f2fs: free radix_tree_nodes used by nat_set entries
[deliverable/linux.git] / fs / f2fs / node.c
1 /*
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
24
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
26
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
30
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32 {
33 struct f2fs_nm_info *nm_i = NM_I(sbi);
34 struct sysinfo val;
35 unsigned long avail_ram;
36 unsigned long mem_size = 0;
37 bool res = false;
38
39 si_meminfo(&val);
40
41 /* only uses low memory */
42 avail_ram = val.totalram - val.totalhigh;
43
44 /* give 25%, 25%, 50%, 50% memory for each components respectively */
45 if (type == FREE_NIDS) {
46 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
47 PAGE_CACHE_SHIFT;
48 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
49 } else if (type == NAT_ENTRIES) {
50 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
51 PAGE_CACHE_SHIFT;
52 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
53 } else if (type == DIRTY_DENTS) {
54 if (sbi->sb->s_bdi->dirty_exceeded)
55 return false;
56 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
57 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
58 } else if (type == INO_ENTRIES) {
59 int i;
60
61 for (i = 0; i <= UPDATE_INO; i++)
62 mem_size += (sbi->im[i].ino_num *
63 sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
64 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
65 } else {
66 if (sbi->sb->s_bdi->dirty_exceeded)
67 return false;
68 }
69 return res;
70 }
71
72 static void clear_node_page_dirty(struct page *page)
73 {
74 struct address_space *mapping = page->mapping;
75 unsigned int long flags;
76
77 if (PageDirty(page)) {
78 spin_lock_irqsave(&mapping->tree_lock, flags);
79 radix_tree_tag_clear(&mapping->page_tree,
80 page_index(page),
81 PAGECACHE_TAG_DIRTY);
82 spin_unlock_irqrestore(&mapping->tree_lock, flags);
83
84 clear_page_dirty_for_io(page);
85 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
86 }
87 ClearPageUptodate(page);
88 }
89
90 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
91 {
92 pgoff_t index = current_nat_addr(sbi, nid);
93 return get_meta_page(sbi, index);
94 }
95
96 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
97 {
98 struct page *src_page;
99 struct page *dst_page;
100 pgoff_t src_off;
101 pgoff_t dst_off;
102 void *src_addr;
103 void *dst_addr;
104 struct f2fs_nm_info *nm_i = NM_I(sbi);
105
106 src_off = current_nat_addr(sbi, nid);
107 dst_off = next_nat_addr(sbi, src_off);
108
109 /* get current nat block page with lock */
110 src_page = get_meta_page(sbi, src_off);
111 dst_page = grab_meta_page(sbi, dst_off);
112 f2fs_bug_on(sbi, PageDirty(src_page));
113
114 src_addr = page_address(src_page);
115 dst_addr = page_address(dst_page);
116 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
117 set_page_dirty(dst_page);
118 f2fs_put_page(src_page, 1);
119
120 set_to_next_nat(nm_i, nid);
121
122 return dst_page;
123 }
124
125 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
126 {
127 return radix_tree_lookup(&nm_i->nat_root, n);
128 }
129
130 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
131 nid_t start, unsigned int nr, struct nat_entry **ep)
132 {
133 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
134 }
135
136 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
137 {
138 list_del(&e->list);
139 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
140 nm_i->nat_cnt--;
141 kmem_cache_free(nat_entry_slab, e);
142 }
143
144 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
145 struct nat_entry *ne)
146 {
147 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
148 struct nat_entry_set *head;
149
150 if (get_nat_flag(ne, IS_DIRTY))
151 return;
152
153 head = radix_tree_lookup(&nm_i->nat_set_root, set);
154 if (!head) {
155 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_ATOMIC);
156
157 INIT_LIST_HEAD(&head->entry_list);
158 INIT_LIST_HEAD(&head->set_list);
159 head->set = set;
160 head->entry_cnt = 0;
161 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
162 }
163 list_move_tail(&ne->list, &head->entry_list);
164 nm_i->dirty_nat_cnt++;
165 head->entry_cnt++;
166 set_nat_flag(ne, IS_DIRTY, true);
167 }
168
169 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
170 struct nat_entry *ne)
171 {
172 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
173 struct nat_entry_set *head;
174
175 head = radix_tree_lookup(&nm_i->nat_set_root, set);
176 if (head) {
177 list_move_tail(&ne->list, &nm_i->nat_entries);
178 set_nat_flag(ne, IS_DIRTY, false);
179 head->entry_cnt--;
180 nm_i->dirty_nat_cnt--;
181 }
182 }
183
184 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
185 nid_t start, unsigned int nr, struct nat_entry_set **ep)
186 {
187 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
188 start, nr);
189 }
190
191 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
192 {
193 struct f2fs_nm_info *nm_i = NM_I(sbi);
194 struct nat_entry *e;
195 bool is_cp = true;
196
197 down_read(&nm_i->nat_tree_lock);
198 e = __lookup_nat_cache(nm_i, nid);
199 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
200 is_cp = false;
201 up_read(&nm_i->nat_tree_lock);
202 return is_cp;
203 }
204
205 bool has_fsynced_inode(struct f2fs_sb_info *sbi, nid_t ino)
206 {
207 struct f2fs_nm_info *nm_i = NM_I(sbi);
208 struct nat_entry *e;
209 bool fsynced = false;
210
211 down_read(&nm_i->nat_tree_lock);
212 e = __lookup_nat_cache(nm_i, ino);
213 if (e && get_nat_flag(e, HAS_FSYNCED_INODE))
214 fsynced = true;
215 up_read(&nm_i->nat_tree_lock);
216 return fsynced;
217 }
218
219 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
220 {
221 struct f2fs_nm_info *nm_i = NM_I(sbi);
222 struct nat_entry *e;
223 bool need_update = true;
224
225 down_read(&nm_i->nat_tree_lock);
226 e = __lookup_nat_cache(nm_i, ino);
227 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
228 (get_nat_flag(e, IS_CHECKPOINTED) ||
229 get_nat_flag(e, HAS_FSYNCED_INODE)))
230 need_update = false;
231 up_read(&nm_i->nat_tree_lock);
232 return need_update;
233 }
234
235 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
236 {
237 struct nat_entry *new;
238
239 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
240 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
241 memset(new, 0, sizeof(struct nat_entry));
242 nat_set_nid(new, nid);
243 nat_reset_flag(new);
244 list_add_tail(&new->list, &nm_i->nat_entries);
245 nm_i->nat_cnt++;
246 return new;
247 }
248
249 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
250 struct f2fs_nat_entry *ne)
251 {
252 struct nat_entry *e;
253
254 down_write(&nm_i->nat_tree_lock);
255 e = __lookup_nat_cache(nm_i, nid);
256 if (!e) {
257 e = grab_nat_entry(nm_i, nid);
258 node_info_from_raw_nat(&e->ni, ne);
259 }
260 up_write(&nm_i->nat_tree_lock);
261 }
262
263 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
264 block_t new_blkaddr, bool fsync_done)
265 {
266 struct f2fs_nm_info *nm_i = NM_I(sbi);
267 struct nat_entry *e;
268
269 down_write(&nm_i->nat_tree_lock);
270 e = __lookup_nat_cache(nm_i, ni->nid);
271 if (!e) {
272 e = grab_nat_entry(nm_i, ni->nid);
273 copy_node_info(&e->ni, ni);
274 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
275 } else if (new_blkaddr == NEW_ADDR) {
276 /*
277 * when nid is reallocated,
278 * previous nat entry can be remained in nat cache.
279 * So, reinitialize it with new information.
280 */
281 copy_node_info(&e->ni, ni);
282 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
283 }
284
285 /* sanity check */
286 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
287 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
288 new_blkaddr == NULL_ADDR);
289 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
290 new_blkaddr == NEW_ADDR);
291 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
292 nat_get_blkaddr(e) != NULL_ADDR &&
293 new_blkaddr == NEW_ADDR);
294
295 /* increment version no as node is removed */
296 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
297 unsigned char version = nat_get_version(e);
298 nat_set_version(e, inc_node_version(version));
299 }
300
301 /* change address */
302 nat_set_blkaddr(e, new_blkaddr);
303 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
304 set_nat_flag(e, IS_CHECKPOINTED, false);
305 __set_nat_cache_dirty(nm_i, e);
306
307 /* update fsync_mark if its inode nat entry is still alive */
308 e = __lookup_nat_cache(nm_i, ni->ino);
309 if (e) {
310 if (fsync_done && ni->nid == ni->ino)
311 set_nat_flag(e, HAS_FSYNCED_INODE, true);
312 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
313 }
314 up_write(&nm_i->nat_tree_lock);
315 }
316
317 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
318 {
319 struct f2fs_nm_info *nm_i = NM_I(sbi);
320
321 if (available_free_memory(sbi, NAT_ENTRIES))
322 return 0;
323
324 down_write(&nm_i->nat_tree_lock);
325 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
326 struct nat_entry *ne;
327 ne = list_first_entry(&nm_i->nat_entries,
328 struct nat_entry, list);
329 __del_from_nat_cache(nm_i, ne);
330 nr_shrink--;
331 }
332 up_write(&nm_i->nat_tree_lock);
333 return nr_shrink;
334 }
335
336 /*
337 * This function always returns success
338 */
339 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
340 {
341 struct f2fs_nm_info *nm_i = NM_I(sbi);
342 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
343 struct f2fs_summary_block *sum = curseg->sum_blk;
344 nid_t start_nid = START_NID(nid);
345 struct f2fs_nat_block *nat_blk;
346 struct page *page = NULL;
347 struct f2fs_nat_entry ne;
348 struct nat_entry *e;
349 int i;
350
351 ni->nid = nid;
352
353 /* Check nat cache */
354 down_read(&nm_i->nat_tree_lock);
355 e = __lookup_nat_cache(nm_i, nid);
356 if (e) {
357 ni->ino = nat_get_ino(e);
358 ni->blk_addr = nat_get_blkaddr(e);
359 ni->version = nat_get_version(e);
360 }
361 up_read(&nm_i->nat_tree_lock);
362 if (e)
363 return;
364
365 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
366
367 /* Check current segment summary */
368 mutex_lock(&curseg->curseg_mutex);
369 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
370 if (i >= 0) {
371 ne = nat_in_journal(sum, i);
372 node_info_from_raw_nat(ni, &ne);
373 }
374 mutex_unlock(&curseg->curseg_mutex);
375 if (i >= 0)
376 goto cache;
377
378 /* Fill node_info from nat page */
379 page = get_current_nat_page(sbi, start_nid);
380 nat_blk = (struct f2fs_nat_block *)page_address(page);
381 ne = nat_blk->entries[nid - start_nid];
382 node_info_from_raw_nat(ni, &ne);
383 f2fs_put_page(page, 1);
384 cache:
385 /* cache nat entry */
386 cache_nat_entry(NM_I(sbi), nid, &ne);
387 }
388
389 /*
390 * The maximum depth is four.
391 * Offset[0] will have raw inode offset.
392 */
393 static int get_node_path(struct f2fs_inode_info *fi, long block,
394 int offset[4], unsigned int noffset[4])
395 {
396 const long direct_index = ADDRS_PER_INODE(fi);
397 const long direct_blks = ADDRS_PER_BLOCK;
398 const long dptrs_per_blk = NIDS_PER_BLOCK;
399 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
400 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
401 int n = 0;
402 int level = 0;
403
404 noffset[0] = 0;
405
406 if (block < direct_index) {
407 offset[n] = block;
408 goto got;
409 }
410 block -= direct_index;
411 if (block < direct_blks) {
412 offset[n++] = NODE_DIR1_BLOCK;
413 noffset[n] = 1;
414 offset[n] = block;
415 level = 1;
416 goto got;
417 }
418 block -= direct_blks;
419 if (block < direct_blks) {
420 offset[n++] = NODE_DIR2_BLOCK;
421 noffset[n] = 2;
422 offset[n] = block;
423 level = 1;
424 goto got;
425 }
426 block -= direct_blks;
427 if (block < indirect_blks) {
428 offset[n++] = NODE_IND1_BLOCK;
429 noffset[n] = 3;
430 offset[n++] = block / direct_blks;
431 noffset[n] = 4 + offset[n - 1];
432 offset[n] = block % direct_blks;
433 level = 2;
434 goto got;
435 }
436 block -= indirect_blks;
437 if (block < indirect_blks) {
438 offset[n++] = NODE_IND2_BLOCK;
439 noffset[n] = 4 + dptrs_per_blk;
440 offset[n++] = block / direct_blks;
441 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
442 offset[n] = block % direct_blks;
443 level = 2;
444 goto got;
445 }
446 block -= indirect_blks;
447 if (block < dindirect_blks) {
448 offset[n++] = NODE_DIND_BLOCK;
449 noffset[n] = 5 + (dptrs_per_blk * 2);
450 offset[n++] = block / indirect_blks;
451 noffset[n] = 6 + (dptrs_per_blk * 2) +
452 offset[n - 1] * (dptrs_per_blk + 1);
453 offset[n++] = (block / direct_blks) % dptrs_per_blk;
454 noffset[n] = 7 + (dptrs_per_blk * 2) +
455 offset[n - 2] * (dptrs_per_blk + 1) +
456 offset[n - 1];
457 offset[n] = block % direct_blks;
458 level = 3;
459 goto got;
460 } else {
461 BUG();
462 }
463 got:
464 return level;
465 }
466
467 /*
468 * Caller should call f2fs_put_dnode(dn).
469 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
470 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
471 * In the case of RDONLY_NODE, we don't need to care about mutex.
472 */
473 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
474 {
475 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
476 struct page *npage[4];
477 struct page *parent;
478 int offset[4];
479 unsigned int noffset[4];
480 nid_t nids[4];
481 int level, i;
482 int err = 0;
483
484 level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
485
486 nids[0] = dn->inode->i_ino;
487 npage[0] = dn->inode_page;
488
489 if (!npage[0]) {
490 npage[0] = get_node_page(sbi, nids[0]);
491 if (IS_ERR(npage[0]))
492 return PTR_ERR(npage[0]);
493 }
494 parent = npage[0];
495 if (level != 0)
496 nids[1] = get_nid(parent, offset[0], true);
497 dn->inode_page = npage[0];
498 dn->inode_page_locked = true;
499
500 /* get indirect or direct nodes */
501 for (i = 1; i <= level; i++) {
502 bool done = false;
503
504 if (!nids[i] && mode == ALLOC_NODE) {
505 /* alloc new node */
506 if (!alloc_nid(sbi, &(nids[i]))) {
507 err = -ENOSPC;
508 goto release_pages;
509 }
510
511 dn->nid = nids[i];
512 npage[i] = new_node_page(dn, noffset[i], NULL);
513 if (IS_ERR(npage[i])) {
514 alloc_nid_failed(sbi, nids[i]);
515 err = PTR_ERR(npage[i]);
516 goto release_pages;
517 }
518
519 set_nid(parent, offset[i - 1], nids[i], i == 1);
520 alloc_nid_done(sbi, nids[i]);
521 done = true;
522 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
523 npage[i] = get_node_page_ra(parent, offset[i - 1]);
524 if (IS_ERR(npage[i])) {
525 err = PTR_ERR(npage[i]);
526 goto release_pages;
527 }
528 done = true;
529 }
530 if (i == 1) {
531 dn->inode_page_locked = false;
532 unlock_page(parent);
533 } else {
534 f2fs_put_page(parent, 1);
535 }
536
537 if (!done) {
538 npage[i] = get_node_page(sbi, nids[i]);
539 if (IS_ERR(npage[i])) {
540 err = PTR_ERR(npage[i]);
541 f2fs_put_page(npage[0], 0);
542 goto release_out;
543 }
544 }
545 if (i < level) {
546 parent = npage[i];
547 nids[i + 1] = get_nid(parent, offset[i], false);
548 }
549 }
550 dn->nid = nids[level];
551 dn->ofs_in_node = offset[level];
552 dn->node_page = npage[level];
553 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
554 return 0;
555
556 release_pages:
557 f2fs_put_page(parent, 1);
558 if (i > 1)
559 f2fs_put_page(npage[0], 0);
560 release_out:
561 dn->inode_page = NULL;
562 dn->node_page = NULL;
563 return err;
564 }
565
566 static void truncate_node(struct dnode_of_data *dn)
567 {
568 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
569 struct node_info ni;
570
571 get_node_info(sbi, dn->nid, &ni);
572 if (dn->inode->i_blocks == 0) {
573 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
574 goto invalidate;
575 }
576 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
577
578 /* Deallocate node address */
579 invalidate_blocks(sbi, ni.blk_addr);
580 dec_valid_node_count(sbi, dn->inode);
581 set_node_addr(sbi, &ni, NULL_ADDR, false);
582
583 if (dn->nid == dn->inode->i_ino) {
584 remove_orphan_inode(sbi, dn->nid);
585 dec_valid_inode_count(sbi);
586 } else {
587 sync_inode_page(dn);
588 }
589 invalidate:
590 clear_node_page_dirty(dn->node_page);
591 F2FS_SET_SB_DIRT(sbi);
592
593 f2fs_put_page(dn->node_page, 1);
594
595 invalidate_mapping_pages(NODE_MAPPING(sbi),
596 dn->node_page->index, dn->node_page->index);
597
598 dn->node_page = NULL;
599 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
600 }
601
602 static int truncate_dnode(struct dnode_of_data *dn)
603 {
604 struct page *page;
605
606 if (dn->nid == 0)
607 return 1;
608
609 /* get direct node */
610 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
611 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
612 return 1;
613 else if (IS_ERR(page))
614 return PTR_ERR(page);
615
616 /* Make dnode_of_data for parameter */
617 dn->node_page = page;
618 dn->ofs_in_node = 0;
619 truncate_data_blocks(dn);
620 truncate_node(dn);
621 return 1;
622 }
623
624 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
625 int ofs, int depth)
626 {
627 struct dnode_of_data rdn = *dn;
628 struct page *page;
629 struct f2fs_node *rn;
630 nid_t child_nid;
631 unsigned int child_nofs;
632 int freed = 0;
633 int i, ret;
634
635 if (dn->nid == 0)
636 return NIDS_PER_BLOCK + 1;
637
638 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
639
640 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
641 if (IS_ERR(page)) {
642 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
643 return PTR_ERR(page);
644 }
645
646 rn = F2FS_NODE(page);
647 if (depth < 3) {
648 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
649 child_nid = le32_to_cpu(rn->in.nid[i]);
650 if (child_nid == 0)
651 continue;
652 rdn.nid = child_nid;
653 ret = truncate_dnode(&rdn);
654 if (ret < 0)
655 goto out_err;
656 set_nid(page, i, 0, false);
657 }
658 } else {
659 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
660 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
661 child_nid = le32_to_cpu(rn->in.nid[i]);
662 if (child_nid == 0) {
663 child_nofs += NIDS_PER_BLOCK + 1;
664 continue;
665 }
666 rdn.nid = child_nid;
667 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
668 if (ret == (NIDS_PER_BLOCK + 1)) {
669 set_nid(page, i, 0, false);
670 child_nofs += ret;
671 } else if (ret < 0 && ret != -ENOENT) {
672 goto out_err;
673 }
674 }
675 freed = child_nofs;
676 }
677
678 if (!ofs) {
679 /* remove current indirect node */
680 dn->node_page = page;
681 truncate_node(dn);
682 freed++;
683 } else {
684 f2fs_put_page(page, 1);
685 }
686 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
687 return freed;
688
689 out_err:
690 f2fs_put_page(page, 1);
691 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
692 return ret;
693 }
694
695 static int truncate_partial_nodes(struct dnode_of_data *dn,
696 struct f2fs_inode *ri, int *offset, int depth)
697 {
698 struct page *pages[2];
699 nid_t nid[3];
700 nid_t child_nid;
701 int err = 0;
702 int i;
703 int idx = depth - 2;
704
705 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
706 if (!nid[0])
707 return 0;
708
709 /* get indirect nodes in the path */
710 for (i = 0; i < idx + 1; i++) {
711 /* reference count'll be increased */
712 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
713 if (IS_ERR(pages[i])) {
714 err = PTR_ERR(pages[i]);
715 idx = i - 1;
716 goto fail;
717 }
718 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
719 }
720
721 /* free direct nodes linked to a partial indirect node */
722 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
723 child_nid = get_nid(pages[idx], i, false);
724 if (!child_nid)
725 continue;
726 dn->nid = child_nid;
727 err = truncate_dnode(dn);
728 if (err < 0)
729 goto fail;
730 set_nid(pages[idx], i, 0, false);
731 }
732
733 if (offset[idx + 1] == 0) {
734 dn->node_page = pages[idx];
735 dn->nid = nid[idx];
736 truncate_node(dn);
737 } else {
738 f2fs_put_page(pages[idx], 1);
739 }
740 offset[idx]++;
741 offset[idx + 1] = 0;
742 idx--;
743 fail:
744 for (i = idx; i >= 0; i--)
745 f2fs_put_page(pages[i], 1);
746
747 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
748
749 return err;
750 }
751
752 /*
753 * All the block addresses of data and nodes should be nullified.
754 */
755 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
756 {
757 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
758 int err = 0, cont = 1;
759 int level, offset[4], noffset[4];
760 unsigned int nofs = 0;
761 struct f2fs_inode *ri;
762 struct dnode_of_data dn;
763 struct page *page;
764
765 trace_f2fs_truncate_inode_blocks_enter(inode, from);
766
767 level = get_node_path(F2FS_I(inode), from, offset, noffset);
768 restart:
769 page = get_node_page(sbi, inode->i_ino);
770 if (IS_ERR(page)) {
771 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
772 return PTR_ERR(page);
773 }
774
775 set_new_dnode(&dn, inode, page, NULL, 0);
776 unlock_page(page);
777
778 ri = F2FS_INODE(page);
779 switch (level) {
780 case 0:
781 case 1:
782 nofs = noffset[1];
783 break;
784 case 2:
785 nofs = noffset[1];
786 if (!offset[level - 1])
787 goto skip_partial;
788 err = truncate_partial_nodes(&dn, ri, offset, level);
789 if (err < 0 && err != -ENOENT)
790 goto fail;
791 nofs += 1 + NIDS_PER_BLOCK;
792 break;
793 case 3:
794 nofs = 5 + 2 * NIDS_PER_BLOCK;
795 if (!offset[level - 1])
796 goto skip_partial;
797 err = truncate_partial_nodes(&dn, ri, offset, level);
798 if (err < 0 && err != -ENOENT)
799 goto fail;
800 break;
801 default:
802 BUG();
803 }
804
805 skip_partial:
806 while (cont) {
807 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
808 switch (offset[0]) {
809 case NODE_DIR1_BLOCK:
810 case NODE_DIR2_BLOCK:
811 err = truncate_dnode(&dn);
812 break;
813
814 case NODE_IND1_BLOCK:
815 case NODE_IND2_BLOCK:
816 err = truncate_nodes(&dn, nofs, offset[1], 2);
817 break;
818
819 case NODE_DIND_BLOCK:
820 err = truncate_nodes(&dn, nofs, offset[1], 3);
821 cont = 0;
822 break;
823
824 default:
825 BUG();
826 }
827 if (err < 0 && err != -ENOENT)
828 goto fail;
829 if (offset[1] == 0 &&
830 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
831 lock_page(page);
832 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
833 f2fs_put_page(page, 1);
834 goto restart;
835 }
836 f2fs_wait_on_page_writeback(page, NODE);
837 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
838 set_page_dirty(page);
839 unlock_page(page);
840 }
841 offset[1] = 0;
842 offset[0]++;
843 nofs += err;
844 }
845 fail:
846 f2fs_put_page(page, 0);
847 trace_f2fs_truncate_inode_blocks_exit(inode, err);
848 return err > 0 ? 0 : err;
849 }
850
851 int truncate_xattr_node(struct inode *inode, struct page *page)
852 {
853 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
854 nid_t nid = F2FS_I(inode)->i_xattr_nid;
855 struct dnode_of_data dn;
856 struct page *npage;
857
858 if (!nid)
859 return 0;
860
861 npage = get_node_page(sbi, nid);
862 if (IS_ERR(npage))
863 return PTR_ERR(npage);
864
865 F2FS_I(inode)->i_xattr_nid = 0;
866
867 /* need to do checkpoint during fsync */
868 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
869
870 set_new_dnode(&dn, inode, page, npage, nid);
871
872 if (page)
873 dn.inode_page_locked = true;
874 truncate_node(&dn);
875 return 0;
876 }
877
878 /*
879 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
880 * f2fs_unlock_op().
881 */
882 void remove_inode_page(struct inode *inode)
883 {
884 struct dnode_of_data dn;
885
886 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
887 if (get_dnode_of_data(&dn, 0, LOOKUP_NODE))
888 return;
889
890 if (truncate_xattr_node(inode, dn.inode_page)) {
891 f2fs_put_dnode(&dn);
892 return;
893 }
894
895 /* remove potential inline_data blocks */
896 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
897 S_ISLNK(inode->i_mode))
898 truncate_data_blocks_range(&dn, 1);
899
900 /* 0 is possible, after f2fs_new_inode() has failed */
901 f2fs_bug_on(F2FS_I_SB(inode),
902 inode->i_blocks != 0 && inode->i_blocks != 1);
903
904 /* will put inode & node pages */
905 truncate_node(&dn);
906 }
907
908 struct page *new_inode_page(struct inode *inode)
909 {
910 struct dnode_of_data dn;
911
912 /* allocate inode page for new inode */
913 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
914
915 /* caller should f2fs_put_page(page, 1); */
916 return new_node_page(&dn, 0, NULL);
917 }
918
919 struct page *new_node_page(struct dnode_of_data *dn,
920 unsigned int ofs, struct page *ipage)
921 {
922 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
923 struct node_info old_ni, new_ni;
924 struct page *page;
925 int err;
926
927 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
928 return ERR_PTR(-EPERM);
929
930 page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
931 if (!page)
932 return ERR_PTR(-ENOMEM);
933
934 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
935 err = -ENOSPC;
936 goto fail;
937 }
938
939 get_node_info(sbi, dn->nid, &old_ni);
940
941 /* Reinitialize old_ni with new node page */
942 f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
943 new_ni = old_ni;
944 new_ni.ino = dn->inode->i_ino;
945 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
946
947 f2fs_wait_on_page_writeback(page, NODE);
948 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
949 set_cold_node(dn->inode, page);
950 SetPageUptodate(page);
951 set_page_dirty(page);
952
953 if (f2fs_has_xattr_block(ofs))
954 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
955
956 dn->node_page = page;
957 if (ipage)
958 update_inode(dn->inode, ipage);
959 else
960 sync_inode_page(dn);
961 if (ofs == 0)
962 inc_valid_inode_count(sbi);
963
964 return page;
965
966 fail:
967 clear_node_page_dirty(page);
968 f2fs_put_page(page, 1);
969 return ERR_PTR(err);
970 }
971
972 /*
973 * Caller should do after getting the following values.
974 * 0: f2fs_put_page(page, 0)
975 * LOCKED_PAGE: f2fs_put_page(page, 1)
976 * error: nothing
977 */
978 static int read_node_page(struct page *page, int rw)
979 {
980 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
981 struct node_info ni;
982 struct f2fs_io_info fio = {
983 .type = NODE,
984 .rw = rw,
985 };
986
987 get_node_info(sbi, page->index, &ni);
988
989 if (unlikely(ni.blk_addr == NULL_ADDR)) {
990 f2fs_put_page(page, 1);
991 return -ENOENT;
992 }
993
994 if (PageUptodate(page))
995 return LOCKED_PAGE;
996
997 fio.blk_addr = ni.blk_addr;
998 return f2fs_submit_page_bio(sbi, page, &fio);
999 }
1000
1001 /*
1002 * Readahead a node page
1003 */
1004 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1005 {
1006 struct page *apage;
1007 int err;
1008
1009 apage = find_get_page(NODE_MAPPING(sbi), nid);
1010 if (apage && PageUptodate(apage)) {
1011 f2fs_put_page(apage, 0);
1012 return;
1013 }
1014 f2fs_put_page(apage, 0);
1015
1016 apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1017 if (!apage)
1018 return;
1019
1020 err = read_node_page(apage, READA);
1021 if (err == 0)
1022 f2fs_put_page(apage, 0);
1023 else if (err == LOCKED_PAGE)
1024 f2fs_put_page(apage, 1);
1025 }
1026
1027 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1028 {
1029 struct page *page;
1030 int err;
1031 repeat:
1032 page = grab_cache_page(NODE_MAPPING(sbi), nid);
1033 if (!page)
1034 return ERR_PTR(-ENOMEM);
1035
1036 err = read_node_page(page, READ_SYNC);
1037 if (err < 0)
1038 return ERR_PTR(err);
1039 else if (err == LOCKED_PAGE)
1040 goto got_it;
1041
1042 lock_page(page);
1043 if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
1044 f2fs_put_page(page, 1);
1045 return ERR_PTR(-EIO);
1046 }
1047 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1048 f2fs_put_page(page, 1);
1049 goto repeat;
1050 }
1051 got_it:
1052 return page;
1053 }
1054
1055 /*
1056 * Return a locked page for the desired node page.
1057 * And, readahead MAX_RA_NODE number of node pages.
1058 */
1059 struct page *get_node_page_ra(struct page *parent, int start)
1060 {
1061 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1062 struct blk_plug plug;
1063 struct page *page;
1064 int err, i, end;
1065 nid_t nid;
1066
1067 /* First, try getting the desired direct node. */
1068 nid = get_nid(parent, start, false);
1069 if (!nid)
1070 return ERR_PTR(-ENOENT);
1071 repeat:
1072 page = grab_cache_page(NODE_MAPPING(sbi), nid);
1073 if (!page)
1074 return ERR_PTR(-ENOMEM);
1075
1076 err = read_node_page(page, READ_SYNC);
1077 if (err < 0)
1078 return ERR_PTR(err);
1079 else if (err == LOCKED_PAGE)
1080 goto page_hit;
1081
1082 blk_start_plug(&plug);
1083
1084 /* Then, try readahead for siblings of the desired node */
1085 end = start + MAX_RA_NODE;
1086 end = min(end, NIDS_PER_BLOCK);
1087 for (i = start + 1; i < end; i++) {
1088 nid = get_nid(parent, i, false);
1089 if (!nid)
1090 continue;
1091 ra_node_page(sbi, nid);
1092 }
1093
1094 blk_finish_plug(&plug);
1095
1096 lock_page(page);
1097 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1098 f2fs_put_page(page, 1);
1099 goto repeat;
1100 }
1101 page_hit:
1102 if (unlikely(!PageUptodate(page))) {
1103 f2fs_put_page(page, 1);
1104 return ERR_PTR(-EIO);
1105 }
1106 return page;
1107 }
1108
1109 void sync_inode_page(struct dnode_of_data *dn)
1110 {
1111 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1112 update_inode(dn->inode, dn->node_page);
1113 } else if (dn->inode_page) {
1114 if (!dn->inode_page_locked)
1115 lock_page(dn->inode_page);
1116 update_inode(dn->inode, dn->inode_page);
1117 if (!dn->inode_page_locked)
1118 unlock_page(dn->inode_page);
1119 } else {
1120 update_inode_page(dn->inode);
1121 }
1122 }
1123
1124 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1125 struct writeback_control *wbc)
1126 {
1127 pgoff_t index, end;
1128 struct pagevec pvec;
1129 int step = ino ? 2 : 0;
1130 int nwritten = 0, wrote = 0;
1131
1132 pagevec_init(&pvec, 0);
1133
1134 next_step:
1135 index = 0;
1136 end = LONG_MAX;
1137
1138 while (index <= end) {
1139 int i, nr_pages;
1140 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1141 PAGECACHE_TAG_DIRTY,
1142 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1143 if (nr_pages == 0)
1144 break;
1145
1146 for (i = 0; i < nr_pages; i++) {
1147 struct page *page = pvec.pages[i];
1148
1149 /*
1150 * flushing sequence with step:
1151 * 0. indirect nodes
1152 * 1. dentry dnodes
1153 * 2. file dnodes
1154 */
1155 if (step == 0 && IS_DNODE(page))
1156 continue;
1157 if (step == 1 && (!IS_DNODE(page) ||
1158 is_cold_node(page)))
1159 continue;
1160 if (step == 2 && (!IS_DNODE(page) ||
1161 !is_cold_node(page)))
1162 continue;
1163
1164 /*
1165 * If an fsync mode,
1166 * we should not skip writing node pages.
1167 */
1168 if (ino && ino_of_node(page) == ino)
1169 lock_page(page);
1170 else if (!trylock_page(page))
1171 continue;
1172
1173 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1174 continue_unlock:
1175 unlock_page(page);
1176 continue;
1177 }
1178 if (ino && ino_of_node(page) != ino)
1179 goto continue_unlock;
1180
1181 if (!PageDirty(page)) {
1182 /* someone wrote it for us */
1183 goto continue_unlock;
1184 }
1185
1186 if (!clear_page_dirty_for_io(page))
1187 goto continue_unlock;
1188
1189 /* called by fsync() */
1190 if (ino && IS_DNODE(page)) {
1191 set_fsync_mark(page, 1);
1192 if (IS_INODE(page)) {
1193 if (!is_checkpointed_node(sbi, ino) &&
1194 !has_fsynced_inode(sbi, ino))
1195 set_dentry_mark(page, 1);
1196 else
1197 set_dentry_mark(page, 0);
1198 }
1199 nwritten++;
1200 } else {
1201 set_fsync_mark(page, 0);
1202 set_dentry_mark(page, 0);
1203 }
1204
1205 if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1206 unlock_page(page);
1207 else
1208 wrote++;
1209
1210 if (--wbc->nr_to_write == 0)
1211 break;
1212 }
1213 pagevec_release(&pvec);
1214 cond_resched();
1215
1216 if (wbc->nr_to_write == 0) {
1217 step = 2;
1218 break;
1219 }
1220 }
1221
1222 if (step < 2) {
1223 step++;
1224 goto next_step;
1225 }
1226
1227 if (wrote)
1228 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1229 return nwritten;
1230 }
1231
1232 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1233 {
1234 pgoff_t index = 0, end = LONG_MAX;
1235 struct pagevec pvec;
1236 int ret2 = 0, ret = 0;
1237
1238 pagevec_init(&pvec, 0);
1239
1240 while (index <= end) {
1241 int i, nr_pages;
1242 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1243 PAGECACHE_TAG_WRITEBACK,
1244 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1245 if (nr_pages == 0)
1246 break;
1247
1248 for (i = 0; i < nr_pages; i++) {
1249 struct page *page = pvec.pages[i];
1250
1251 /* until radix tree lookup accepts end_index */
1252 if (unlikely(page->index > end))
1253 continue;
1254
1255 if (ino && ino_of_node(page) == ino) {
1256 f2fs_wait_on_page_writeback(page, NODE);
1257 if (TestClearPageError(page))
1258 ret = -EIO;
1259 }
1260 }
1261 pagevec_release(&pvec);
1262 cond_resched();
1263 }
1264
1265 if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1266 ret2 = -ENOSPC;
1267 if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1268 ret2 = -EIO;
1269 if (!ret)
1270 ret = ret2;
1271 return ret;
1272 }
1273
1274 static int f2fs_write_node_page(struct page *page,
1275 struct writeback_control *wbc)
1276 {
1277 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1278 nid_t nid;
1279 struct node_info ni;
1280 struct f2fs_io_info fio = {
1281 .type = NODE,
1282 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1283 };
1284
1285 trace_f2fs_writepage(page, NODE);
1286
1287 if (unlikely(sbi->por_doing))
1288 goto redirty_out;
1289 if (unlikely(f2fs_cp_error(sbi)))
1290 goto redirty_out;
1291
1292 f2fs_wait_on_page_writeback(page, NODE);
1293
1294 /* get old block addr of this node page */
1295 nid = nid_of_node(page);
1296 f2fs_bug_on(sbi, page->index != nid);
1297
1298 get_node_info(sbi, nid, &ni);
1299
1300 /* This page is already truncated */
1301 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1302 dec_page_count(sbi, F2FS_DIRTY_NODES);
1303 unlock_page(page);
1304 return 0;
1305 }
1306
1307 if (wbc->for_reclaim) {
1308 if (!down_read_trylock(&sbi->node_write))
1309 goto redirty_out;
1310 } else {
1311 down_read(&sbi->node_write);
1312 }
1313
1314 set_page_writeback(page);
1315 fio.blk_addr = ni.blk_addr;
1316 write_node_page(sbi, page, nid, &fio);
1317 set_node_addr(sbi, &ni, fio.blk_addr, is_fsync_dnode(page));
1318 dec_page_count(sbi, F2FS_DIRTY_NODES);
1319 up_read(&sbi->node_write);
1320 unlock_page(page);
1321
1322 if (wbc->for_reclaim)
1323 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1324
1325 return 0;
1326
1327 redirty_out:
1328 redirty_page_for_writepage(wbc, page);
1329 return AOP_WRITEPAGE_ACTIVATE;
1330 }
1331
1332 static int f2fs_write_node_pages(struct address_space *mapping,
1333 struct writeback_control *wbc)
1334 {
1335 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1336 long diff;
1337
1338 trace_f2fs_writepages(mapping->host, wbc, NODE);
1339
1340 /* balancing f2fs's metadata in background */
1341 f2fs_balance_fs_bg(sbi);
1342
1343 /* collect a number of dirty node pages and write together */
1344 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1345 goto skip_write;
1346
1347 diff = nr_pages_to_write(sbi, NODE, wbc);
1348 wbc->sync_mode = WB_SYNC_NONE;
1349 sync_node_pages(sbi, 0, wbc);
1350 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1351 return 0;
1352
1353 skip_write:
1354 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1355 return 0;
1356 }
1357
1358 static int f2fs_set_node_page_dirty(struct page *page)
1359 {
1360 trace_f2fs_set_page_dirty(page, NODE);
1361
1362 SetPageUptodate(page);
1363 if (!PageDirty(page)) {
1364 __set_page_dirty_nobuffers(page);
1365 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1366 SetPagePrivate(page);
1367 f2fs_trace_pid(page);
1368 return 1;
1369 }
1370 return 0;
1371 }
1372
1373 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1374 unsigned int length)
1375 {
1376 struct inode *inode = page->mapping->host;
1377 if (PageDirty(page))
1378 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_NODES);
1379 ClearPagePrivate(page);
1380 }
1381
1382 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1383 {
1384 ClearPagePrivate(page);
1385 return 1;
1386 }
1387
1388 /*
1389 * Structure of the f2fs node operations
1390 */
1391 const struct address_space_operations f2fs_node_aops = {
1392 .writepage = f2fs_write_node_page,
1393 .writepages = f2fs_write_node_pages,
1394 .set_page_dirty = f2fs_set_node_page_dirty,
1395 .invalidatepage = f2fs_invalidate_node_page,
1396 .releasepage = f2fs_release_node_page,
1397 };
1398
1399 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1400 nid_t n)
1401 {
1402 return radix_tree_lookup(&nm_i->free_nid_root, n);
1403 }
1404
1405 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1406 struct free_nid *i)
1407 {
1408 list_del(&i->list);
1409 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1410 }
1411
1412 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1413 {
1414 struct f2fs_nm_info *nm_i = NM_I(sbi);
1415 struct free_nid *i;
1416 struct nat_entry *ne;
1417 bool allocated = false;
1418
1419 if (!available_free_memory(sbi, FREE_NIDS))
1420 return -1;
1421
1422 /* 0 nid should not be used */
1423 if (unlikely(nid == 0))
1424 return 0;
1425
1426 if (build) {
1427 /* do not add allocated nids */
1428 down_read(&nm_i->nat_tree_lock);
1429 ne = __lookup_nat_cache(nm_i, nid);
1430 if (ne &&
1431 (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1432 nat_get_blkaddr(ne) != NULL_ADDR))
1433 allocated = true;
1434 up_read(&nm_i->nat_tree_lock);
1435 if (allocated)
1436 return 0;
1437 }
1438
1439 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1440 i->nid = nid;
1441 i->state = NID_NEW;
1442
1443 if (radix_tree_preload(GFP_NOFS)) {
1444 kmem_cache_free(free_nid_slab, i);
1445 return 0;
1446 }
1447
1448 spin_lock(&nm_i->free_nid_list_lock);
1449 if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1450 spin_unlock(&nm_i->free_nid_list_lock);
1451 radix_tree_preload_end();
1452 kmem_cache_free(free_nid_slab, i);
1453 return 0;
1454 }
1455 list_add_tail(&i->list, &nm_i->free_nid_list);
1456 nm_i->fcnt++;
1457 spin_unlock(&nm_i->free_nid_list_lock);
1458 radix_tree_preload_end();
1459 return 1;
1460 }
1461
1462 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1463 {
1464 struct free_nid *i;
1465 bool need_free = false;
1466
1467 spin_lock(&nm_i->free_nid_list_lock);
1468 i = __lookup_free_nid_list(nm_i, nid);
1469 if (i && i->state == NID_NEW) {
1470 __del_from_free_nid_list(nm_i, i);
1471 nm_i->fcnt--;
1472 need_free = true;
1473 }
1474 spin_unlock(&nm_i->free_nid_list_lock);
1475
1476 if (need_free)
1477 kmem_cache_free(free_nid_slab, i);
1478 }
1479
1480 static void scan_nat_page(struct f2fs_sb_info *sbi,
1481 struct page *nat_page, nid_t start_nid)
1482 {
1483 struct f2fs_nm_info *nm_i = NM_I(sbi);
1484 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1485 block_t blk_addr;
1486 int i;
1487
1488 i = start_nid % NAT_ENTRY_PER_BLOCK;
1489
1490 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1491
1492 if (unlikely(start_nid >= nm_i->max_nid))
1493 break;
1494
1495 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1496 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1497 if (blk_addr == NULL_ADDR) {
1498 if (add_free_nid(sbi, start_nid, true) < 0)
1499 break;
1500 }
1501 }
1502 }
1503
1504 static void build_free_nids(struct f2fs_sb_info *sbi)
1505 {
1506 struct f2fs_nm_info *nm_i = NM_I(sbi);
1507 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1508 struct f2fs_summary_block *sum = curseg->sum_blk;
1509 int i = 0;
1510 nid_t nid = nm_i->next_scan_nid;
1511
1512 /* Enough entries */
1513 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1514 return;
1515
1516 /* readahead nat pages to be scanned */
1517 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1518
1519 while (1) {
1520 struct page *page = get_current_nat_page(sbi, nid);
1521
1522 scan_nat_page(sbi, page, nid);
1523 f2fs_put_page(page, 1);
1524
1525 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1526 if (unlikely(nid >= nm_i->max_nid))
1527 nid = 0;
1528
1529 if (i++ == FREE_NID_PAGES)
1530 break;
1531 }
1532
1533 /* go to the next free nat pages to find free nids abundantly */
1534 nm_i->next_scan_nid = nid;
1535
1536 /* find free nids from current sum_pages */
1537 mutex_lock(&curseg->curseg_mutex);
1538 for (i = 0; i < nats_in_cursum(sum); i++) {
1539 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1540 nid = le32_to_cpu(nid_in_journal(sum, i));
1541 if (addr == NULL_ADDR)
1542 add_free_nid(sbi, nid, true);
1543 else
1544 remove_free_nid(nm_i, nid);
1545 }
1546 mutex_unlock(&curseg->curseg_mutex);
1547 }
1548
1549 /*
1550 * If this function returns success, caller can obtain a new nid
1551 * from second parameter of this function.
1552 * The returned nid could be used ino as well as nid when inode is created.
1553 */
1554 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1555 {
1556 struct f2fs_nm_info *nm_i = NM_I(sbi);
1557 struct free_nid *i = NULL;
1558 retry:
1559 if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1560 return false;
1561
1562 spin_lock(&nm_i->free_nid_list_lock);
1563
1564 /* We should not use stale free nids created by build_free_nids */
1565 if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1566 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1567 list_for_each_entry(i, &nm_i->free_nid_list, list)
1568 if (i->state == NID_NEW)
1569 break;
1570
1571 f2fs_bug_on(sbi, i->state != NID_NEW);
1572 *nid = i->nid;
1573 i->state = NID_ALLOC;
1574 nm_i->fcnt--;
1575 spin_unlock(&nm_i->free_nid_list_lock);
1576 return true;
1577 }
1578 spin_unlock(&nm_i->free_nid_list_lock);
1579
1580 /* Let's scan nat pages and its caches to get free nids */
1581 mutex_lock(&nm_i->build_lock);
1582 build_free_nids(sbi);
1583 mutex_unlock(&nm_i->build_lock);
1584 goto retry;
1585 }
1586
1587 /*
1588 * alloc_nid() should be called prior to this function.
1589 */
1590 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1591 {
1592 struct f2fs_nm_info *nm_i = NM_I(sbi);
1593 struct free_nid *i;
1594
1595 spin_lock(&nm_i->free_nid_list_lock);
1596 i = __lookup_free_nid_list(nm_i, nid);
1597 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1598 __del_from_free_nid_list(nm_i, i);
1599 spin_unlock(&nm_i->free_nid_list_lock);
1600
1601 kmem_cache_free(free_nid_slab, i);
1602 }
1603
1604 /*
1605 * alloc_nid() should be called prior to this function.
1606 */
1607 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1608 {
1609 struct f2fs_nm_info *nm_i = NM_I(sbi);
1610 struct free_nid *i;
1611 bool need_free = false;
1612
1613 if (!nid)
1614 return;
1615
1616 spin_lock(&nm_i->free_nid_list_lock);
1617 i = __lookup_free_nid_list(nm_i, nid);
1618 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1619 if (!available_free_memory(sbi, FREE_NIDS)) {
1620 __del_from_free_nid_list(nm_i, i);
1621 need_free = true;
1622 } else {
1623 i->state = NID_NEW;
1624 nm_i->fcnt++;
1625 }
1626 spin_unlock(&nm_i->free_nid_list_lock);
1627
1628 if (need_free)
1629 kmem_cache_free(free_nid_slab, i);
1630 }
1631
1632 void recover_inline_xattr(struct inode *inode, struct page *page)
1633 {
1634 void *src_addr, *dst_addr;
1635 size_t inline_size;
1636 struct page *ipage;
1637 struct f2fs_inode *ri;
1638
1639 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1640 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1641
1642 ri = F2FS_INODE(page);
1643 if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1644 clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1645 goto update_inode;
1646 }
1647
1648 dst_addr = inline_xattr_addr(ipage);
1649 src_addr = inline_xattr_addr(page);
1650 inline_size = inline_xattr_size(inode);
1651
1652 f2fs_wait_on_page_writeback(ipage, NODE);
1653 memcpy(dst_addr, src_addr, inline_size);
1654 update_inode:
1655 update_inode(inode, ipage);
1656 f2fs_put_page(ipage, 1);
1657 }
1658
1659 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1660 {
1661 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1662 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1663 nid_t new_xnid = nid_of_node(page);
1664 struct node_info ni;
1665
1666 /* 1: invalidate the previous xattr nid */
1667 if (!prev_xnid)
1668 goto recover_xnid;
1669
1670 /* Deallocate node address */
1671 get_node_info(sbi, prev_xnid, &ni);
1672 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1673 invalidate_blocks(sbi, ni.blk_addr);
1674 dec_valid_node_count(sbi, inode);
1675 set_node_addr(sbi, &ni, NULL_ADDR, false);
1676
1677 recover_xnid:
1678 /* 2: allocate new xattr nid */
1679 if (unlikely(!inc_valid_node_count(sbi, inode)))
1680 f2fs_bug_on(sbi, 1);
1681
1682 remove_free_nid(NM_I(sbi), new_xnid);
1683 get_node_info(sbi, new_xnid, &ni);
1684 ni.ino = inode->i_ino;
1685 set_node_addr(sbi, &ni, NEW_ADDR, false);
1686 F2FS_I(inode)->i_xattr_nid = new_xnid;
1687
1688 /* 3: update xattr blkaddr */
1689 refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1690 set_node_addr(sbi, &ni, blkaddr, false);
1691
1692 update_inode_page(inode);
1693 }
1694
1695 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1696 {
1697 struct f2fs_inode *src, *dst;
1698 nid_t ino = ino_of_node(page);
1699 struct node_info old_ni, new_ni;
1700 struct page *ipage;
1701
1702 get_node_info(sbi, ino, &old_ni);
1703
1704 if (unlikely(old_ni.blk_addr != NULL_ADDR))
1705 return -EINVAL;
1706
1707 ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1708 if (!ipage)
1709 return -ENOMEM;
1710
1711 /* Should not use this inode from free nid list */
1712 remove_free_nid(NM_I(sbi), ino);
1713
1714 SetPageUptodate(ipage);
1715 fill_node_footer(ipage, ino, ino, 0, true);
1716
1717 src = F2FS_INODE(page);
1718 dst = F2FS_INODE(ipage);
1719
1720 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1721 dst->i_size = 0;
1722 dst->i_blocks = cpu_to_le64(1);
1723 dst->i_links = cpu_to_le32(1);
1724 dst->i_xattr_nid = 0;
1725 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
1726
1727 new_ni = old_ni;
1728 new_ni.ino = ino;
1729
1730 if (unlikely(!inc_valid_node_count(sbi, NULL)))
1731 WARN_ON(1);
1732 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1733 inc_valid_inode_count(sbi);
1734 set_page_dirty(ipage);
1735 f2fs_put_page(ipage, 1);
1736 return 0;
1737 }
1738
1739 int restore_node_summary(struct f2fs_sb_info *sbi,
1740 unsigned int segno, struct f2fs_summary_block *sum)
1741 {
1742 struct f2fs_node *rn;
1743 struct f2fs_summary *sum_entry;
1744 block_t addr;
1745 int bio_blocks = MAX_BIO_BLOCKS(sbi);
1746 int i, idx, last_offset, nrpages;
1747
1748 /* scan the node segment */
1749 last_offset = sbi->blocks_per_seg;
1750 addr = START_BLOCK(sbi, segno);
1751 sum_entry = &sum->entries[0];
1752
1753 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
1754 nrpages = min(last_offset - i, bio_blocks);
1755
1756 /* readahead node pages */
1757 ra_meta_pages(sbi, addr, nrpages, META_POR);
1758
1759 for (idx = addr; idx < addr + nrpages; idx++) {
1760 struct page *page = get_meta_page(sbi, idx);
1761
1762 rn = F2FS_NODE(page);
1763 sum_entry->nid = rn->footer.nid;
1764 sum_entry->version = 0;
1765 sum_entry->ofs_in_node = 0;
1766 sum_entry++;
1767 f2fs_put_page(page, 1);
1768 }
1769
1770 invalidate_mapping_pages(META_MAPPING(sbi), addr,
1771 addr + nrpages);
1772 }
1773 return 0;
1774 }
1775
1776 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1777 {
1778 struct f2fs_nm_info *nm_i = NM_I(sbi);
1779 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1780 struct f2fs_summary_block *sum = curseg->sum_blk;
1781 int i;
1782
1783 mutex_lock(&curseg->curseg_mutex);
1784 for (i = 0; i < nats_in_cursum(sum); i++) {
1785 struct nat_entry *ne;
1786 struct f2fs_nat_entry raw_ne;
1787 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1788
1789 raw_ne = nat_in_journal(sum, i);
1790
1791 down_write(&nm_i->nat_tree_lock);
1792 ne = __lookup_nat_cache(nm_i, nid);
1793 if (!ne) {
1794 ne = grab_nat_entry(nm_i, nid);
1795 node_info_from_raw_nat(&ne->ni, &raw_ne);
1796 }
1797 __set_nat_cache_dirty(nm_i, ne);
1798 up_write(&nm_i->nat_tree_lock);
1799 }
1800 update_nats_in_cursum(sum, -i);
1801 mutex_unlock(&curseg->curseg_mutex);
1802 }
1803
1804 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1805 struct list_head *head, int max)
1806 {
1807 struct nat_entry_set *cur;
1808
1809 if (nes->entry_cnt >= max)
1810 goto add_out;
1811
1812 list_for_each_entry(cur, head, set_list) {
1813 if (cur->entry_cnt >= nes->entry_cnt) {
1814 list_add(&nes->set_list, cur->set_list.prev);
1815 return;
1816 }
1817 }
1818 add_out:
1819 list_add_tail(&nes->set_list, head);
1820 }
1821
1822 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1823 struct nat_entry_set *set)
1824 {
1825 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1826 struct f2fs_summary_block *sum = curseg->sum_blk;
1827 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1828 bool to_journal = true;
1829 struct f2fs_nat_block *nat_blk;
1830 struct nat_entry *ne, *cur;
1831 struct page *page = NULL;
1832
1833 /*
1834 * there are two steps to flush nat entries:
1835 * #1, flush nat entries to journal in current hot data summary block.
1836 * #2, flush nat entries to nat page.
1837 */
1838 if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL))
1839 to_journal = false;
1840
1841 if (to_journal) {
1842 mutex_lock(&curseg->curseg_mutex);
1843 } else {
1844 page = get_next_nat_page(sbi, start_nid);
1845 nat_blk = page_address(page);
1846 f2fs_bug_on(sbi, !nat_blk);
1847 }
1848
1849 /* flush dirty nats in nat entry set */
1850 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
1851 struct f2fs_nat_entry *raw_ne;
1852 nid_t nid = nat_get_nid(ne);
1853 int offset;
1854
1855 if (nat_get_blkaddr(ne) == NEW_ADDR)
1856 continue;
1857
1858 if (to_journal) {
1859 offset = lookup_journal_in_cursum(sum,
1860 NAT_JOURNAL, nid, 1);
1861 f2fs_bug_on(sbi, offset < 0);
1862 raw_ne = &nat_in_journal(sum, offset);
1863 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1864 } else {
1865 raw_ne = &nat_blk->entries[nid - start_nid];
1866 }
1867 raw_nat_from_node_info(raw_ne, &ne->ni);
1868
1869 down_write(&NM_I(sbi)->nat_tree_lock);
1870 nat_reset_flag(ne);
1871 __clear_nat_cache_dirty(NM_I(sbi), ne);
1872 up_write(&NM_I(sbi)->nat_tree_lock);
1873
1874 if (nat_get_blkaddr(ne) == NULL_ADDR)
1875 add_free_nid(sbi, nid, false);
1876 }
1877
1878 if (to_journal)
1879 mutex_unlock(&curseg->curseg_mutex);
1880 else
1881 f2fs_put_page(page, 1);
1882
1883 f2fs_bug_on(sbi, set->entry_cnt);
1884
1885 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
1886 kmem_cache_free(nat_entry_set_slab, set);
1887 }
1888
1889 /*
1890 * This function is called during the checkpointing process.
1891 */
1892 void flush_nat_entries(struct f2fs_sb_info *sbi)
1893 {
1894 struct f2fs_nm_info *nm_i = NM_I(sbi);
1895 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1896 struct f2fs_summary_block *sum = curseg->sum_blk;
1897 struct nat_entry_set *setvec[SETVEC_SIZE];
1898 struct nat_entry_set *set, *tmp;
1899 unsigned int found;
1900 nid_t set_idx = 0;
1901 LIST_HEAD(sets);
1902
1903 if (!nm_i->dirty_nat_cnt)
1904 return;
1905 /*
1906 * if there are no enough space in journal to store dirty nat
1907 * entries, remove all entries from journal and merge them
1908 * into nat entry set.
1909 */
1910 if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL))
1911 remove_nats_in_journal(sbi);
1912
1913 while ((found = __gang_lookup_nat_set(nm_i,
1914 set_idx, SETVEC_SIZE, setvec))) {
1915 unsigned idx;
1916 set_idx = setvec[found - 1]->set + 1;
1917 for (idx = 0; idx < found; idx++)
1918 __adjust_nat_entry_set(setvec[idx], &sets,
1919 MAX_NAT_JENTRIES(sum));
1920 }
1921
1922 /* flush dirty nats in nat entry set */
1923 list_for_each_entry_safe(set, tmp, &sets, set_list)
1924 __flush_nat_entry_set(sbi, set);
1925
1926 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
1927 }
1928
1929 static int init_node_manager(struct f2fs_sb_info *sbi)
1930 {
1931 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1932 struct f2fs_nm_info *nm_i = NM_I(sbi);
1933 unsigned char *version_bitmap;
1934 unsigned int nat_segs, nat_blocks;
1935
1936 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1937
1938 /* segment_count_nat includes pair segment so divide to 2. */
1939 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1940 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1941
1942 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1943
1944 /* not used nids: 0, node, meta, (and root counted as valid node) */
1945 nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
1946 nm_i->fcnt = 0;
1947 nm_i->nat_cnt = 0;
1948 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
1949
1950 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1951 INIT_LIST_HEAD(&nm_i->free_nid_list);
1952 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
1953 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
1954 INIT_LIST_HEAD(&nm_i->nat_entries);
1955
1956 mutex_init(&nm_i->build_lock);
1957 spin_lock_init(&nm_i->free_nid_list_lock);
1958 init_rwsem(&nm_i->nat_tree_lock);
1959
1960 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1961 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1962 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1963 if (!version_bitmap)
1964 return -EFAULT;
1965
1966 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1967 GFP_KERNEL);
1968 if (!nm_i->nat_bitmap)
1969 return -ENOMEM;
1970 return 0;
1971 }
1972
1973 int build_node_manager(struct f2fs_sb_info *sbi)
1974 {
1975 int err;
1976
1977 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1978 if (!sbi->nm_info)
1979 return -ENOMEM;
1980
1981 err = init_node_manager(sbi);
1982 if (err)
1983 return err;
1984
1985 build_free_nids(sbi);
1986 return 0;
1987 }
1988
1989 void destroy_node_manager(struct f2fs_sb_info *sbi)
1990 {
1991 struct f2fs_nm_info *nm_i = NM_I(sbi);
1992 struct free_nid *i, *next_i;
1993 struct nat_entry *natvec[NATVEC_SIZE];
1994 struct nat_entry_set *setvec[SETVEC_SIZE];
1995 nid_t nid = 0;
1996 unsigned int found;
1997
1998 if (!nm_i)
1999 return;
2000
2001 /* destroy free nid list */
2002 spin_lock(&nm_i->free_nid_list_lock);
2003 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2004 f2fs_bug_on(sbi, i->state == NID_ALLOC);
2005 __del_from_free_nid_list(nm_i, i);
2006 nm_i->fcnt--;
2007 spin_unlock(&nm_i->free_nid_list_lock);
2008 kmem_cache_free(free_nid_slab, i);
2009 spin_lock(&nm_i->free_nid_list_lock);
2010 }
2011 f2fs_bug_on(sbi, nm_i->fcnt);
2012 spin_unlock(&nm_i->free_nid_list_lock);
2013
2014 /* destroy nat cache */
2015 down_write(&nm_i->nat_tree_lock);
2016 while ((found = __gang_lookup_nat_cache(nm_i,
2017 nid, NATVEC_SIZE, natvec))) {
2018 unsigned idx;
2019
2020 nid = nat_get_nid(natvec[found - 1]) + 1;
2021 for (idx = 0; idx < found; idx++)
2022 __del_from_nat_cache(nm_i, natvec[idx]);
2023 }
2024 f2fs_bug_on(sbi, nm_i->nat_cnt);
2025
2026 /* destroy nat set cache */
2027 nid = 0;
2028 while ((found = __gang_lookup_nat_set(nm_i,
2029 nid, SETVEC_SIZE, setvec))) {
2030 unsigned idx;
2031
2032 nid = setvec[found - 1]->set + 1;
2033 for (idx = 0; idx < found; idx++) {
2034 /* entry_cnt is not zero, when cp_error was occurred */
2035 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2036 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2037 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2038 }
2039 }
2040 up_write(&nm_i->nat_tree_lock);
2041
2042 kfree(nm_i->nat_bitmap);
2043 sbi->nm_info = NULL;
2044 kfree(nm_i);
2045 }
2046
2047 int __init create_node_manager_caches(void)
2048 {
2049 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2050 sizeof(struct nat_entry));
2051 if (!nat_entry_slab)
2052 goto fail;
2053
2054 free_nid_slab = f2fs_kmem_cache_create("free_nid",
2055 sizeof(struct free_nid));
2056 if (!free_nid_slab)
2057 goto destroy_nat_entry;
2058
2059 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2060 sizeof(struct nat_entry_set));
2061 if (!nat_entry_set_slab)
2062 goto destroy_free_nid;
2063 return 0;
2064
2065 destroy_free_nid:
2066 kmem_cache_destroy(free_nid_slab);
2067 destroy_nat_entry:
2068 kmem_cache_destroy(nat_entry_slab);
2069 fail:
2070 return -ENOMEM;
2071 }
2072
2073 void destroy_node_manager_caches(void)
2074 {
2075 kmem_cache_destroy(nat_entry_set_slab);
2076 kmem_cache_destroy(free_nid_slab);
2077 kmem_cache_destroy(nat_entry_slab);
2078 }
This page took 0.084553 seconds and 5 git commands to generate.