi, PageDirty(src_page));
121
122 src_addr = page_address(src_page);
123 dst_addr = page_address(dst_page);
124 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
125 set_page_dirty(dst_page);
126 f2fs_put_page(src_page, 1);
127
128 set_to_next_nat(nm_i, nid);
129
130 return dst_page;
131 }
132
133 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
134 {
135 return radix_tree_lookup(&nm_i->nat_root, n);
136 }
137
138 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
139 nid_t start, unsigned int nr, struct nat_entry **ep)
140 {
141 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
142 }
143
144 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
145 {
146 list_del(&e->list);
147 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
148 nm_i->nat_cnt--;
149 kmem_cache_free(nat_entry_slab, e);
150 }
151
152 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
153 struct nat_entry *ne)
154 {
155 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
156 struct nat_entry_set *head;
157
158 if (get_nat_flag(ne, IS_DIRTY))
159 return;
160
161 head = radix_tree_lookup(&nm_i->nat_set_root, set);
162 if (!head) {
163 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
164
165 INIT_LIST_HEAD(&head->entry_list);
166 INIT_LIST_HEAD(&head->set_list);
167 head->set = set;
168 head->entry_cnt = 0;
169 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
170 }
171 list_move_tail(&ne->list, &head->entry_list);
172 nm_i->dirty_nat_cnt++;
173 head->entry_cnt++;
174 set_nat_flag(ne, IS_DIRTY, true);
175 }
176
177 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
178 struct nat_entry *ne)
179 {
180 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
181 struct nat_entry_set *head;
182
183 head = radix_tree_lookup(&nm_i->nat_set_root, set);
184 if (head) {
185 list_move_tail(&ne->list, &nm_i->nat_entries);
186 set_nat_flag(ne, IS_DIRTY, false);
187 head->entry_cnt--;
188 nm_i->dirty_nat_cnt--;
189 }
190 }
191
192 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
193 nid_t start, unsigned int nr, struct nat_entry_set **ep)
194 {
195 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
196 start, nr);
197 }
198
199 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
200 {
201 struct f2fs_nm_info *nm_i = NM_I(sbi);
202 struct nat_entry *e;
203 bool need = false;
204
205 down_read(&nm_i->nat_tree_lock);
206 e = __lookup_nat_cache(nm_i, nid);
207 if (e) {
208 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
209 !get_nat_flag(e, HAS_FSYNCED_INODE))
210 need = true;
211 }
212 up_read(&nm_i->nat_tree_lock);
213 return need;
214 }
215
216 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
217 {
218 struct f2fs_nm_info *nm_i = NM_I(sbi);
219 struct nat_entry *e;
220 bool is_cp = true;
221
222 down_read(&nm_i->nat_tree_lock);
223 e = __lookup_nat_cache(nm_i, nid);
224 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
225 is_cp = false;
226 up_read(&nm_i->nat_tree_lock);
227 return is_cp;
228 }
229
230 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
231 {
232 struct f2fs_nm_info *nm_i = NM_I(sbi);
233 struct nat_entry *e;
234 bool need_update = true;
235
236 down_read(&nm_i->nat_tree_lock);
237 e = __lookup_nat_cache(nm_i, ino);
238 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
239 (get_nat_flag(e, IS_CHECKPOINTED) ||
240 get_nat_flag(e, HAS_FSYNCED_INODE)))
241 need_update = false;
242 up_read(&nm_i->nat_tree_lock);
243 return need_update;
244 }
245
246 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
247 {
248 struct nat_entry *new;
249
250 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
251 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
252 memset(new, 0, sizeof(struct nat_entry));
253 nat_set_nid(new, nid);
254 nat_reset_flag(new);
255 list_add_tail(&new->list, &nm_i->nat_entries);
256 nm_i->nat_cnt++;
257 return new;
258 }
259
260 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
261 struct f2fs_nat_entry *ne)
262 {
263 struct f2fs_nm_info *nm_i = NM_I(sbi);
264 struct nat_entry *e;
265
266 e = __lookup_nat_cache(nm_i, nid);
267 if (!e) {
268 e = grab_nat_entry(nm_i, nid);
269 node_info_from_raw_nat(&e->ni, ne);
270 } else {
271 f2fs_bug_on(sbi, nat_get_ino(e) != ne->ino ||
272 nat_get_blkaddr(e) != ne->block_addr ||
273 nat_get_version(e) != ne->version);
274 }
275 }
276
277 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
278 block_t new_blkaddr, bool fsync_done)
279 {
280 struct f2fs_nm_info *nm_i = NM_I(sbi);
281 struct nat_entry *e;
282
283 down_write(&nm_i->nat_tree_lock);
284 e = __lookup_nat_cache(nm_i, ni->nid);
285 if (!e) {
286 e = grab_nat_entry(nm_i, ni->nid);
287 copy_node_info(&e->ni, ni);
288 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
289 } else if (new_blkaddr == NEW_ADDR) {
290 /*
291 * when nid is reallocated,
292 * previous nat entry can be remained in nat cache.
293 * So, reinitialize it with new information.
294 */
295 copy_node_info(&e->ni, ni);
296 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
297 }
298
299 /* sanity check */
300 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
301 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
302 new_blkaddr == NULL_ADDR);
303 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
304 new_blkaddr == NEW_ADDR);
305 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
306 nat_get_blkaddr(e) != NULL_ADDR &&
307 new_blkaddr == NEW_ADDR);
308
309 /* increment version no as node is removed */
310 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
311 unsigned char version = nat_get_version(e);
312 nat_set_version(e, inc_node_version(version));
313
314 /* in order to reuse the nid */
315 if (nm_i->next_scan_nid > ni->nid)
316 nm_i->next_scan_nid = ni->nid;
317 }
318
319 /* change address */
320 nat_set_blkaddr(e, new_blkaddr);
321 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
322 set_nat_flag(e, IS_CHECKPOINTED, false);
323 __set_nat_cache_dirty(nm_i, e);
324
325 /* update fsync_mark if its inode nat entry is still alive */
326 if (ni->nid != ni->ino)
327 e = __lookup_nat_cache(nm_i, ni->ino);
328 if (e) {
329 if (fsync_done && ni->nid == ni->ino)
330 set_nat_flag(e, HAS_FSYNCED_INODE, true);
331 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
332 }
333 up_write(&nm_i->nat_tree_lock);
334 }
335
336 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
337 {
338 struct f2fs_nm_info *nm_i = NM_I(sbi);
339 int nr = nr_shrink;
340
341 if (!down_write_trylock(&nm_i->nat_tree_lock))
342 return 0;
343
344 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
345 struct nat_entry *ne;
346 ne = list_first_entry(&nm_i->nat_entries,
347 struct nat_entry, list);
348 __del_from_nat_cache(nm_i, ne);
349 nr_shrink--;
350 }
351 up_write(&nm_i->nat_tree_lock);
352 return nr - nr_shrink;
353 }
354
355 /*
356 * This function always returns success
357 */
358 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
359 {
360 struct f2fs_nm_info *nm_i = NM_I(sbi);
361 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
362 struct f2fs_journal *journal = curseg->journal;
363 nid_t start_nid = START_NID(nid);
364 struct f2fs_nat_block *nat_blk;
365 struct page *page = NULL;
366 struct f2fs_nat_entry ne;
367 struct nat_entry *e;
368 int i;
369
370 ni->nid = nid;
371
372 /* Check nat cache */
373 down_read(&nm_i->nat_tree_lock);
374 e = __lookup_nat_cache(nm_i, nid);
375 if (e) {
376 ni->ino = nat_get_ino(e);
377 ni->blk_addr = nat_get_blkaddr(e);
378 ni->version = nat_get_version(e);
379 up_read(&nm_i->nat_tree_lock);
380 return;
381 }
382
383 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
384
385 /* Check current segment summary */
386 down_read(&curseg->journal_rwsem);
387 i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
388 if (i >= 0) {
389 ne = nat_in_journal(journal, i);
390 node_info_from_raw_nat(ni, &ne);
391 }
392 up_read(&curseg->journal_rwsem);
393 if (i >= 0)
394 goto cache;
395
396 /* Fill node_info from nat page */
397 page = get_current_nat_page(sbi, start_nid);
398 nat_blk = (struct f2fs_nat_block *)page_address(page);
399 ne = nat_blk->entries[nid - start_nid];
400 node_info_from_raw_nat(ni, &ne);
401 f2fs_put_page(page, 1);
402 cache:
403 up_read(&nm_i->nat_tree_lock);
404 /* cache nat entry */
405 down_write(&nm_i->nat_tree_lock);
406 cache_nat_entry(sbi, nid, &ne);
407 up_write(&nm_i->nat_tree_lock);
408 }
409
410 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
411 {
412 const long direct_index = ADDRS_PER_INODE(dn->inode);
413 const long direct_blks = ADDRS_PER_BLOCK;
414 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
415 unsigned int skipped_unit = ADDRS_PER_BLOCK;
416 int cur_level = dn->cur_level;
417 int max_level = dn->max_level;
418 pgoff_t base = 0;
419
420 if (!dn->max_level)
421 return pgofs + 1;
422
423 while (max_level-- > cur_level)
424 skipped_unit *= NIDS_PER_BLOCK;
425
426 switch (dn->max_level) {
427 case 3:
428 base += 2 * indirect_blks;
429 case 2:
430 base += 2 * direct_blks;
431 case 1:
432 base += direct_index;
433 break;
434 default:
435 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
436 }
437
438 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
439 }
440
441 /*
442 * The maximum depth is four.
443 * Offset[0] will have raw inode offset.
444 */
445 static int get_node_path(struct inode *inode, long block,
446 int offset[4], unsigned int noffset[4])
447 {
448 const long direct_index = ADDRS_PER_INODE(inode);
449 const long direct_blks = ADDRS_PER_BLOCK;
450 const long dptrs_per_blk = NIDS_PER_BLOCK;
451 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
452 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
453 int n = 0;
454 int level = 0;
455
456 noffset[0] = 0;
457
458 if (block < direct_index) {
459 offset[n] = block;
460 goto got;
461 }
462 block -= direct_index;
463 if (block < direct_blks) {
464 offset[n++] = NODE_DIR1_BLOCK;
465 noffset[n] = 1;
466 offset[n] = block;
467 level = 1;
468 goto got;
469 }
470 block -= direct_blks;
471 if (block < direct_blks) {
472 offset[n++] = NODE_DIR2_BLOCK;
473 noffset[n] = 2;
474 offset[n] = block;
475 level = 1;
476 goto got;
477 }
478 block -= direct_blks;
479 if (block < indirect_blks) {
480 offset[n++] = NODE_IND1_BLOCK;
481 noffset[n] = 3;
482 offset[n++] = block / direct_blks;
483 noffset[n] = 4 + offset[n - 1];
484 offset[n] = block % direct_blks;
485 level = 2;
486 goto got;
487 }
488 block -= indirect_blks;
489 if (block < indirect_blks) {
490 offset[n++] = NODE_IND2_BLOCK;
491 noffset[n] = 4 + dptrs_per_blk;
492 offset[n++] = block / direct_blks;
493 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
494 offset[n] = block % direct_blks;
495 level = 2;
496 goto got;
497 }
498 block -= indirect_blks;
499 if (block < dindirect_blks) {
500 offset[n++] = NODE_DIND_BLOCK;
501 noffset[n] = 5 + (dptrs_per_blk * 2);
502 offset[n++] = block / indirect_blks;
503 noffset[n] = 6 + (dptrs_per_blk * 2) +
504 offset[n - 1] * (dptrs_per_blk + 1);
505 offset[n++] = (block / direct_blks) % dptrs_per_blk;
506 noffset[n] = 7 + (dptrs_per_blk * 2) +
507 offset[n - 2] * (dptrs_per_blk + 1) +
508 offset[n - 1];
509 offset[n] = block % direct_blks;
510 level = 3;
511 goto got;
512 } else {
513 BUG();
514 }
515 got:
516 return level;
517 }
518
519 /*
520 * Caller should call f2fs_put_dnode(dn).
521 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
522 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
523 * In the case of RDONLY_NODE, we don't need to care about mutex.
524 */
525 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
526 {
527 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
528 struct page *npage[4];
529 struct page *parent = NULL;
530 int offset[4];
531 unsigned int noffset[4];
532 nid_t nids[4];
533 int level, i = 0;
534 int err = 0;
535
536 level = get_node_path(dn->inode, index, offset, noffset);
537
538 nids[0] = dn->inode->i_ino;
539 npage[0] = dn->inode_page;
540
541 if (!npage[0]) {
542 npage[0] = get_node_page(sbi, nids[0]);
543 if (IS_ERR(npage[0]))
544 return PTR_ERR(npage[0]);
545 }
546
547 /* if inline_data is set, should not report any block indices */
548 if (f2fs_has_inline_data(dn->inode) && index) {
549 err = -ENOENT;
550 f2fs_put_page(npage[0], 1);
551 goto release_out;
552 }
553
554 parent = npage[0];
555 if (level != 0)
556 nids[1] = get_nid(parent, offset[0], true);
557 dn->inode_page = npage[0];
558 dn->inode_page_locked = true;
559
560 /* get indirect or direct nodes */
561 for (i = 1; i <= level; i++) {
562 bool done = false;
563
564 if (!nids[i] && mode == ALLOC_NODE) {
565 /* alloc new node */
566 if (!alloc_nid(sbi, &(nids[i]))) {
567 err = -ENOSPC;
568 goto release_pages;
569 }
570
571 dn->nid = nids[i];
572 npage[i] = new_node_page(dn, noffset[i], NULL);
573 if (IS_ERR(npage[i])) {
574 alloc_nid_failed(sbi, nids[i]);
575 err = PTR_ERR(npage[i]);
576 goto release_pages;
577 }
578
579 set_nid(parent, offset[i - 1], nids[i], i == 1);
580 alloc_nid_done(sbi, nids[i]);
581 done = true;
582 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
583 npage[i] = get_node_page_ra(parent, offset[i - 1]);
584 if (IS_ERR(npage[i])) {
585 err = PTR_ERR(npage[i]);
586 goto release_pages;
587 }
588 done = true;
589 }
590 if (i == 1) {
591 dn->inode_page_locked = false;
592 unlock_page(parent);
593 } else {
594 f2fs_put_page(parent, 1);
595 }
596
597 if (!done) {
598 npage[i] = get_node_page(sbi, nids[i]);
599 if (IS_ERR(npage[i])) {
600 err = PTR_ERR(npage[i]);
601 f2fs_put_page(npage[0], 0);
602 goto release_out;
603 }
604 }
605 if (i < level) {
606 parent = npage[i];
607 nids[i + 1] = get_nid(parent, offset[i], false);
608 }
609 }
610 dn->nid = nids[level];
611 dn->ofs_in_node = offset[level];
612 dn->node_page = npage[level];
613 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
614 return 0;
615
616 release_pages:
617 f2fs_put_page(parent, 1);
618 if (i > 1)
619 f2fs_put_page(npage[0], 0);
620 release_out:
621 dn->inode_page = NULL;
622 dn->node_page = NULL;
623 if (err == -ENOENT) {
624 dn->cur_level = i;
625 dn->max_level = level;
626 }
627 return err;
628 }
629
630 static void truncate_node(struct dnode_of_data *dn)
631 {
632 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
633 struct node_info ni;
634
635 get_node_info(sbi, dn->nid, &ni);
636 if (dn->inode->i_blocks == 0) {
637 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
638 goto invalidate;
639 }
640 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
641
642 /* Deallocate node address */
643 invalidate_blocks(sbi, ni.blk_addr);
644 dec_valid_node_count(sbi, dn->inode);
645 set_node_addr(sbi, &ni, NULL_ADDR, false);
646
647 if (dn->nid == dn->inode->i_ino) {
648 remove_orphan_inode(sbi, dn->nid);
649 dec_valid_inode_count(sbi);
650 } else {
651 sync_inode_page(dn);
652 }
653 invalidate:
654 clear_node_page_dirty(dn->node_page);
655 set_sbi_flag(sbi, SBI_IS_DIRTY);
656
657 f2fs_put_page(dn->node_page, 1);
658
659 invalidate_mapping_pages(NODE_MAPPING(sbi),
660 dn->node_page->index, dn->node_page->index);
661
662 dn->node_page = NULL;
663 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
664 }
665
666 static int truncate_dnode(struct dnode_of_data *dn)
667 {
668 struct page *page;
669
670 if (dn->nid == 0)
671 return 1;
672
673 /* get direct node */
674 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
675 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
676 return 1;
677 else if (IS_ERR(page))
678 return PTR_ERR(page);
679
680 /* Make dnode_of_data for parameter */
681 dn->node_page = page;
682 dn->ofs_in_node = 0;
683 truncate_data_blocks(dn);
684 truncate_node(dn);
685 return 1;
686 }
687
688 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
689 int ofs, int depth)
690 {
691 struct dnode_of_data rdn = *dn;
692 struct page *page;
693 struct f2fs_node *rn;
694 nid_t child_nid;
695 unsigned int child_nofs;
696 int freed = 0;
697 int i, ret;
698
699 if (dn->nid == 0)
700 return NIDS_PER_BLOCK + 1;
701
702 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
703
704 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
705 if (IS_ERR(page)) {
706 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
707 return PTR_ERR(page);
708 }
709
710 rn = F2FS_NODE(page);
711 if (depth < 3) {
712 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
713 child_nid = le32_to_cpu(rn->in.nid[i]);
714 if (child_nid == 0)
715 continue;
716 rdn.nid = child_nid;
717 ret = truncate_dnode(&rdn);
718 if (ret < 0)
719 goto out_err;
720 if (set_nid(page, i, 0, false))
721 dn->node_changed = true;
722 }
723 } else {
724 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
725 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
726 child_nid = le32_to_cpu(rn->in.nid[i]);
727 if (child_nid == 0) {
728 child_nofs += NIDS_PER_BLOCK + 1;
729 continue;
730 }
731 rdn.nid = child_nid;
732 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
733 if (ret == (NIDS_PER_BLOCK + 1)) {
734 if (set_nid(page, i, 0, false))
735 dn->node_changed = true;
736 child_nofs += ret;
737 } else if (ret < 0 && ret != -ENOENT) {
738 goto out_err;
739 }
740 }
741 freed = child_nofs;
742 }
743
744 if (!ofs) {
745 /* remove current indirect node */
746 dn->node_page = page;
747 truncate_node(dn);
748 freed++;
749 } else {
750 f2fs_put_page(page, 1);
751 }
752 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
753 return freed;
754
755 out_err:
756 f2fs_put_page(page, 1);
757 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
758 return ret;
759 }
760
761 static int truncate_partial_nodes(struct dnode_of_data *dn,
762 struct f2fs_inode *ri, int *offset, int depth)
763 {
764 struct page *pages[2];
765 nid_t nid[3];
766 nid_t child_nid;
767 int err = 0;
768 int i;
769 int idx = depth - 2;
770
771 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
772 if (!nid[0])
773 return 0;
774
775 /* get indirect nodes in the path */
776 for (i = 0; i < idx + 1; i++) {
777 /* reference count'll be increased */
778 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
779 if (IS_ERR(pages[i])) {
780 err = PTR_ERR(pages[i]);
781 idx = i - 1;
782 goto fail;
783 }
784 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
785 }
786
787 /* free direct nodes linked to a partial indirect node */
788 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
789 child_nid = get_nid(pages[idx], i, false);
790 if (!child_nid)
791 continue;
792 dn->nid = child_nid;
793 err = truncate_dnode(dn);
794 if (err < 0)
795 goto fail;
796 if (set_nid(pages[idx], i, 0, false))
797 dn->node_changed = true;
798 }
799
800 if (offset[idx + 1] == 0) {
801 dn->node_page = pages[idx];
802 dn->nid = nid[idx];
803 truncate_node(dn);
804 } else {
805 f2fs_put_page(pages[idx], 1);
806 }
807 offset[idx]++;
808 offset[idx + 1] = 0;
809 idx--;
810 fail:
811 for (i = idx; i >= 0; i--)
812 f2fs_put_page(pages[i], 1);
813
814 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
815
816 return err;
817 }
818
819 /*
820 * All the block addresses of data and nodes should be nullified.
821 */
822 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
823 {
824 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
825 int err = 0, cont = 1;
826 int level, offset[4], noffset[4];
827 unsigned int nofs = 0;
828 struct f2fs_inode *ri;
829 struct dnode_of_data dn;
830 struct page *page;
831
832 trace_f2fs_truncate_inode_blocks_enter(inode, from);
833
834 level = get_node_path(inode, from, offset, noffset);
835 restart:
836 page = get_node_page(sbi, inode->i_ino);
837 if (IS_ERR(page)) {
838 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
839 return PTR_ERR(page);
840 }
841
842 set_new_dnode(&dn, inode, page, NULL, 0);
843 unlock_page(page);
844
845 ri = F2FS_INODE(page);
846 switch (level) {
847 case 0:
848 case 1:
849 nofs = noffset[1];
850 break;
851 case 2:
852 nofs = noffset[1];
853 if (!offset[level - 1])
854 goto skip_partial;
855 err = truncate_partial_nodes(&dn, ri, offset, level);
856 if (err < 0 && err != -ENOENT)
857 goto fail;
858 nofs += 1 + NIDS_PER_BLOCK;
859 break;
860 case 3:
861 nofs = 5 + 2 * NIDS_PER_BLOCK;
862 if (!offset[level - 1])
863 goto skip_partial;
864 err = truncate_partial_nodes(&dn, ri, offset, level);
865 if (err < 0 && err != -ENOENT)
866 goto fail;
867 break;
868 default:
869 BUG();
870 }
871
872 skip_partial:
873 while (cont) {
874 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
875 switch (offset[0]) {
876 case NODE_DIR1_BLOCK:
877 case NODE_DIR2_BLOCK:
878 err = truncate_dnode(&dn);
879 break;
880
881 case NODE_IND1_BLOCK:
882 case NODE_IND2_BLOCK:
883 err = truncate_nodes(&dn, nofs, offset[1], 2);
884 break;
885
886 case NODE_DIND_BLOCK:
887 err = truncate_nodes(&dn, nofs, offset[1], 3);
888 cont = 0;
889 break;
890
891 default:
892 BUG();
893 }
894 if (err < 0 && err != -ENOENT)
895 goto fail;
896 if (offset[1] == 0 &&
897 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
898 lock_page(page);
899 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
900 f2fs_put_page(page, 1);
901 goto restart;
902 }
903 f2fs_wait_on_page_writeback(page, NODE, true);
904 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
905 set_page_dirty(page);
906 unlock_page(page);
907 }
908 offset[1] = 0;
909 offset[0]++;
910 nofs += err;
911 }
912 fail:
913 f2fs_put_page(page, 0);
914 trace_f2fs_truncate_inode_blocks_exit(inode, err);
915 return err > 0 ? 0 : err;
916 }
917
918 int truncate_xattr_node(struct inode *inode, struct page *page)
919 {
920 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
921 nid_t nid = F2FS_I(inode)->i_xattr_nid;
922 struct dnode_of_data dn;
923 struct page *npage;
924
925 if (!nid)
926 return 0;
927
928 npage = get_node_page(sbi, nid);
929 if (IS_ERR(npage))
930 return PTR_ERR(npage);
931
932 F2FS_I(inode)->i_xattr_nid = 0;
933
934 /* need to do checkpoint during fsync */
935 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
936
937 set_new_dnode(&dn, inode, page, npage, nid);
938
939 if (page)
940 dn.inode_page_locked = true;
941 truncate_node(&dn);
942 return 0;
943 }
944
945 /*
946 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
947 * f2fs_unlock_op().
948 */
949 int remove_inode_page(struct inode *inode)
950 {
951 struct dnode_of_data dn;
952 int err;
953
954 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
955 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
956 if (err)
957 return err;
958
959 err = truncate_xattr_node(inode, dn.inode_page);
960 if (err) {
961 f2fs_put_dnode(&dn);
962 return err;
963 }
964
965 /* remove potential inline_data blocks */
966 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
967 S_ISLNK(inode->i_mode))
968 truncate_data_blocks_range(&dn, 1);
969
970 /* 0 is possible, after f2fs_new_inode() has failed */
971 f2fs_bug_on(F2FS_I_SB(inode),
972 inode->i_blocks != 0 && inode->i_blocks != 1);
973
974 /* will put inode & node pages */
975 truncate_node(&dn);
976 return 0;
977 }
978
979 struct page *new_inode_page(struct inode *inode)
980 {
981 struct dnode_of_data dn;
982
983 /* allocate inode page for new inode */
984 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
985
986 /* caller should f2fs_put_page(page, 1); */
987 return new_node_page(&dn, 0, NULL);
988 }
989
990 struct page *new_node_page(struct dnode_of_data *dn,
991 unsigned int ofs, struct page *ipage)
992 {
993 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
994 struct node_info old_ni, new_ni;
995 struct page *page;
996 int err;
997
998 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
999 return ERR_PTR(-EPERM);
1000
1001 page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
1002 if (!page)
1003 return ERR_PTR(-ENOMEM);
1004
1005 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1006 err = -ENOSPC;
1007 goto fail;
1008 }
1009
1010 get_node_info(sbi, dn->nid, &old_ni);
1011
1012 /* Reinitialize old_ni with new node page */
1013 f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
1014 new_ni = old_ni;
1015 new_ni.ino = dn->inode->i_ino;
1016 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1017
1018 f2fs_wait_on_page_writeback(page, NODE, true);
1019 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1020 set_cold_node(dn->inode, page);
1021 SetPageUptodate(page);
1022 if (set_page_dirty(page))
1023 dn->node_changed = true;
1024
1025 if (f2fs_has_xattr_block(ofs))
1026 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
1027
1028 dn->node_page = page;
1029 if (ipage)
1030 update_inode(dn->inode, ipage);
1031 else
1032 sync_inode_page(dn);
1033 if (ofs == 0)
1034 inc_valid_inode_count(sbi);
1035
1036 return page;
1037
1038 fail:
1039 clear_node_page_dirty(page);
1040 f2fs_put_page(page, 1);
1041 return ERR_PTR(err);
1042 }
1043
1044 /*
1045 * Caller should do after getting the following values.
1046 * 0: f2fs_put_page(page, 0)
1047 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1048 */
1049 static int read_node_page(struct page *page, int rw)
1050 {
1051 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1052 struct node_info ni;
1053 struct f2fs_io_info fio = {
1054 .sbi = sbi,
1055 .type = NODE,
1056 .rw = rw,
1057 .page = page,
1058 .encrypted_page = NULL,
1059 };
1060
1061 get_node_info(sbi, page->index, &ni);
1062
1063 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1064 ClearPageUptodate(page);
1065 return -ENOENT;
1066 }
1067
1068 if (PageUptodate(page))
1069 return LOCKED_PAGE;
1070
1071 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1072 return f2fs_submit_page_bio(&fio);
1073 }
1074
1075 /*
1076 * Readahead a node page
1077 */
1078 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1079 {
1080 struct page *apage;
1081 int err;
1082
1083 if (!nid)
1084 return;
1085 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1086
1087 apage = find_get_page(NODE_MAPPING(sbi), nid);
1088 if (apage && PageUptodate(apage)) {
1089 f2fs_put_page(apage, 0);
1090 return;
1091 }
1092 f2fs_put_page(apage, 0);
1093
1094 apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1095 if (!apage)
1096 return;
1097
1098 err = read_node_page(apage, READA);
1099 f2fs_put_page(apage, err ? 1 : 0);
1100 }
1101
1102 /*
1103 * readahead MAX_RA_NODE number of node pages.
1104 */
1105 void ra_node_pages(struct page *parent, int start)
1106 {
1107 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1108 struct blk_plug plug;
1109 int i, end;
1110 nid_t nid;
1111
1112 blk_start_plug(&plug);
1113
1114 /* Then, try readahead for siblings of the desired node */
1115 end = start + MAX_RA_NODE;
1116 end = min(end, NIDS_PER_BLOCK);
1117 for (i = start; i < end; i++) {
1118 nid = get_nid(parent, i, false);
1119 ra_node_page(sbi, nid);
1120 }
1121
1122 blk_finish_plug(&plug);
1123 }
1124
1125 struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1126 struct page *parent, int start)
1127 {
1128 struct page *page;
1129 int err;
1130
1131 if (!nid)
1132 return ERR_PTR(-ENOENT);
1133 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1134 repeat:
1135 page = grab_cache_page(NODE_MAPPING(sbi), nid);
1136 if (!page)
1137 return ERR_PTR(-ENOMEM);
1138
1139 err = read_node_page(page, READ_SYNC);
1140 if (err < 0) {
1141 f2fs_put_page(page, 1);
1142 return ERR_PTR(err);
1143 } else if (err == LOCKED_PAGE) {
1144 goto page_hit;
1145 }
1146
1147 if (parent)
1148 ra_node_pages(parent, start + 1);
1149
1150 lock_page(page);
1151
1152 if (unlikely(!PageUptodate(page))) {
1153 f2fs_put_page(page, 1);
1154 return ERR_PTR(-EIO);
1155 }
1156 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1157 f2fs_put_page(page, 1);
1158 goto repeat;
1159 }
1160 page_hit:
1161 f2fs_bug_on(sbi, nid != nid_of_node(page));
1162 return page;
1163 }
1164
1165 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1166 {
1167 return __get_node_page(sbi, nid, NULL, 0);
1168 }
1169
1170 struct page *get_node_page_ra(struct page *parent, int start)
1171 {
1172 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1173 nid_t nid = get_nid(parent, start, false);
1174
1175 return __get_node_page(sbi, nid, parent, start);
1176 }
1177
1178 void sync_inode_page(struct dnode_of_data *dn)
1179 {
1180 int ret = 0;
1181
1182 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1183 ret = update_inode(dn->inode, dn->node_page);
1184 } else if (dn->inode_page) {
1185 if (!dn->inode_page_locked)
1186 lock_page(dn->inode_page);
1187 ret = update_inode(dn->inode, dn->inode_page);
1188 if (!dn->inode_page_locked)
1189 unlock_page(dn->inode_page);
1190 } else {
1191 ret = update_inode_page(dn->inode);
1192 }
1193 dn->node_changed = ret ? true: false;
1194 }
1195
1196 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1197 {
1198 struct inode *inode;
1199 struct page *page;
1200
1201 /* should flush inline_data before evict_inode */
1202 inode = ilookup(sbi->sb, ino);
1203 if (!inode)
1204 return;
1205
1206 page = pagecache_get_page(inode->i_mapping, 0, FGP_NOWAIT, 0);
1207 if (!page)
1208 goto iput_out;
1209
1210 if (!trylock_page(page))
1211 goto release_out;
1212
1213 if (!PageUptodate(page))
1214 goto page_out;
1215
1216 if (!PageDirty(page))
1217 goto page_out;
1218
1219 if (!clear_page_dirty_for_io(page))
1220 goto page_out;
1221
1222 if (!f2fs_write_inline_data(inode, page))
1223 inode_dec_dirty_pages(inode);
1224 else
1225 set_page_dirty(page);
1226 page_out:
1227 unlock_page(page);
1228 release_out:
1229 f2fs_put_page(page, 0);
1230 iput_out:
1231 iput(inode);
1232 }
1233
1234 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1235 struct writeback_control *wbc)
1236 {
1237 pgoff_t index, end;
1238 struct pagevec pvec;
1239 int step = ino ? 2 : 0;
1240 int nwritten = 0, wrote = 0;
1241
1242 pagevec_init(&pvec, 0);
1243
1244 next_step:
1245 index = 0;
1246 end = ULONG_MAX;
1247
1248 while (index <= end) {
1249 int i, nr_pages;
1250 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1251 PAGECACHE_TAG_DIRTY,
1252 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1253 if (nr_pages == 0)
1254 break;
1255
1256 for (i = 0; i < nr_pages; i++) {
1257 struct page *page = pvec.pages[i];
1258
1259 if (unlikely(f2fs_cp_error(sbi))) {
1260 pagevec_release(&pvec);
1261 return -EIO;
1262 }
1263
1264 /*
1265 * flushing sequence with step:
1266 * 0. indirect nodes
1267 * 1. dentry dnodes
1268 * 2. file dnodes
1269 */
1270 if (step == 0 && IS_DNODE(page))
1271 continue;
1272 if (step == 1 && (!IS_DNODE(page) ||
1273 is_cold_node(page)))
1274 continue;
1275 if (step == 2 && (!IS_DNODE(page) ||
1276 !is_cold_node(page)))
1277 continue;
1278
1279 /*
1280 * If an fsync mode,
1281 * we should not skip writing node pages.
1282 */
1283 lock_node:
1284 if (ino && ino_of_node(page) == ino)
1285 lock_page(page);
1286 else if (!trylock_page(page))
1287 continue;
1288
1289 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1290 continue_unlock:
1291 unlock_page(page);
1292 continue;
1293 }
1294 if (ino && ino_of_node(page) != ino)
1295 goto continue_unlock;
1296
1297 if (!PageDirty(page)) {
1298 /* someone wrote it for us */
1299 goto continue_unlock;
1300 }
1301
1302 /* flush inline_data */
1303 if (!ino && is_inline_node(page)) {
1304 clear_inline_node(page);
1305 unlock_page(page);
1306 flush_inline_data(sbi, ino_of_node(page));
1307 goto lock_node;
1308 }
1309
1310 f2fs_wait_on_page_writeback(page, NODE, true);
1311
1312 BUG_ON(PageWriteback(page));
1313 if (!clear_page_dirty_for_io(page))
1314 goto continue_unlock;
1315
1316 /* called by fsync() */
1317 if (ino && IS_DNODE(page)) {
1318 set_fsync_mark(page, 1);
1319 if (IS_INODE(page))
1320 set_dentry_mark(page,
1321 need_dentry_mark(sbi, ino));
1322 nwritten++;
1323 } else {
1324 set_fsync_mark(page, 0);
1325 set_dentry_mark(page, 0);
1326 }
1327
1328 if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1329 unlock_page(page);
1330 else
1331 wrote++;
1332
1333 if (--wbc->nr_to_write == 0)
1334 break;
1335 }
1336 pagevec_release(&pvec);
1337 cond_resched();
1338
1339 if (wbc->nr_to_write == 0) {
1340 step = 2;
1341 break;
1342 }
1343 }
1344
1345 if (step < 2) {
1346 step++;
1347 goto next_step;
1348 }
1349
1350 if (wrote) {
1351 if (ino)
1352 f2fs_submit_merged_bio_cond(sbi, NULL, NULL,
1353 ino, NODE, WRITE);
1354 else
1355 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1356 }
1357 return nwritten;
1358 }
1359
1360 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1361 {
1362 pgoff_t index = 0, end = ULONG_MAX;
1363 struct pagevec pvec;
1364 int ret2 = 0, ret = 0;
1365
1366 pagevec_init(&pvec, 0);
1367
1368 while (index <= end) {
1369 int i, nr_pages;
1370 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1371 PAGECACHE_TAG_WRITEBACK,
1372 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1373 if (nr_pages == 0)
1374 break;
1375
1376 for (i = 0; i < nr_pages; i++) {
1377 struct page *page = pvec.pages[i];
1378
1379 /* until radix tree lookup accepts end_index */
1380 if (unlikely(page->index > end))
1381 continue;
1382
1383 if (ino && ino_of_node(page) == ino) {
1384 f2fs_wait_on_page_writeback(page, NODE, true);
1385 if (TestClearPageError(page))
1386 ret = -EIO;
1387 }
1388 }
1389 pagevec_release(&pvec);
1390 cond_resched();
1391 }
1392
1393 if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1394 ret2 = -ENOSPC;
1395 if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1396 ret2 = -EIO;
1397 if (!ret)
1398 ret = ret2;
1399 return ret;
1400 }
1401
1402 static int f2fs_write_node_page(struct page *page,
1403 struct writeback_control *wbc)
1404 {
1405 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1406 nid_t nid;
1407 struct node_info ni;
1408 struct f2fs_io_info fio = {
1409 .sbi = sbi,
1410 .type = NODE,
1411 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1412 .page = page,
1413 .encrypted_page = NULL,
1414 };
1415
1416 trace_f2fs_writepage(page, NODE);
1417
1418 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1419 goto redirty_out;
1420 if (unlikely(f2fs_cp_error(sbi)))
1421 goto redirty_out;
1422
1423 /* get old block addr of this node page */
1424 nid = nid_of_node(page);
1425 f2fs_bug_on(sbi, page->index != nid);
1426
1427 if (wbc->for_reclaim) {
1428 if (!down_read_trylock(&sbi->node_write))
1429 goto redirty_out;
1430 } else {
1431 down_read(&sbi->node_write);
1432 }
1433
1434 get_node_info(sbi, nid, &ni);
1435
1436 /* This page is already truncated */
1437 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1438 ClearPageUptodate(page);
1439 dec_page_count(sbi, F2FS_DIRTY_NODES);
1440 up_read(&sbi->node_write);
1441 unlock_page(page);
1442 return 0;
1443 }
1444
1445 set_page_writeback(page);
1446 fio.old_blkaddr = ni.blk_addr;
1447 write_node_page(nid, &fio);
1448 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1449 dec_page_count(sbi, F2FS_DIRTY_NODES);
1450 up_read(&sbi->node_write);
1451
1452 if (wbc->for_reclaim)
1453 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE);
1454
1455 unlock_page(page);
1456
1457 if (unlikely(f2fs_cp_error(sbi)))
1458 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1459
1460 return 0;
1461
1462 redirty_out:
1463 redirty_page_for_writepage(wbc, page);
1464 return AOP_WRITEPAGE_ACTIVATE;
1465 }
1466
1467 static int f2fs_write_node_pages(struct address_space *mapping,
1468 struct writeback_control *wbc)
1469 {
1470 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1471 long diff;
1472
1473 /* balancing f2fs's metadata in background */
1474 f2fs_balance_fs_bg(sbi);
1475
1476 /* collect a number of dirty node pages and write together */
1477 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1478 goto skip_write;
1479
1480 trace_f2fs_writepages(mapping->host, wbc, NODE);
1481
1482 diff = nr_pages_to_write(sbi, NODE, wbc);
1483 wbc->sync_mode = WB_SYNC_NONE;
1484 sync_node_pages(sbi, 0, wbc);
1485 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1486 return 0;
1487
1488 skip_write:
1489 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1490 trace_f2fs_writepages(mapping->host, wbc, NODE);
1491 return 0;
1492 }
1493
1494 static int f2fs_set_node_page_dirty(struct page *page)
1495 {
1496 trace_f2fs_set_page_dirty(page, NODE);
1497
1498 SetPageUptodate(page);
1499 if (!PageDirty(page)) {
1500 __set_page_dirty_nobuffers(page);
1501 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1502 SetPagePrivate(page);
1503 f2fs_trace_pid(page);
1504 return 1;
1505 }
1506 return 0;
1507 }
1508
1509 /*
1510 * Structure of the f2fs node operations
1511 */
1512 const struct address_space_operations f2fs_node_aops = {
1513 .writepage = f2fs_write_node_page,
1514 .writepages = f2fs_write_node_pages,
1515 .set_page_dirty = f2fs_set_node_page_dirty,
1516 .invalidatepage = f2fs_invalidate_page,
1517 .releasepage = f2fs_release_page,
1518 };
1519
1520 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1521 nid_t n)
1522 {
1523 return radix_tree_lookup(&nm_i->free_nid_root, n);
1524 }
1525
1526 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1527 struct free_nid *i)
1528 {
1529 list_del(&i->list);
1530 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1531 }
1532
1533 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1534 {
1535 struct f2fs_nm_info *nm_i = NM_I(sbi);
1536 struct free_nid *i;
1537 struct nat_entry *ne;
1538 bool allocated = false;
1539
1540 if (!available_free_memory(sbi, FREE_NIDS))
1541 return -1;
1542
1543 /* 0 nid should not be used */
1544 if (unlikely(nid == 0))
1545 return 0;
1546
1547 if (build) {
1548 /* do not add allocated nids */
1549 ne = __lookup_nat_cache(nm_i, nid);
1550 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1551 nat_get_blkaddr(ne) != NULL_ADDR))
1552 allocated = true;
1553 if (allocated)
1554 return 0;
1555 }
1556
1557 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1558 i->nid = nid;
1559 i->state = NID_NEW;
1560
1561 if (radix_tree_preload(GFP_NOFS)) {
1562 kmem_cache_free(free_nid_slab, i);
1563 return 0;
1564 }
1565
1566 spin_lock(&nm_i->free_nid_list_lock);
1567 if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1568 spin_unlock(&nm_i->free_nid_list_lock);
1569 radix_tree_preload_end();
1570 kmem_cache_free(free_nid_slab, i);
1571 return 0;
1572 }
1573 list_add_tail(&i->list, &nm_i->free_nid_list);
1574 nm_i->fcnt++;
1575 spin_unlock(&nm_i->free_nid_list_lock);
1576 radix_tree_preload_end();
1577 return 1;
1578 }
1579
1580 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1581 {
1582 struct free_nid *i;
1583 bool need_free = false;
1584
1585 spin_lock(&nm_i->free_nid_list_lock);
1586 i = __lookup_free_nid_list(nm_i, nid);
1587 if (i && i->state == NID_NEW) {
1588 __del_from_free_nid_list(nm_i, i);
1589 nm_i->fcnt--;
1590 need_free = true;
1591 }
1592 spin_unlock(&nm_i->free_nid_list_lock);
1593
1594 if (need_free)
1595 kmem_cache_free(free_nid_slab, i);
1596 }
1597
1598 static void scan_nat_page(struct f2fs_sb_info *sbi,
1599 struct page *nat_page, nid_t start_nid)
1600 {
1601 struct f2fs_nm_info *nm_i = NM_I(sbi);
1602 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1603 block_t blk_addr;
1604 int i;
1605
1606 i = start_nid % NAT_ENTRY_PER_BLOCK;
1607
1608 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1609
1610 if (unlikely(start_nid >= nm_i->max_nid))
1611 break;
1612
1613 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1614 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1615 if (blk_addr == NULL_ADDR) {
1616 if (add_free_nid(sbi, start_nid, true) < 0)
1617 break;
1618 }
1619 }
1620 }
1621
1622 static void build_free_nids(struct f2fs_sb_info *sbi)
1623 {
1624 struct f2fs_nm_info *nm_i = NM_I(sbi);
1625 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1626 struct f2fs_journal *journal = curseg->journal;
1627 int i = 0;
1628 nid_t nid = nm_i->next_scan_nid;
1629
1630 /* Enough entries */
1631 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1632 return;
1633
1634 /* readahead nat pages to be scanned */
1635 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1636 META_NAT, true);
1637
1638 down_read(&nm_i->nat_tree_lock);
1639
1640 while (1) {
1641 struct page *page = get_current_nat_page(sbi, nid);
1642
1643 scan_nat_page(sbi, page, nid);
1644 f2fs_put_page(page, 1);
1645
1646 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1647 if (unlikely(nid >= nm_i->max_nid))
1648 nid = 0;
1649
1650 if (++i >= FREE_NID_PAGES)
1651 break;
1652 }
1653
1654 /* go to the next free nat pages to find free nids abundantly */
1655 nm_i->next_scan_nid = nid;
1656
1657 /* find free nids from current sum_pages */
1658 down_read(&curseg->journal_rwsem);
1659 for (i = 0; i < nats_in_cursum(journal); i++) {
1660 block_t addr;
1661
1662 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1663 nid = le32_to_cpu(nid_in_journal(journal, i));
1664 if (addr == NULL_ADDR)
1665 add_free_nid(sbi, nid, true);
1666 else
1667 remove_free_nid(nm_i, nid);
1668 }
1669 up_read(&curseg->journal_rwsem);
1670 up_read(&nm_i->nat_tree_lock);
1671
1672 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1673 nm_i->ra_nid_pages, META_NAT, false);
1674 }
1675
1676 /*
1677 * If this function returns success, caller can obtain a new nid
1678 * from second parameter of this function.
1679 * The returned nid could be used ino as well as nid when inode is created.
1680 */
1681 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1682 {
1683 struct f2fs_nm_info *nm_i = NM_I(sbi);
1684 struct free_nid *i = NULL;
1685 retry:
1686 if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1687 return false;
1688
1689 spin_lock(&nm_i->free_nid_list_lock);
1690
1691 /* We should not use stale free nids created by build_free_nids */
1692 if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1693 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1694 list_for_each_entry(i, &nm_i->free_nid_list, list)
1695 if (i->state == NID_NEW)
1696 break;
1697
1698 f2fs_bug_on(sbi, i->state != NID_NEW);
1699 *nid = i->nid;
1700 i->state = NID_ALLOC;
1701 nm_i->fcnt--;
1702 spin_unlock(&nm_i->free_nid_list_lock);
1703 return true;
1704 }
1705 spin_unlock(&nm_i->free_nid_list_lock);
1706
1707 /* Let's scan nat pages and its caches to get free nids */
1708 mutex_lock(&nm_i->build_lock);
1709 build_free_nids(sbi);
1710 mutex_unlock(&nm_i->build_lock);
1711 goto retry;
1712 }
1713
1714 /*
1715 * alloc_nid() should be called prior to this function.
1716 */
1717 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1718 {
1719 struct f2fs_nm_info *nm_i = NM_I(sbi);
1720 struct free_nid *i;
1721
1722 spin_lock(&nm_i->free_nid_list_lock);
1723 i = __lookup_free_nid_list(nm_i, nid);
1724 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1725 __del_from_free_nid_list(nm_i, i);
1726 spin_unlock(&nm_i->free_nid_list_lock);
1727
1728 kmem_cache_free(free_nid_slab, i);
1729 }
1730
1731 /*
1732 * alloc_nid() should be called prior to this function.
1733 */
1734 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1735 {
1736 struct f2fs_nm_info *nm_i = NM_I(sbi);
1737 struct free_nid *i;
1738 bool need_free = false;
1739
1740 if (!nid)
1741 return;
1742
1743 spin_lock(&nm_i->free_nid_list_lock);
1744 i = __lookup_free_nid_list(nm_i, nid);
1745 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1746 if (!available_free_memory(sbi, FREE_NIDS)) {
1747 __del_from_free_nid_list(nm_i, i);
1748 need_free = true;
1749 } else {
1750 i->state = NID_NEW;
1751 nm_i->fcnt++;
1752 }
1753 spin_unlock(&nm_i->free_nid_list_lock);
1754
1755 if (need_free)
1756 kmem_cache_free(free_nid_slab, i);
1757 }
1758
1759 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1760 {
1761 struct f2fs_nm_info *nm_i = NM_I(sbi);
1762 struct free_nid *i, *next;
1763 int nr = nr_shrink;
1764
1765 if (!mutex_trylock(&nm_i->build_lock))
1766 return 0;
1767
1768 spin_lock(&nm_i->free_nid_list_lock);
1769 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
1770 if (nr_shrink <= 0 || nm_i->fcnt <= NAT_ENTRY_PER_BLOCK)
1771 break;
1772 if (i->state == NID_ALLOC)
1773 continue;
1774 __del_from_free_nid_list(nm_i, i);
1775 kmem_cache_free(free_nid_slab, i);
1776 nm_i->fcnt--;
1777 nr_shrink--;
1778 }
1779 spin_unlock(&nm_i->free_nid_list_lock);
1780 mutex_unlock(&nm_i->build_lock);
1781
1782 return nr - nr_shrink;
1783 }
1784
1785 void recover_inline_xattr(struct inode *inode, struct page *page)
1786 {
1787 void *src_addr, *dst_addr;
1788 size_t inline_size;
1789 struct page *ipage;
1790 struct f2fs_inode *ri;
1791
1792 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1793 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1794
1795 ri = F2FS_INODE(page);
1796 if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1797 clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1798 goto update_inode;
1799 }
1800
1801 dst_addr = inline_xattr_addr(ipage);
1802 src_addr = inline_xattr_addr(page);
1803 inline_size = inline_xattr_size(inode);
1804
1805 f2fs_wait_on_page_writeback(ipage, NODE, true);
1806 memcpy(dst_addr, src_addr, inline_size);
1807 update_inode:
1808 update_inode(inode, ipage);
1809 f2fs_put_page(ipage, 1);
1810 }
1811
1812 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1813 {
1814 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1815 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1816 nid_t new_xnid = nid_of_node(page);
1817 struct node_info ni;
1818
1819 /* 1: invalidate the previous xattr nid */
1820 if (!prev_xnid)
1821 goto recover_xnid;
1822
1823 /* Deallocate node address */
1824 get_node_info(sbi, prev_xnid, &ni);
1825 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1826 invalidate_blocks(sbi, ni.blk_addr);
1827 dec_valid_node_count(sbi, inode);
1828 set_node_addr(sbi, &ni, NULL_ADDR, false);
1829
1830 recover_xnid:
1831 /* 2: allocate new xattr nid */
1832 if (unlikely(!inc_valid_node_count(sbi, inode)))
1833 f2fs_bug_on(sbi, 1);
1834
1835 remove_free_nid(NM_I(sbi), new_xnid);
1836 get_node_info(sbi, new_xnid, &ni);
1837 ni.ino = inode->i_ino;
1838 set_node_addr(sbi, &ni, NEW_ADDR, false);
1839 F2FS_I(inode)->i_xattr_nid = new_xnid;
1840
1841 /* 3: update xattr blkaddr */
1842 refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1843 set_node_addr(sbi, &ni, blkaddr, false);
1844
1845 update_inode_page(inode);
1846 }
1847
1848 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1849 {
1850 struct f2fs_inode *src, *dst;
1851 nid_t ino = ino_of_node(page);
1852 struct node_info old_ni, new_ni;
1853 struct page *ipage;
1854
1855 get_node_info(sbi, ino, &old_ni);
1856
1857 if (unlikely(old_ni.blk_addr != NULL_ADDR))
1858 return -EINVAL;
1859
1860 ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1861 if (!ipage)
1862 return -ENOMEM;
1863
1864 /* Should not use this inode from free nid list */
1865 remove_free_nid(NM_I(sbi), ino);
1866
1867 SetPageUptodate(ipage);
1868 fill_node_footer(ipage, ino, ino, 0, true);
1869
1870 src = F2FS_INODE(page);
1871 dst = F2FS_INODE(ipage);
1872
1873 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1874 dst->i_size = 0;
1875 dst->i_blocks = cpu_to_le64(1);
1876 dst->i_links = cpu_to_le32(1);
1877 dst->i_xattr_nid = 0;
1878 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
1879
1880 new_ni = old_ni;
1881 new_ni.ino = ino;
1882
1883 if (unlikely(!inc_valid_node_count(sbi, NULL)))
1884 WARN_ON(1);
1885 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1886 inc_valid_inode_count(sbi);
1887 set_page_dirty(ipage);
1888 f2fs_put_page(ipage, 1);
1889 return 0;
1890 }
1891
1892 int restore_node_summary(struct f2fs_sb_info *sbi,
1893 unsigned int segno, struct f2fs_summary_block *sum)
1894 {
1895 struct f2fs_node *rn;
1896 struct f2fs_summary *sum_entry;
1897 block_t addr;
1898 int bio_blocks = MAX_BIO_BLOCKS(sbi);
1899 int i, idx, last_offset, nrpages;
1900
1901 /* scan the node segment */
1902 last_offset = sbi->blocks_per_seg;
1903 addr = START_BLOCK(sbi, segno);
1904 sum_entry = &sum->entries[0];
1905
1906 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
1907 nrpages = min(last_offset - i, bio_blocks);
1908
1909 /* readahead node pages */
1910 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
1911
1912 for (idx = addr; idx < addr + nrpages; idx++) {
1913 struct page *page = get_tmp_page(sbi, idx);
1914
1915 rn = F2FS_NODE(page);
1916 sum_entry->nid = rn->footer.nid;
1917 sum_entry->version = 0;
1918 sum_entry->ofs_in_node = 0;
1919 sum_entry++;
1920 f2fs_put_page(page, 1);
1921 }
1922
1923 invalidate_mapping_pages(META_MAPPING(sbi), addr,
1924 addr + nrpages);
1925 }
1926 return 0;
1927 }
1928
1929 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1930 {
1931 struct f2fs_nm_info *nm_i = NM_I(sbi);
1932 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1933 struct f2fs_journal *journal = curseg->journal;
1934 int i;
1935
1936 down_write(&curseg->journal_rwsem);
1937 for (i = 0; i < nats_in_cursum(journal); i++) {
1938 struct nat_entry *ne;
1939 struct f2fs_nat_entry raw_ne;
1940 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
1941
1942 raw_ne = nat_in_journal(journal, i);
1943
1944 ne = __lookup_nat_cache(nm_i, nid);
1945 if (!ne) {
1946 ne = grab_nat_entry(nm_i, nid);
1947 node_info_from_raw_nat(&ne->ni, &raw_ne);
1948 }
1949 __set_nat_cache_dirty(nm_i, ne);
1950 }
1951 update_nats_in_cursum(journal, -i);
1952 up_write(&curseg->journal_rwsem);
1953 }
1954
1955 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1956 struct list_head *head, int max)
1957 {
1958 struct nat_entry_set *cur;
1959
1960 if (nes->entry_cnt >= max)
1961 goto add_out;
1962
1963 list_for_each_entry(cur, head, set_list) {
1964 if (cur->entry_cnt >= nes->entry_cnt) {
1965 list_add(&nes->set_list, cur->set_list.prev);
1966 return;
1967 }
1968 }
1969 add_out:
1970 list_add_tail(&nes->set_list, head);
1971 }
1972
1973 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1974 struct nat_entry_set *set)
1975 {
1976 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1977 struct f2fs_journal *journal = curseg->journal;
1978 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1979 bool to_journal = true;
1980 struct f2fs_nat_block *nat_blk;
1981 struct nat_entry *ne, *cur;
1982 struct page *page = NULL;
1983
1984 /*
1985 * there are two steps to flush nat entries:
1986 * #1, flush nat entries to journal in current hot data summary block.
1987 * #2, flush nat entries to nat page.
1988 */
1989 if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
1990 to_journal = false;
1991
1992 if (to_journal) {
1993 down_write(&curseg->journal_rwsem);
1994 } else {
1995 page = get_next_nat_page(sbi, start_nid);
1996 nat_blk = page_address(page);
1997 f2fs_bug_on(sbi, !nat_blk);
1998 }
1999
2000 /* flush dirty nats in nat entry set */
2001 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2002 struct f2fs_nat_entry *raw_ne;
2003 nid_t nid = nat_get_nid(ne);
2004 int offset;
2005
2006 if (nat_get_blkaddr(ne) == NEW_ADDR)
2007 continue;
2008
2009 if (to_journal) {
2010 offset = lookup_journal_in_cursum(journal,
2011 NAT_JOURNAL, nid, 1);
2012 f2fs_bug_on(sbi, offset < 0);
2013 raw_ne = &nat_in_journal(journal, offset);
2014 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2015 } else {
2016 raw_ne = &nat_blk->entries[nid - start_nid];
2017 }
2018 raw_nat_from_node_info(raw_ne, &ne->ni);
2019 nat_reset_flag(ne);
2020 __clear_nat_cache_dirty(NM_I(sbi), ne);
2021 if (nat_get_blkaddr(ne) == NULL_ADDR)
2022 add_free_nid(sbi, nid, false);
2023 }
2024
2025 if (to_journal)
2026 up_write(&curseg->journal_rwsem);
2027 else
2028 f2fs_put_page(page, 1);
2029
2030 f2fs_bug_on(sbi, set->entry_cnt);
2031
2032 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2033 kmem_cache_free(nat_entry_set_slab, set);
2034 }
2035
2036 /*
2037 * This function is called during the checkpointing process.
2038 */
2039 void flush_nat_entries(struct f2fs_sb_info *sbi)
2040 {
2041 struct f2fs_nm_info *nm_i = NM_I(sbi);
2042 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2043 struct f2fs_journal *journal = curseg->journal;
2044 struct nat_entry_set *setvec[SETVEC_SIZE];
2045 struct nat_entry_set *set, *tmp;
2046 unsigned int found;
2047 nid_t set_idx = 0;
2048 LIST_HEAD(sets);
2049
2050 if (!nm_i->dirty_nat_cnt)
2051 return;
2052
2053 down_write(&nm_i->nat_tree_lock);
2054
2055 /*
2056 * if there are no enough space in journal to store dirty nat
2057 * entries, remove all entries from journal and merge them
2058 * into nat entry set.
2059 */
2060 if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2061 remove_nats_in_journal(sbi);
2062
2063 while ((found = __gang_lookup_nat_set(nm_i,
2064 set_idx, SETVEC_SIZE, setvec))) {
2065 unsigned idx;
2066 set_idx = setvec[found - 1]->set + 1;
2067 for (idx = 0; idx < found; idx++)
2068 __adjust_nat_entry_set(setvec[idx], &sets,
2069 MAX_NAT_JENTRIES(journal));
2070 }
2071
2072 /* flush dirty nats in nat entry set */
2073 list_for_each_entry_safe(set, tmp, &sets, set_list)
2074 __flush_nat_entry_set(sbi, set);
2075
2076 up_write(&nm_i->nat_tree_lock);
2077
2078 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
2079 }
2080
2081 static int init_node_manager(struct f2fs_sb_info *sbi)
2082 {
2083 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2084 struct f2fs_nm_info *nm_i = NM_I(sbi);
2085 unsigned char *version_bitmap;
2086 unsigned int nat_segs, nat_blocks;
2087
2088 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2089
2090 /* segment_count_nat includes pair segment so divide to 2. */
2091 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2092 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2093
2094 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
2095
2096 /* not used nids: 0, node, meta, (and root counted as valid node) */
2097 nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
2098 nm_i->fcnt = 0;
2099 nm_i->nat_cnt = 0;
2100 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2101 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2102 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2103
2104 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2105 INIT_LIST_HEAD(&nm_i->free_nid_list);
2106 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2107 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2108 INIT_LIST_HEAD(&nm_i->nat_entries);
2109
2110 mutex_init(&nm_i->build_lock);
2111 spin_lock_init(&nm_i->free_nid_list_lock);
2112 init_rwsem(&nm_i->nat_tree_lock);
2113
2114 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2115 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2116 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2117 if (!version_bitmap)
2118 return -EFAULT;
2119
2120 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2121 GFP_KERNEL);
2122 if (!nm_i->nat_bitmap)
2123 return -ENOMEM;
2124 return 0;
2125 }
2126
2127 int build_node_manager(struct f2fs_sb_info *sbi)
2128 {
2129 int err;
2130
2131 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2132 if (!sbi->nm_info)
2133 return -ENOMEM;
2134
2135 err = init_node_manager(sbi);
2136 if (err)
2137 return err;
2138
2139 build_free_nids(sbi);
2140 return 0;
2141 }
2142
2143 void destroy_node_manager(struct f2fs_sb_info *sbi)
2144 {
2145 struct f2fs_nm_info *nm_i = NM_I(sbi);
2146 struct free_nid *i, *next_i;
2147 struct nat_entry *natvec[NATVEC_SIZE];
2148 struct nat_entry_set *setvec[SETVEC_SIZE];
2149 nid_t nid = 0;
2150 unsigned int found;
2151
2152 if (!nm_i)
2153 return;
2154
2155 /* destroy free nid list */
2156 spin_lock(&nm_i->free_nid_list_lock);
2157 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2158 f2fs_bug_on(sbi, i->state == NID_ALLOC);
2159 __del_from_free_nid_list(nm_i, i);
2160 nm_i->fcnt--;
2161 spin_unlock(&nm_i->free_nid_list_lock);
2162 kmem_cache_free(free_nid_slab, i);
2163 spin_lock(&nm_i->free_nid_list_lock);
2164 }
2165 f2fs_bug_on(sbi, nm_i->fcnt);
2166 spin_unlock(&nm_i->free_nid_list_lock);
2167
2168 /* destroy nat cache */
2169 down_write(&nm_i->nat_tree_lock);
2170 while ((found = __gang_lookup_nat_cache(nm_i,
2171 nid, NATVEC_SIZE, natvec))) {
2172 unsigned idx;
2173
2174 nid = nat_get_nid(natvec[found - 1]) + 1;
2175 for (idx = 0; idx < found; idx++)
2176 __del_from_nat_cache(nm_i, natvec[idx]);
2177 }
2178 f2fs_bug_on(sbi, nm_i->nat_cnt);
2179
2180 /* destroy nat set cache */
2181 nid = 0;
2182 while ((found = __gang_lookup_nat_set(nm_i,
2183 nid, SETVEC_SIZE, setvec))) {
2184 unsigned idx;
2185
2186 nid = setvec[found - 1]->set + 1;
2187 for (idx = 0; idx < found; idx++) {
2188 /* entry_cnt is not zero, when cp_error was occurred */
2189 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2190 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2191 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2192 }
2193 }
2194 up_write(&nm_i->nat_tree_lock);
2195
2196 kfree(nm_i->nat_bitmap);
2197 sbi->nm_info = NULL;
2198 kfree(nm_i);
2199 }
2200
2201 int __init create_node_manager_caches(void)
2202 {
2203 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2204 sizeof(struct nat_entry));
2205 if (!nat_entry_slab)
2206 goto fail;
2207
2208 free_nid_slab = f2fs_kmem_cache_create("free_nid",
2209 sizeof(struct free_nid));
2210 if (!free_nid_slab)
2211 goto destroy_nat_entry;
2212
2213 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2214 sizeof(struct nat_entry_set));
2215 if (!nat_entry_set_slab)
2216 goto destroy_free_nid;
2217 return 0;
2218
2219 destroy_free_nid:
2220 kmem_cache_destroy(free_nid_slab);
2221 destroy_nat_entry:
2222 kmem_cache_destroy(nat_entry_slab);
2223 fail:
2224 return -ENOMEM;
2225 }
2226
2227 void destroy_node_manager_caches(void)
2228 {
2229 kmem_cache_destroy(nat_entry_set_slab);
2230 kmem_cache_destroy(free_nid_slab);
2231 kmem_cache_destroy(nat_entry_slab);
2232 }
This page took 0.078258 seconds and 5 git commands to generate.