f2fs crypto: add encryption support in read/write paths
[deliverable/linux.git] / fs / f2fs / node.c
1 /*
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
24
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
26
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
30
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32 {
33 struct f2fs_nm_info *nm_i = NM_I(sbi);
34 struct sysinfo val;
35 unsigned long avail_ram;
36 unsigned long mem_size = 0;
37 bool res = false;
38
39 si_meminfo(&val);
40
41 /* only uses low memory */
42 avail_ram = val.totalram - val.totalhigh;
43
44 /*
45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
46 */
47 if (type == FREE_NIDS) {
48 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
49 PAGE_CACHE_SHIFT;
50 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51 } else if (type == NAT_ENTRIES) {
52 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53 PAGE_CACHE_SHIFT;
54 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55 } else if (type == DIRTY_DENTS) {
56 if (sbi->sb->s_bdi->dirty_exceeded)
57 return false;
58 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
59 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
60 } else if (type == INO_ENTRIES) {
61 int i;
62
63 for (i = 0; i <= UPDATE_INO; i++)
64 mem_size += (sbi->im[i].ino_num *
65 sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
66 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
67 } else if (type == EXTENT_CACHE) {
68 mem_size = (sbi->total_ext_tree * sizeof(struct extent_tree) +
69 atomic_read(&sbi->total_ext_node) *
70 sizeof(struct extent_node)) >> PAGE_CACHE_SHIFT;
71 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
72 } else {
73 if (sbi->sb->s_bdi->dirty_exceeded)
74 return false;
75 }
76 return res;
77 }
78
79 static void clear_node_page_dirty(struct page *page)
80 {
81 struct address_space *mapping = page->mapping;
82 unsigned int long flags;
83
84 if (PageDirty(page)) {
85 spin_lock_irqsave(&mapping->tree_lock, flags);
86 radix_tree_tag_clear(&mapping->page_tree,
87 page_index(page),
88 PAGECACHE_TAG_DIRTY);
89 spin_unlock_irqrestore(&mapping->tree_lock, flags);
90
91 clear_page_dirty_for_io(page);
92 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
93 }
94 ClearPageUptodate(page);
95 }
96
97 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
98 {
99 pgoff_t index = current_nat_addr(sbi, nid);
100 return get_meta_page(sbi, index);
101 }
102
103 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
104 {
105 struct page *src_page;
106 struct page *dst_page;
107 pgoff_t src_off;
108 pgoff_t dst_off;
109 void *src_addr;
110 void *dst_addr;
111 struct f2fs_nm_info *nm_i = NM_I(sbi);
112
113 src_off = current_nat_addr(sbi, nid);
114 dst_off = next_nat_addr(sbi, src_off);
115
116 /* get current nat block page with lock */
117 src_page = get_meta_page(sbi, src_off);
118 dst_page = grab_meta_page(sbi, dst_off);
119 f2fs_bug_on(sbi, PageDirty(src_page));
120
121 src_addr = page_address(src_page);
122 dst_addr = page_address(dst_page);
123 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
124 set_page_dirty(dst_page);
125 f2fs_put_page(src_page, 1);
126
127 set_to_next_nat(nm_i, nid);
128
129 return dst_page;
130 }
131
132 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
133 {
134 return radix_tree_lookup(&nm_i->nat_root, n);
135 }
136
137 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
138 nid_t start, unsigned int nr, struct nat_entry **ep)
139 {
140 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
141 }
142
143 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
144 {
145 list_del(&e->list);
146 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
147 nm_i->nat_cnt--;
148 kmem_cache_free(nat_entry_slab, e);
149 }
150
151 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
152 struct nat_entry *ne)
153 {
154 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
155 struct nat_entry_set *head;
156
157 if (get_nat_flag(ne, IS_DIRTY))
158 return;
159
160 head = radix_tree_lookup(&nm_i->nat_set_root, set);
161 if (!head) {
162 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_ATOMIC);
163
164 INIT_LIST_HEAD(&head->entry_list);
165 INIT_LIST_HEAD(&head->set_list);
166 head->set = set;
167 head->entry_cnt = 0;
168 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
169 }
170 list_move_tail(&ne->list, &head->entry_list);
171 nm_i->dirty_nat_cnt++;
172 head->entry_cnt++;
173 set_nat_flag(ne, IS_DIRTY, true);
174 }
175
176 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
177 struct nat_entry *ne)
178 {
179 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
180 struct nat_entry_set *head;
181
182 head = radix_tree_lookup(&nm_i->nat_set_root, set);
183 if (head) {
184 list_move_tail(&ne->list, &nm_i->nat_entries);
185 set_nat_flag(ne, IS_DIRTY, false);
186 head->entry_cnt--;
187 nm_i->dirty_nat_cnt--;
188 }
189 }
190
191 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
192 nid_t start, unsigned int nr, struct nat_entry_set **ep)
193 {
194 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
195 start, nr);
196 }
197
198 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
199 {
200 struct f2fs_nm_info *nm_i = NM_I(sbi);
201 struct nat_entry *e;
202 bool need = false;
203
204 down_read(&nm_i->nat_tree_lock);
205 e = __lookup_nat_cache(nm_i, nid);
206 if (e) {
207 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
208 !get_nat_flag(e, HAS_FSYNCED_INODE))
209 need = true;
210 }
211 up_read(&nm_i->nat_tree_lock);
212 return need;
213 }
214
215 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
216 {
217 struct f2fs_nm_info *nm_i = NM_I(sbi);
218 struct nat_entry *e;
219 bool is_cp = true;
220
221 down_read(&nm_i->nat_tree_lock);
222 e = __lookup_nat_cache(nm_i, nid);
223 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
224 is_cp = false;
225 up_read(&nm_i->nat_tree_lock);
226 return is_cp;
227 }
228
229 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
230 {
231 struct f2fs_nm_info *nm_i = NM_I(sbi);
232 struct nat_entry *e;
233 bool need_update = true;
234
235 down_read(&nm_i->nat_tree_lock);
236 e = __lookup_nat_cache(nm_i, ino);
237 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
238 (get_nat_flag(e, IS_CHECKPOINTED) ||
239 get_nat_flag(e, HAS_FSYNCED_INODE)))
240 need_update = false;
241 up_read(&nm_i->nat_tree_lock);
242 return need_update;
243 }
244
245 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
246 {
247 struct nat_entry *new;
248
249 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
250 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
251 memset(new, 0, sizeof(struct nat_entry));
252 nat_set_nid(new, nid);
253 nat_reset_flag(new);
254 list_add_tail(&new->list, &nm_i->nat_entries);
255 nm_i->nat_cnt++;
256 return new;
257 }
258
259 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
260 struct f2fs_nat_entry *ne)
261 {
262 struct nat_entry *e;
263
264 down_write(&nm_i->nat_tree_lock);
265 e = __lookup_nat_cache(nm_i, nid);
266 if (!e) {
267 e = grab_nat_entry(nm_i, nid);
268 node_info_from_raw_nat(&e->ni, ne);
269 }
270 up_write(&nm_i->nat_tree_lock);
271 }
272
273 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
274 block_t new_blkaddr, bool fsync_done)
275 {
276 struct f2fs_nm_info *nm_i = NM_I(sbi);
277 struct nat_entry *e;
278
279 down_write(&nm_i->nat_tree_lock);
280 e = __lookup_nat_cache(nm_i, ni->nid);
281 if (!e) {
282 e = grab_nat_entry(nm_i, ni->nid);
283 copy_node_info(&e->ni, ni);
284 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
285 } else if (new_blkaddr == NEW_ADDR) {
286 /*
287 * when nid is reallocated,
288 * previous nat entry can be remained in nat cache.
289 * So, reinitialize it with new information.
290 */
291 copy_node_info(&e->ni, ni);
292 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
293 }
294
295 /* sanity check */
296 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
297 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
298 new_blkaddr == NULL_ADDR);
299 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
300 new_blkaddr == NEW_ADDR);
301 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
302 nat_get_blkaddr(e) != NULL_ADDR &&
303 new_blkaddr == NEW_ADDR);
304
305 /* increment version no as node is removed */
306 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
307 unsigned char version = nat_get_version(e);
308 nat_set_version(e, inc_node_version(version));
309 }
310
311 /* change address */
312 nat_set_blkaddr(e, new_blkaddr);
313 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
314 set_nat_flag(e, IS_CHECKPOINTED, false);
315 __set_nat_cache_dirty(nm_i, e);
316
317 /* update fsync_mark if its inode nat entry is still alive */
318 if (ni->nid != ni->ino)
319 e = __lookup_nat_cache(nm_i, ni->ino);
320 if (e) {
321 if (fsync_done && ni->nid == ni->ino)
322 set_nat_flag(e, HAS_FSYNCED_INODE, true);
323 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
324 }
325 up_write(&nm_i->nat_tree_lock);
326 }
327
328 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
329 {
330 struct f2fs_nm_info *nm_i = NM_I(sbi);
331
332 if (available_free_memory(sbi, NAT_ENTRIES))
333 return 0;
334
335 down_write(&nm_i->nat_tree_lock);
336 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
337 struct nat_entry *ne;
338 ne = list_first_entry(&nm_i->nat_entries,
339 struct nat_entry, list);
340 __del_from_nat_cache(nm_i, ne);
341 nr_shrink--;
342 }
343 up_write(&nm_i->nat_tree_lock);
344 return nr_shrink;
345 }
346
347 /*
348 * This function always returns success
349 */
350 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
351 {
352 struct f2fs_nm_info *nm_i = NM_I(sbi);
353 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
354 struct f2fs_summary_block *sum = curseg->sum_blk;
355 nid_t start_nid = START_NID(nid);
356 struct f2fs_nat_block *nat_blk;
357 struct page *page = NULL;
358 struct f2fs_nat_entry ne;
359 struct nat_entry *e;
360 int i;
361
362 ni->nid = nid;
363
364 /* Check nat cache */
365 down_read(&nm_i->nat_tree_lock);
366 e = __lookup_nat_cache(nm_i, nid);
367 if (e) {
368 ni->ino = nat_get_ino(e);
369 ni->blk_addr = nat_get_blkaddr(e);
370 ni->version = nat_get_version(e);
371 }
372 up_read(&nm_i->nat_tree_lock);
373 if (e)
374 return;
375
376 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
377
378 /* Check current segment summary */
379 mutex_lock(&curseg->curseg_mutex);
380 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
381 if (i >= 0) {
382 ne = nat_in_journal(sum, i);
383 node_info_from_raw_nat(ni, &ne);
384 }
385 mutex_unlock(&curseg->curseg_mutex);
386 if (i >= 0)
387 goto cache;
388
389 /* Fill node_info from nat page */
390 page = get_current_nat_page(sbi, start_nid);
391 nat_blk = (struct f2fs_nat_block *)page_address(page);
392 ne = nat_blk->entries[nid - start_nid];
393 node_info_from_raw_nat(ni, &ne);
394 f2fs_put_page(page, 1);
395 cache:
396 /* cache nat entry */
397 cache_nat_entry(NM_I(sbi), nid, &ne);
398 }
399
400 /*
401 * The maximum depth is four.
402 * Offset[0] will have raw inode offset.
403 */
404 static int get_node_path(struct f2fs_inode_info *fi, long block,
405 int offset[4], unsigned int noffset[4])
406 {
407 const long direct_index = ADDRS_PER_INODE(fi);
408 const long direct_blks = ADDRS_PER_BLOCK;
409 const long dptrs_per_blk = NIDS_PER_BLOCK;
410 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
411 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
412 int n = 0;
413 int level = 0;
414
415 noffset[0] = 0;
416
417 if (block < direct_index) {
418 offset[n] = block;
419 goto got;
420 }
421 block -= direct_index;
422 if (block < direct_blks) {
423 offset[n++] = NODE_DIR1_BLOCK;
424 noffset[n] = 1;
425 offset[n] = block;
426 level = 1;
427 goto got;
428 }
429 block -= direct_blks;
430 if (block < direct_blks) {
431 offset[n++] = NODE_DIR2_BLOCK;
432 noffset[n] = 2;
433 offset[n] = block;
434 level = 1;
435 goto got;
436 }
437 block -= direct_blks;
438 if (block < indirect_blks) {
439 offset[n++] = NODE_IND1_BLOCK;
440 noffset[n] = 3;
441 offset[n++] = block / direct_blks;
442 noffset[n] = 4 + offset[n - 1];
443 offset[n] = block % direct_blks;
444 level = 2;
445 goto got;
446 }
447 block -= indirect_blks;
448 if (block < indirect_blks) {
449 offset[n++] = NODE_IND2_BLOCK;
450 noffset[n] = 4 + dptrs_per_blk;
451 offset[n++] = block / direct_blks;
452 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
453 offset[n] = block % direct_blks;
454 level = 2;
455 goto got;
456 }
457 block -= indirect_blks;
458 if (block < dindirect_blks) {
459 offset[n++] = NODE_DIND_BLOCK;
460 noffset[n] = 5 + (dptrs_per_blk * 2);
461 offset[n++] = block / indirect_blks;
462 noffset[n] = 6 + (dptrs_per_blk * 2) +
463 offset[n - 1] * (dptrs_per_blk + 1);
464 offset[n++] = (block / direct_blks) % dptrs_per_blk;
465 noffset[n] = 7 + (dptrs_per_blk * 2) +
466 offset[n - 2] * (dptrs_per_blk + 1) +
467 offset[n - 1];
468 offset[n] = block % direct_blks;
469 level = 3;
470 goto got;
471 } else {
472 BUG();
473 }
474 got:
475 return level;
476 }
477
478 /*
479 * Caller should call f2fs_put_dnode(dn).
480 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
481 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
482 * In the case of RDONLY_NODE, we don't need to care about mutex.
483 */
484 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
485 {
486 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
487 struct page *npage[4];
488 struct page *parent = NULL;
489 int offset[4];
490 unsigned int noffset[4];
491 nid_t nids[4];
492 int level, i;
493 int err = 0;
494
495 level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
496
497 nids[0] = dn->inode->i_ino;
498 npage[0] = dn->inode_page;
499
500 if (!npage[0]) {
501 npage[0] = get_node_page(sbi, nids[0]);
502 if (IS_ERR(npage[0]))
503 return PTR_ERR(npage[0]);
504 }
505
506 /* if inline_data is set, should not report any block indices */
507 if (f2fs_has_inline_data(dn->inode) && index) {
508 err = -ENOENT;
509 f2fs_put_page(npage[0], 1);
510 goto release_out;
511 }
512
513 parent = npage[0];
514 if (level != 0)
515 nids[1] = get_nid(parent, offset[0], true);
516 dn->inode_page = npage[0];
517 dn->inode_page_locked = true;
518
519 /* get indirect or direct nodes */
520 for (i = 1; i <= level; i++) {
521 bool done = false;
522
523 if (!nids[i] && mode == ALLOC_NODE) {
524 /* alloc new node */
525 if (!alloc_nid(sbi, &(nids[i]))) {
526 err = -ENOSPC;
527 goto release_pages;
528 }
529
530 dn->nid = nids[i];
531 npage[i] = new_node_page(dn, noffset[i], NULL);
532 if (IS_ERR(npage[i])) {
533 alloc_nid_failed(sbi, nids[i]);
534 err = PTR_ERR(npage[i]);
535 goto release_pages;
536 }
537
538 set_nid(parent, offset[i - 1], nids[i], i == 1);
539 alloc_nid_done(sbi, nids[i]);
540 done = true;
541 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
542 npage[i] = get_node_page_ra(parent, offset[i - 1]);
543 if (IS_ERR(npage[i])) {
544 err = PTR_ERR(npage[i]);
545 goto release_pages;
546 }
547 done = true;
548 }
549 if (i == 1) {
550 dn->inode_page_locked = false;
551 unlock_page(parent);
552 } else {
553 f2fs_put_page(parent, 1);
554 }
555
556 if (!done) {
557 npage[i] = get_node_page(sbi, nids[i]);
558 if (IS_ERR(npage[i])) {
559 err = PTR_ERR(npage[i]);
560 f2fs_put_page(npage[0], 0);
561 goto release_out;
562 }
563 }
564 if (i < level) {
565 parent = npage[i];
566 nids[i + 1] = get_nid(parent, offset[i], false);
567 }
568 }
569 dn->nid = nids[level];
570 dn->ofs_in_node = offset[level];
571 dn->node_page = npage[level];
572 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
573 return 0;
574
575 release_pages:
576 f2fs_put_page(parent, 1);
577 if (i > 1)
578 f2fs_put_page(npage[0], 0);
579 release_out:
580 dn->inode_page = NULL;
581 dn->node_page = NULL;
582 return err;
583 }
584
585 static void truncate_node(struct dnode_of_data *dn)
586 {
587 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
588 struct node_info ni;
589
590 get_node_info(sbi, dn->nid, &ni);
591 if (dn->inode->i_blocks == 0) {
592 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
593 goto invalidate;
594 }
595 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
596
597 /* Deallocate node address */
598 invalidate_blocks(sbi, ni.blk_addr);
599 dec_valid_node_count(sbi, dn->inode);
600 set_node_addr(sbi, &ni, NULL_ADDR, false);
601
602 if (dn->nid == dn->inode->i_ino) {
603 remove_orphan_inode(sbi, dn->nid);
604 dec_valid_inode_count(sbi);
605 } else {
606 sync_inode_page(dn);
607 }
608 invalidate:
609 clear_node_page_dirty(dn->node_page);
610 set_sbi_flag(sbi, SBI_IS_DIRTY);
611
612 f2fs_put_page(dn->node_page, 1);
613
614 invalidate_mapping_pages(NODE_MAPPING(sbi),
615 dn->node_page->index, dn->node_page->index);
616
617 dn->node_page = NULL;
618 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
619 }
620
621 static int truncate_dnode(struct dnode_of_data *dn)
622 {
623 struct page *page;
624
625 if (dn->nid == 0)
626 return 1;
627
628 /* get direct node */
629 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
630 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
631 return 1;
632 else if (IS_ERR(page))
633 return PTR_ERR(page);
634
635 /* Make dnode_of_data for parameter */
636 dn->node_page = page;
637 dn->ofs_in_node = 0;
638 truncate_data_blocks(dn);
639 truncate_node(dn);
640 return 1;
641 }
642
643 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
644 int ofs, int depth)
645 {
646 struct dnode_of_data rdn = *dn;
647 struct page *page;
648 struct f2fs_node *rn;
649 nid_t child_nid;
650 unsigned int child_nofs;
651 int freed = 0;
652 int i, ret;
653
654 if (dn->nid == 0)
655 return NIDS_PER_BLOCK + 1;
656
657 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
658
659 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
660 if (IS_ERR(page)) {
661 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
662 return PTR_ERR(page);
663 }
664
665 rn = F2FS_NODE(page);
666 if (depth < 3) {
667 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
668 child_nid = le32_to_cpu(rn->in.nid[i]);
669 if (child_nid == 0)
670 continue;
671 rdn.nid = child_nid;
672 ret = truncate_dnode(&rdn);
673 if (ret < 0)
674 goto out_err;
675 set_nid(page, i, 0, false);
676 }
677 } else {
678 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
679 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
680 child_nid = le32_to_cpu(rn->in.nid[i]);
681 if (child_nid == 0) {
682 child_nofs += NIDS_PER_BLOCK + 1;
683 continue;
684 }
685 rdn.nid = child_nid;
686 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
687 if (ret == (NIDS_PER_BLOCK + 1)) {
688 set_nid(page, i, 0, false);
689 child_nofs += ret;
690 } else if (ret < 0 && ret != -ENOENT) {
691 goto out_err;
692 }
693 }
694 freed = child_nofs;
695 }
696
697 if (!ofs) {
698 /* remove current indirect node */
699 dn->node_page = page;
700 truncate_node(dn);
701 freed++;
702 } else {
703 f2fs_put_page(page, 1);
704 }
705 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
706 return freed;
707
708 out_err:
709 f2fs_put_page(page, 1);
710 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
711 return ret;
712 }
713
714 static int truncate_partial_nodes(struct dnode_of_data *dn,
715 struct f2fs_inode *ri, int *offset, int depth)
716 {
717 struct page *pages[2];
718 nid_t nid[3];
719 nid_t child_nid;
720 int err = 0;
721 int i;
722 int idx = depth - 2;
723
724 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
725 if (!nid[0])
726 return 0;
727
728 /* get indirect nodes in the path */
729 for (i = 0; i < idx + 1; i++) {
730 /* reference count'll be increased */
731 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
732 if (IS_ERR(pages[i])) {
733 err = PTR_ERR(pages[i]);
734 idx = i - 1;
735 goto fail;
736 }
737 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
738 }
739
740 /* free direct nodes linked to a partial indirect node */
741 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
742 child_nid = get_nid(pages[idx], i, false);
743 if (!child_nid)
744 continue;
745 dn->nid = child_nid;
746 err = truncate_dnode(dn);
747 if (err < 0)
748 goto fail;
749 set_nid(pages[idx], i, 0, false);
750 }
751
752 if (offset[idx + 1] == 0) {
753 dn->node_page = pages[idx];
754 dn->nid = nid[idx];
755 truncate_node(dn);
756 } else {
757 f2fs_put_page(pages[idx], 1);
758 }
759 offset[idx]++;
760 offset[idx + 1] = 0;
761 idx--;
762 fail:
763 for (i = idx; i >= 0; i--)
764 f2fs_put_page(pages[i], 1);
765
766 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
767
768 return err;
769 }
770
771 /*
772 * All the block addresses of data and nodes should be nullified.
773 */
774 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
775 {
776 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
777 int err = 0, cont = 1;
778 int level, offset[4], noffset[4];
779 unsigned int nofs = 0;
780 struct f2fs_inode *ri;
781 struct dnode_of_data dn;
782 struct page *page;
783
784 trace_f2fs_truncate_inode_blocks_enter(inode, from);
785
786 level = get_node_path(F2FS_I(inode), from, offset, noffset);
787 restart:
788 page = get_node_page(sbi, inode->i_ino);
789 if (IS_ERR(page)) {
790 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
791 return PTR_ERR(page);
792 }
793
794 set_new_dnode(&dn, inode, page, NULL, 0);
795 unlock_page(page);
796
797 ri = F2FS_INODE(page);
798 switch (level) {
799 case 0:
800 case 1:
801 nofs = noffset[1];
802 break;
803 case 2:
804 nofs = noffset[1];
805 if (!offset[level - 1])
806 goto skip_partial;
807 err = truncate_partial_nodes(&dn, ri, offset, level);
808 if (err < 0 && err != -ENOENT)
809 goto fail;
810 nofs += 1 + NIDS_PER_BLOCK;
811 break;
812 case 3:
813 nofs = 5 + 2 * NIDS_PER_BLOCK;
814 if (!offset[level - 1])
815 goto skip_partial;
816 err = truncate_partial_nodes(&dn, ri, offset, level);
817 if (err < 0 && err != -ENOENT)
818 goto fail;
819 break;
820 default:
821 BUG();
822 }
823
824 skip_partial:
825 while (cont) {
826 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
827 switch (offset[0]) {
828 case NODE_DIR1_BLOCK:
829 case NODE_DIR2_BLOCK:
830 err = truncate_dnode(&dn);
831 break;
832
833 case NODE_IND1_BLOCK:
834 case NODE_IND2_BLOCK:
835 err = truncate_nodes(&dn, nofs, offset[1], 2);
836 break;
837
838 case NODE_DIND_BLOCK:
839 err = truncate_nodes(&dn, nofs, offset[1], 3);
840 cont = 0;
841 break;
842
843 default:
844 BUG();
845 }
846 if (err < 0 && err != -ENOENT)
847 goto fail;
848 if (offset[1] == 0 &&
849 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
850 lock_page(page);
851 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
852 f2fs_put_page(page, 1);
853 goto restart;
854 }
855 f2fs_wait_on_page_writeback(page, NODE);
856 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
857 set_page_dirty(page);
858 unlock_page(page);
859 }
860 offset[1] = 0;
861 offset[0]++;
862 nofs += err;
863 }
864 fail:
865 f2fs_put_page(page, 0);
866 trace_f2fs_truncate_inode_blocks_exit(inode, err);
867 return err > 0 ? 0 : err;
868 }
869
870 int truncate_xattr_node(struct inode *inode, struct page *page)
871 {
872 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
873 nid_t nid = F2FS_I(inode)->i_xattr_nid;
874 struct dnode_of_data dn;
875 struct page *npage;
876
877 if (!nid)
878 return 0;
879
880 npage = get_node_page(sbi, nid);
881 if (IS_ERR(npage))
882 return PTR_ERR(npage);
883
884 F2FS_I(inode)->i_xattr_nid = 0;
885
886 /* need to do checkpoint during fsync */
887 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
888
889 set_new_dnode(&dn, inode, page, npage, nid);
890
891 if (page)
892 dn.inode_page_locked = true;
893 truncate_node(&dn);
894 return 0;
895 }
896
897 /*
898 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
899 * f2fs_unlock_op().
900 */
901 void remove_inode_page(struct inode *inode)
902 {
903 struct dnode_of_data dn;
904
905 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
906 if (get_dnode_of_data(&dn, 0, LOOKUP_NODE))
907 return;
908
909 if (truncate_xattr_node(inode, dn.inode_page)) {
910 f2fs_put_dnode(&dn);
911 return;
912 }
913
914 /* remove potential inline_data blocks */
915 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
916 S_ISLNK(inode->i_mode))
917 truncate_data_blocks_range(&dn, 1);
918
919 /* 0 is possible, after f2fs_new_inode() has failed */
920 f2fs_bug_on(F2FS_I_SB(inode),
921 inode->i_blocks != 0 && inode->i_blocks != 1);
922
923 /* will put inode & node pages */
924 truncate_node(&dn);
925 }
926
927 struct page *new_inode_page(struct inode *inode)
928 {
929 struct dnode_of_data dn;
930
931 /* allocate inode page for new inode */
932 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
933
934 /* caller should f2fs_put_page(page, 1); */
935 return new_node_page(&dn, 0, NULL);
936 }
937
938 struct page *new_node_page(struct dnode_of_data *dn,
939 unsigned int ofs, struct page *ipage)
940 {
941 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
942 struct node_info old_ni, new_ni;
943 struct page *page;
944 int err;
945
946 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
947 return ERR_PTR(-EPERM);
948
949 page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
950 if (!page)
951 return ERR_PTR(-ENOMEM);
952
953 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
954 err = -ENOSPC;
955 goto fail;
956 }
957
958 get_node_info(sbi, dn->nid, &old_ni);
959
960 /* Reinitialize old_ni with new node page */
961 f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
962 new_ni = old_ni;
963 new_ni.ino = dn->inode->i_ino;
964 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
965
966 f2fs_wait_on_page_writeback(page, NODE);
967 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
968 set_cold_node(dn->inode, page);
969 SetPageUptodate(page);
970 set_page_dirty(page);
971
972 if (f2fs_has_xattr_block(ofs))
973 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
974
975 dn->node_page = page;
976 if (ipage)
977 update_inode(dn->inode, ipage);
978 else
979 sync_inode_page(dn);
980 if (ofs == 0)
981 inc_valid_inode_count(sbi);
982
983 return page;
984
985 fail:
986 clear_node_page_dirty(page);
987 f2fs_put_page(page, 1);
988 return ERR_PTR(err);
989 }
990
991 /*
992 * Caller should do after getting the following values.
993 * 0: f2fs_put_page(page, 0)
994 * LOCKED_PAGE: f2fs_put_page(page, 1)
995 * error: nothing
996 */
997 static int read_node_page(struct page *page, int rw)
998 {
999 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1000 struct node_info ni;
1001 struct f2fs_io_info fio = {
1002 .sbi = sbi,
1003 .type = NODE,
1004 .rw = rw,
1005 .page = page,
1006 .encrypted_page = NULL,
1007 };
1008
1009 get_node_info(sbi, page->index, &ni);
1010
1011 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1012 ClearPageUptodate(page);
1013 f2fs_put_page(page, 1);
1014 return -ENOENT;
1015 }
1016
1017 if (PageUptodate(page))
1018 return LOCKED_PAGE;
1019
1020 fio.blk_addr = ni.blk_addr;
1021 return f2fs_submit_page_bio(&fio);
1022 }
1023
1024 /*
1025 * Readahead a node page
1026 */
1027 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1028 {
1029 struct page *apage;
1030 int err;
1031
1032 apage = find_get_page(NODE_MAPPING(sbi), nid);
1033 if (apage && PageUptodate(apage)) {
1034 f2fs_put_page(apage, 0);
1035 return;
1036 }
1037 f2fs_put_page(apage, 0);
1038
1039 apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1040 if (!apage)
1041 return;
1042
1043 err = read_node_page(apage, READA);
1044 if (err == 0)
1045 f2fs_put_page(apage, 0);
1046 else if (err == LOCKED_PAGE)
1047 f2fs_put_page(apage, 1);
1048 }
1049
1050 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1051 {
1052 struct page *page;
1053 int err;
1054 repeat:
1055 page = grab_cache_page(NODE_MAPPING(sbi), nid);
1056 if (!page)
1057 return ERR_PTR(-ENOMEM);
1058
1059 err = read_node_page(page, READ_SYNC);
1060 if (err < 0)
1061 return ERR_PTR(err);
1062 else if (err != LOCKED_PAGE)
1063 lock_page(page);
1064
1065 if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
1066 ClearPageUptodate(page);
1067 f2fs_put_page(page, 1);
1068 return ERR_PTR(-EIO);
1069 }
1070 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1071 f2fs_put_page(page, 1);
1072 goto repeat;
1073 }
1074 return page;
1075 }
1076
1077 /*
1078 * Return a locked page for the desired node page.
1079 * And, readahead MAX_RA_NODE number of node pages.
1080 */
1081 struct page *get_node_page_ra(struct page *parent, int start)
1082 {
1083 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1084 struct blk_plug plug;
1085 struct page *page;
1086 int err, i, end;
1087 nid_t nid;
1088
1089 /* First, try getting the desired direct node. */
1090 nid = get_nid(parent, start, false);
1091 if (!nid)
1092 return ERR_PTR(-ENOENT);
1093 repeat:
1094 page = grab_cache_page(NODE_MAPPING(sbi), nid);
1095 if (!page)
1096 return ERR_PTR(-ENOMEM);
1097
1098 err = read_node_page(page, READ_SYNC);
1099 if (err < 0)
1100 return ERR_PTR(err);
1101 else if (err == LOCKED_PAGE)
1102 goto page_hit;
1103
1104 blk_start_plug(&plug);
1105
1106 /* Then, try readahead for siblings of the desired node */
1107 end = start + MAX_RA_NODE;
1108 end = min(end, NIDS_PER_BLOCK);
1109 for (i = start + 1; i < end; i++) {
1110 nid = get_nid(parent, i, false);
1111 if (!nid)
1112 continue;
1113 ra_node_page(sbi, nid);
1114 }
1115
1116 blk_finish_plug(&plug);
1117
1118 lock_page(page);
1119 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1120 f2fs_put_page(page, 1);
1121 goto repeat;
1122 }
1123 page_hit:
1124 if (unlikely(!PageUptodate(page))) {
1125 f2fs_put_page(page, 1);
1126 return ERR_PTR(-EIO);
1127 }
1128 return page;
1129 }
1130
1131 void sync_inode_page(struct dnode_of_data *dn)
1132 {
1133 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1134 update_inode(dn->inode, dn->node_page);
1135 } else if (dn->inode_page) {
1136 if (!dn->inode_page_locked)
1137 lock_page(dn->inode_page);
1138 update_inode(dn->inode, dn->inode_page);
1139 if (!dn->inode_page_locked)
1140 unlock_page(dn->inode_page);
1141 } else {
1142 update_inode_page(dn->inode);
1143 }
1144 }
1145
1146 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1147 struct writeback_control *wbc)
1148 {
1149 pgoff_t index, end;
1150 struct pagevec pvec;
1151 int step = ino ? 2 : 0;
1152 int nwritten = 0, wrote = 0;
1153
1154 pagevec_init(&pvec, 0);
1155
1156 next_step:
1157 index = 0;
1158 end = LONG_MAX;
1159
1160 while (index <= end) {
1161 int i, nr_pages;
1162 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1163 PAGECACHE_TAG_DIRTY,
1164 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1165 if (nr_pages == 0)
1166 break;
1167
1168 for (i = 0; i < nr_pages; i++) {
1169 struct page *page = pvec.pages[i];
1170
1171 /*
1172 * flushing sequence with step:
1173 * 0. indirect nodes
1174 * 1. dentry dnodes
1175 * 2. file dnodes
1176 */
1177 if (step == 0 && IS_DNODE(page))
1178 continue;
1179 if (step == 1 && (!IS_DNODE(page) ||
1180 is_cold_node(page)))
1181 continue;
1182 if (step == 2 && (!IS_DNODE(page) ||
1183 !is_cold_node(page)))
1184 continue;
1185
1186 /*
1187 * If an fsync mode,
1188 * we should not skip writing node pages.
1189 */
1190 if (ino && ino_of_node(page) == ino)
1191 lock_page(page);
1192 else if (!trylock_page(page))
1193 continue;
1194
1195 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1196 continue_unlock:
1197 unlock_page(page);
1198 continue;
1199 }
1200 if (ino && ino_of_node(page) != ino)
1201 goto continue_unlock;
1202
1203 if (!PageDirty(page)) {
1204 /* someone wrote it for us */
1205 goto continue_unlock;
1206 }
1207
1208 if (!clear_page_dirty_for_io(page))
1209 goto continue_unlock;
1210
1211 /* called by fsync() */
1212 if (ino && IS_DNODE(page)) {
1213 set_fsync_mark(page, 1);
1214 if (IS_INODE(page))
1215 set_dentry_mark(page,
1216 need_dentry_mark(sbi, ino));
1217 nwritten++;
1218 } else {
1219 set_fsync_mark(page, 0);
1220 set_dentry_mark(page, 0);
1221 }
1222
1223 if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1224 unlock_page(page);
1225 else
1226 wrote++;
1227
1228 if (--wbc->nr_to_write == 0)
1229 break;
1230 }
1231 pagevec_release(&pvec);
1232 cond_resched();
1233
1234 if (wbc->nr_to_write == 0) {
1235 step = 2;
1236 break;
1237 }
1238 }
1239
1240 if (step < 2) {
1241 step++;
1242 goto next_step;
1243 }
1244
1245 if (wrote)
1246 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1247 return nwritten;
1248 }
1249
1250 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1251 {
1252 pgoff_t index = 0, end = LONG_MAX;
1253 struct pagevec pvec;
1254 int ret2 = 0, ret = 0;
1255
1256 pagevec_init(&pvec, 0);
1257
1258 while (index <= end) {
1259 int i, nr_pages;
1260 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1261 PAGECACHE_TAG_WRITEBACK,
1262 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1263 if (nr_pages == 0)
1264 break;
1265
1266 for (i = 0; i < nr_pages; i++) {
1267 struct page *page = pvec.pages[i];
1268
1269 /* until radix tree lookup accepts end_index */
1270 if (unlikely(page->index > end))
1271 continue;
1272
1273 if (ino && ino_of_node(page) == ino) {
1274 f2fs_wait_on_page_writeback(page, NODE);
1275 if (TestClearPageError(page))
1276 ret = -EIO;
1277 }
1278 }
1279 pagevec_release(&pvec);
1280 cond_resched();
1281 }
1282
1283 if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1284 ret2 = -ENOSPC;
1285 if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1286 ret2 = -EIO;
1287 if (!ret)
1288 ret = ret2;
1289 return ret;
1290 }
1291
1292 static int f2fs_write_node_page(struct page *page,
1293 struct writeback_control *wbc)
1294 {
1295 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1296 nid_t nid;
1297 struct node_info ni;
1298 struct f2fs_io_info fio = {
1299 .sbi = sbi,
1300 .type = NODE,
1301 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1302 .page = page,
1303 .encrypted_page = NULL,
1304 };
1305
1306 trace_f2fs_writepage(page, NODE);
1307
1308 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1309 goto redirty_out;
1310 if (unlikely(f2fs_cp_error(sbi)))
1311 goto redirty_out;
1312
1313 f2fs_wait_on_page_writeback(page, NODE);
1314
1315 /* get old block addr of this node page */
1316 nid = nid_of_node(page);
1317 f2fs_bug_on(sbi, page->index != nid);
1318
1319 get_node_info(sbi, nid, &ni);
1320
1321 /* This page is already truncated */
1322 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1323 ClearPageUptodate(page);
1324 dec_page_count(sbi, F2FS_DIRTY_NODES);
1325 unlock_page(page);
1326 return 0;
1327 }
1328
1329 if (wbc->for_reclaim) {
1330 if (!down_read_trylock(&sbi->node_write))
1331 goto redirty_out;
1332 } else {
1333 down_read(&sbi->node_write);
1334 }
1335
1336 set_page_writeback(page);
1337 fio.blk_addr = ni.blk_addr;
1338 write_node_page(nid, &fio);
1339 set_node_addr(sbi, &ni, fio.blk_addr, is_fsync_dnode(page));
1340 dec_page_count(sbi, F2FS_DIRTY_NODES);
1341 up_read(&sbi->node_write);
1342 unlock_page(page);
1343
1344 if (wbc->for_reclaim)
1345 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1346
1347 return 0;
1348
1349 redirty_out:
1350 redirty_page_for_writepage(wbc, page);
1351 return AOP_WRITEPAGE_ACTIVATE;
1352 }
1353
1354 static int f2fs_write_node_pages(struct address_space *mapping,
1355 struct writeback_control *wbc)
1356 {
1357 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1358 long diff;
1359
1360 trace_f2fs_writepages(mapping->host, wbc, NODE);
1361
1362 /* balancing f2fs's metadata in background */
1363 f2fs_balance_fs_bg(sbi);
1364
1365 /* collect a number of dirty node pages and write together */
1366 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1367 goto skip_write;
1368
1369 diff = nr_pages_to_write(sbi, NODE, wbc);
1370 wbc->sync_mode = WB_SYNC_NONE;
1371 sync_node_pages(sbi, 0, wbc);
1372 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1373 return 0;
1374
1375 skip_write:
1376 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1377 return 0;
1378 }
1379
1380 static int f2fs_set_node_page_dirty(struct page *page)
1381 {
1382 trace_f2fs_set_page_dirty(page, NODE);
1383
1384 SetPageUptodate(page);
1385 if (!PageDirty(page)) {
1386 __set_page_dirty_nobuffers(page);
1387 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1388 SetPagePrivate(page);
1389 f2fs_trace_pid(page);
1390 return 1;
1391 }
1392 return 0;
1393 }
1394
1395 /*
1396 * Structure of the f2fs node operations
1397 */
1398 const struct address_space_operations f2fs_node_aops = {
1399 .writepage = f2fs_write_node_page,
1400 .writepages = f2fs_write_node_pages,
1401 .set_page_dirty = f2fs_set_node_page_dirty,
1402 .invalidatepage = f2fs_invalidate_page,
1403 .releasepage = f2fs_release_page,
1404 };
1405
1406 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1407 nid_t n)
1408 {
1409 return radix_tree_lookup(&nm_i->free_nid_root, n);
1410 }
1411
1412 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1413 struct free_nid *i)
1414 {
1415 list_del(&i->list);
1416 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1417 }
1418
1419 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1420 {
1421 struct f2fs_nm_info *nm_i = NM_I(sbi);
1422 struct free_nid *i;
1423 struct nat_entry *ne;
1424 bool allocated = false;
1425
1426 if (!available_free_memory(sbi, FREE_NIDS))
1427 return -1;
1428
1429 /* 0 nid should not be used */
1430 if (unlikely(nid == 0))
1431 return 0;
1432
1433 if (build) {
1434 /* do not add allocated nids */
1435 down_read(&nm_i->nat_tree_lock);
1436 ne = __lookup_nat_cache(nm_i, nid);
1437 if (ne &&
1438 (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1439 nat_get_blkaddr(ne) != NULL_ADDR))
1440 allocated = true;
1441 up_read(&nm_i->nat_tree_lock);
1442 if (allocated)
1443 return 0;
1444 }
1445
1446 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1447 i->nid = nid;
1448 i->state = NID_NEW;
1449
1450 if (radix_tree_preload(GFP_NOFS)) {
1451 kmem_cache_free(free_nid_slab, i);
1452 return 0;
1453 }
1454
1455 spin_lock(&nm_i->free_nid_list_lock);
1456 if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1457 spin_unlock(&nm_i->free_nid_list_lock);
1458 radix_tree_preload_end();
1459 kmem_cache_free(free_nid_slab, i);
1460 return 0;
1461 }
1462 list_add_tail(&i->list, &nm_i->free_nid_list);
1463 nm_i->fcnt++;
1464 spin_unlock(&nm_i->free_nid_list_lock);
1465 radix_tree_preload_end();
1466 return 1;
1467 }
1468
1469 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1470 {
1471 struct free_nid *i;
1472 bool need_free = false;
1473
1474 spin_lock(&nm_i->free_nid_list_lock);
1475 i = __lookup_free_nid_list(nm_i, nid);
1476 if (i && i->state == NID_NEW) {
1477 __del_from_free_nid_list(nm_i, i);
1478 nm_i->fcnt--;
1479 need_free = true;
1480 }
1481 spin_unlock(&nm_i->free_nid_list_lock);
1482
1483 if (need_free)
1484 kmem_cache_free(free_nid_slab, i);
1485 }
1486
1487 static void scan_nat_page(struct f2fs_sb_info *sbi,
1488 struct page *nat_page, nid_t start_nid)
1489 {
1490 struct f2fs_nm_info *nm_i = NM_I(sbi);
1491 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1492 block_t blk_addr;
1493 int i;
1494
1495 i = start_nid % NAT_ENTRY_PER_BLOCK;
1496
1497 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1498
1499 if (unlikely(start_nid >= nm_i->max_nid))
1500 break;
1501
1502 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1503 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1504 if (blk_addr == NULL_ADDR) {
1505 if (add_free_nid(sbi, start_nid, true) < 0)
1506 break;
1507 }
1508 }
1509 }
1510
1511 static void build_free_nids(struct f2fs_sb_info *sbi)
1512 {
1513 struct f2fs_nm_info *nm_i = NM_I(sbi);
1514 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1515 struct f2fs_summary_block *sum = curseg->sum_blk;
1516 int i = 0;
1517 nid_t nid = nm_i->next_scan_nid;
1518
1519 /* Enough entries */
1520 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1521 return;
1522
1523 /* readahead nat pages to be scanned */
1524 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1525
1526 while (1) {
1527 struct page *page = get_current_nat_page(sbi, nid);
1528
1529 scan_nat_page(sbi, page, nid);
1530 f2fs_put_page(page, 1);
1531
1532 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1533 if (unlikely(nid >= nm_i->max_nid))
1534 nid = 0;
1535
1536 if (i++ == FREE_NID_PAGES)
1537 break;
1538 }
1539
1540 /* go to the next free nat pages to find free nids abundantly */
1541 nm_i->next_scan_nid = nid;
1542
1543 /* find free nids from current sum_pages */
1544 mutex_lock(&curseg->curseg_mutex);
1545 for (i = 0; i < nats_in_cursum(sum); i++) {
1546 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1547 nid = le32_to_cpu(nid_in_journal(sum, i));
1548 if (addr == NULL_ADDR)
1549 add_free_nid(sbi, nid, true);
1550 else
1551 remove_free_nid(nm_i, nid);
1552 }
1553 mutex_unlock(&curseg->curseg_mutex);
1554 }
1555
1556 /*
1557 * If this function returns success, caller can obtain a new nid
1558 * from second parameter of this function.
1559 * The returned nid could be used ino as well as nid when inode is created.
1560 */
1561 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1562 {
1563 struct f2fs_nm_info *nm_i = NM_I(sbi);
1564 struct free_nid *i = NULL;
1565 retry:
1566 if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1567 return false;
1568
1569 spin_lock(&nm_i->free_nid_list_lock);
1570
1571 /* We should not use stale free nids created by build_free_nids */
1572 if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1573 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1574 list_for_each_entry(i, &nm_i->free_nid_list, list)
1575 if (i->state == NID_NEW)
1576 break;
1577
1578 f2fs_bug_on(sbi, i->state != NID_NEW);
1579 *nid = i->nid;
1580 i->state = NID_ALLOC;
1581 nm_i->fcnt--;
1582 spin_unlock(&nm_i->free_nid_list_lock);
1583 return true;
1584 }
1585 spin_unlock(&nm_i->free_nid_list_lock);
1586
1587 /* Let's scan nat pages and its caches to get free nids */
1588 mutex_lock(&nm_i->build_lock);
1589 build_free_nids(sbi);
1590 mutex_unlock(&nm_i->build_lock);
1591 goto retry;
1592 }
1593
1594 /*
1595 * alloc_nid() should be called prior to this function.
1596 */
1597 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1598 {
1599 struct f2fs_nm_info *nm_i = NM_I(sbi);
1600 struct free_nid *i;
1601
1602 spin_lock(&nm_i->free_nid_list_lock);
1603 i = __lookup_free_nid_list(nm_i, nid);
1604 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1605 __del_from_free_nid_list(nm_i, i);
1606 spin_unlock(&nm_i->free_nid_list_lock);
1607
1608 kmem_cache_free(free_nid_slab, i);
1609 }
1610
1611 /*
1612 * alloc_nid() should be called prior to this function.
1613 */
1614 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1615 {
1616 struct f2fs_nm_info *nm_i = NM_I(sbi);
1617 struct free_nid *i;
1618 bool need_free = false;
1619
1620 if (!nid)
1621 return;
1622
1623 spin_lock(&nm_i->free_nid_list_lock);
1624 i = __lookup_free_nid_list(nm_i, nid);
1625 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1626 if (!available_free_memory(sbi, FREE_NIDS)) {
1627 __del_from_free_nid_list(nm_i, i);
1628 need_free = true;
1629 } else {
1630 i->state = NID_NEW;
1631 nm_i->fcnt++;
1632 }
1633 spin_unlock(&nm_i->free_nid_list_lock);
1634
1635 if (need_free)
1636 kmem_cache_free(free_nid_slab, i);
1637 }
1638
1639 void recover_inline_xattr(struct inode *inode, struct page *page)
1640 {
1641 void *src_addr, *dst_addr;
1642 size_t inline_size;
1643 struct page *ipage;
1644 struct f2fs_inode *ri;
1645
1646 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1647 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1648
1649 ri = F2FS_INODE(page);
1650 if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1651 clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1652 goto update_inode;
1653 }
1654
1655 dst_addr = inline_xattr_addr(ipage);
1656 src_addr = inline_xattr_addr(page);
1657 inline_size = inline_xattr_size(inode);
1658
1659 f2fs_wait_on_page_writeback(ipage, NODE);
1660 memcpy(dst_addr, src_addr, inline_size);
1661 update_inode:
1662 update_inode(inode, ipage);
1663 f2fs_put_page(ipage, 1);
1664 }
1665
1666 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1667 {
1668 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1669 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1670 nid_t new_xnid = nid_of_node(page);
1671 struct node_info ni;
1672
1673 /* 1: invalidate the previous xattr nid */
1674 if (!prev_xnid)
1675 goto recover_xnid;
1676
1677 /* Deallocate node address */
1678 get_node_info(sbi, prev_xnid, &ni);
1679 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1680 invalidate_blocks(sbi, ni.blk_addr);
1681 dec_valid_node_count(sbi, inode);
1682 set_node_addr(sbi, &ni, NULL_ADDR, false);
1683
1684 recover_xnid:
1685 /* 2: allocate new xattr nid */
1686 if (unlikely(!inc_valid_node_count(sbi, inode)))
1687 f2fs_bug_on(sbi, 1);
1688
1689 remove_free_nid(NM_I(sbi), new_xnid);
1690 get_node_info(sbi, new_xnid, &ni);
1691 ni.ino = inode->i_ino;
1692 set_node_addr(sbi, &ni, NEW_ADDR, false);
1693 F2FS_I(inode)->i_xattr_nid = new_xnid;
1694
1695 /* 3: update xattr blkaddr */
1696 refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1697 set_node_addr(sbi, &ni, blkaddr, false);
1698
1699 update_inode_page(inode);
1700 }
1701
1702 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1703 {
1704 struct f2fs_inode *src, *dst;
1705 nid_t ino = ino_of_node(page);
1706 struct node_info old_ni, new_ni;
1707 struct page *ipage;
1708
1709 get_node_info(sbi, ino, &old_ni);
1710
1711 if (unlikely(old_ni.blk_addr != NULL_ADDR))
1712 return -EINVAL;
1713
1714 ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1715 if (!ipage)
1716 return -ENOMEM;
1717
1718 /* Should not use this inode from free nid list */
1719 remove_free_nid(NM_I(sbi), ino);
1720
1721 SetPageUptodate(ipage);
1722 fill_node_footer(ipage, ino, ino, 0, true);
1723
1724 src = F2FS_INODE(page);
1725 dst = F2FS_INODE(ipage);
1726
1727 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1728 dst->i_size = 0;
1729 dst->i_blocks = cpu_to_le64(1);
1730 dst->i_links = cpu_to_le32(1);
1731 dst->i_xattr_nid = 0;
1732 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
1733
1734 new_ni = old_ni;
1735 new_ni.ino = ino;
1736
1737 if (unlikely(!inc_valid_node_count(sbi, NULL)))
1738 WARN_ON(1);
1739 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1740 inc_valid_inode_count(sbi);
1741 set_page_dirty(ipage);
1742 f2fs_put_page(ipage, 1);
1743 return 0;
1744 }
1745
1746 int restore_node_summary(struct f2fs_sb_info *sbi,
1747 unsigned int segno, struct f2fs_summary_block *sum)
1748 {
1749 struct f2fs_node *rn;
1750 struct f2fs_summary *sum_entry;
1751 block_t addr;
1752 int bio_blocks = MAX_BIO_BLOCKS(sbi);
1753 int i, idx, last_offset, nrpages;
1754
1755 /* scan the node segment */
1756 last_offset = sbi->blocks_per_seg;
1757 addr = START_BLOCK(sbi, segno);
1758 sum_entry = &sum->entries[0];
1759
1760 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
1761 nrpages = min(last_offset - i, bio_blocks);
1762
1763 /* readahead node pages */
1764 ra_meta_pages(sbi, addr, nrpages, META_POR);
1765
1766 for (idx = addr; idx < addr + nrpages; idx++) {
1767 struct page *page = get_meta_page(sbi, idx);
1768
1769 rn = F2FS_NODE(page);
1770 sum_entry->nid = rn->footer.nid;
1771 sum_entry->version = 0;
1772 sum_entry->ofs_in_node = 0;
1773 sum_entry++;
1774 f2fs_put_page(page, 1);
1775 }
1776
1777 invalidate_mapping_pages(META_MAPPING(sbi), addr,
1778 addr + nrpages);
1779 }
1780 return 0;
1781 }
1782
1783 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1784 {
1785 struct f2fs_nm_info *nm_i = NM_I(sbi);
1786 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1787 struct f2fs_summary_block *sum = curseg->sum_blk;
1788 int i;
1789
1790 mutex_lock(&curseg->curseg_mutex);
1791 for (i = 0; i < nats_in_cursum(sum); i++) {
1792 struct nat_entry *ne;
1793 struct f2fs_nat_entry raw_ne;
1794 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1795
1796 raw_ne = nat_in_journal(sum, i);
1797
1798 down_write(&nm_i->nat_tree_lock);
1799 ne = __lookup_nat_cache(nm_i, nid);
1800 if (!ne) {
1801 ne = grab_nat_entry(nm_i, nid);
1802 node_info_from_raw_nat(&ne->ni, &raw_ne);
1803 }
1804 __set_nat_cache_dirty(nm_i, ne);
1805 up_write(&nm_i->nat_tree_lock);
1806 }
1807 update_nats_in_cursum(sum, -i);
1808 mutex_unlock(&curseg->curseg_mutex);
1809 }
1810
1811 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1812 struct list_head *head, int max)
1813 {
1814 struct nat_entry_set *cur;
1815
1816 if (nes->entry_cnt >= max)
1817 goto add_out;
1818
1819 list_for_each_entry(cur, head, set_list) {
1820 if (cur->entry_cnt >= nes->entry_cnt) {
1821 list_add(&nes->set_list, cur->set_list.prev);
1822 return;
1823 }
1824 }
1825 add_out:
1826 list_add_tail(&nes->set_list, head);
1827 }
1828
1829 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1830 struct nat_entry_set *set)
1831 {
1832 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1833 struct f2fs_summary_block *sum = curseg->sum_blk;
1834 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1835 bool to_journal = true;
1836 struct f2fs_nat_block *nat_blk;
1837 struct nat_entry *ne, *cur;
1838 struct page *page = NULL;
1839 struct f2fs_nm_info *nm_i = NM_I(sbi);
1840
1841 /*
1842 * there are two steps to flush nat entries:
1843 * #1, flush nat entries to journal in current hot data summary block.
1844 * #2, flush nat entries to nat page.
1845 */
1846 if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL))
1847 to_journal = false;
1848
1849 if (to_journal) {
1850 mutex_lock(&curseg->curseg_mutex);
1851 } else {
1852 page = get_next_nat_page(sbi, start_nid);
1853 nat_blk = page_address(page);
1854 f2fs_bug_on(sbi, !nat_blk);
1855 }
1856
1857 /* flush dirty nats in nat entry set */
1858 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
1859 struct f2fs_nat_entry *raw_ne;
1860 nid_t nid = nat_get_nid(ne);
1861 int offset;
1862
1863 if (nat_get_blkaddr(ne) == NEW_ADDR)
1864 continue;
1865
1866 if (to_journal) {
1867 offset = lookup_journal_in_cursum(sum,
1868 NAT_JOURNAL, nid, 1);
1869 f2fs_bug_on(sbi, offset < 0);
1870 raw_ne = &nat_in_journal(sum, offset);
1871 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1872 } else {
1873 raw_ne = &nat_blk->entries[nid - start_nid];
1874 }
1875 raw_nat_from_node_info(raw_ne, &ne->ni);
1876
1877 down_write(&NM_I(sbi)->nat_tree_lock);
1878 nat_reset_flag(ne);
1879 __clear_nat_cache_dirty(NM_I(sbi), ne);
1880 up_write(&NM_I(sbi)->nat_tree_lock);
1881
1882 if (nat_get_blkaddr(ne) == NULL_ADDR)
1883 add_free_nid(sbi, nid, false);
1884 }
1885
1886 if (to_journal)
1887 mutex_unlock(&curseg->curseg_mutex);
1888 else
1889 f2fs_put_page(page, 1);
1890
1891 f2fs_bug_on(sbi, set->entry_cnt);
1892
1893 down_write(&nm_i->nat_tree_lock);
1894 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
1895 up_write(&nm_i->nat_tree_lock);
1896 kmem_cache_free(nat_entry_set_slab, set);
1897 }
1898
1899 /*
1900 * This function is called during the checkpointing process.
1901 */
1902 void flush_nat_entries(struct f2fs_sb_info *sbi)
1903 {
1904 struct f2fs_nm_info *nm_i = NM_I(sbi);
1905 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1906 struct f2fs_summary_block *sum = curseg->sum_blk;
1907 struct nat_entry_set *setvec[SETVEC_SIZE];
1908 struct nat_entry_set *set, *tmp;
1909 unsigned int found;
1910 nid_t set_idx = 0;
1911 LIST_HEAD(sets);
1912
1913 if (!nm_i->dirty_nat_cnt)
1914 return;
1915 /*
1916 * if there are no enough space in journal to store dirty nat
1917 * entries, remove all entries from journal and merge them
1918 * into nat entry set.
1919 */
1920 if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL))
1921 remove_nats_in_journal(sbi);
1922
1923 down_write(&nm_i->nat_tree_lock);
1924 while ((found = __gang_lookup_nat_set(nm_i,
1925 set_idx, SETVEC_SIZE, setvec))) {
1926 unsigned idx;
1927 set_idx = setvec[found - 1]->set + 1;
1928 for (idx = 0; idx < found; idx++)
1929 __adjust_nat_entry_set(setvec[idx], &sets,
1930 MAX_NAT_JENTRIES(sum));
1931 }
1932 up_write(&nm_i->nat_tree_lock);
1933
1934 /* flush dirty nats in nat entry set */
1935 list_for_each_entry_safe(set, tmp, &sets, set_list)
1936 __flush_nat_entry_set(sbi, set);
1937
1938 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
1939 }
1940
1941 static int init_node_manager(struct f2fs_sb_info *sbi)
1942 {
1943 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1944 struct f2fs_nm_info *nm_i = NM_I(sbi);
1945 unsigned char *version_bitmap;
1946 unsigned int nat_segs, nat_blocks;
1947
1948 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1949
1950 /* segment_count_nat includes pair segment so divide to 2. */
1951 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1952 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1953
1954 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1955
1956 /* not used nids: 0, node, meta, (and root counted as valid node) */
1957 nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
1958 nm_i->fcnt = 0;
1959 nm_i->nat_cnt = 0;
1960 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
1961
1962 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1963 INIT_LIST_HEAD(&nm_i->free_nid_list);
1964 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
1965 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
1966 INIT_LIST_HEAD(&nm_i->nat_entries);
1967
1968 mutex_init(&nm_i->build_lock);
1969 spin_lock_init(&nm_i->free_nid_list_lock);
1970 init_rwsem(&nm_i->nat_tree_lock);
1971
1972 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1973 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1974 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1975 if (!version_bitmap)
1976 return -EFAULT;
1977
1978 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1979 GFP_KERNEL);
1980 if (!nm_i->nat_bitmap)
1981 return -ENOMEM;
1982 return 0;
1983 }
1984
1985 int build_node_manager(struct f2fs_sb_info *sbi)
1986 {
1987 int err;
1988
1989 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1990 if (!sbi->nm_info)
1991 return -ENOMEM;
1992
1993 err = init_node_manager(sbi);
1994 if (err)
1995 return err;
1996
1997 build_free_nids(sbi);
1998 return 0;
1999 }
2000
2001 void destroy_node_manager(struct f2fs_sb_info *sbi)
2002 {
2003 struct f2fs_nm_info *nm_i = NM_I(sbi);
2004 struct free_nid *i, *next_i;
2005 struct nat_entry *natvec[NATVEC_SIZE];
2006 struct nat_entry_set *setvec[SETVEC_SIZE];
2007 nid_t nid = 0;
2008 unsigned int found;
2009
2010 if (!nm_i)
2011 return;
2012
2013 /* destroy free nid list */
2014 spin_lock(&nm_i->free_nid_list_lock);
2015 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2016 f2fs_bug_on(sbi, i->state == NID_ALLOC);
2017 __del_from_free_nid_list(nm_i, i);
2018 nm_i->fcnt--;
2019 spin_unlock(&nm_i->free_nid_list_lock);
2020 kmem_cache_free(free_nid_slab, i);
2021 spin_lock(&nm_i->free_nid_list_lock);
2022 }
2023 f2fs_bug_on(sbi, nm_i->fcnt);
2024 spin_unlock(&nm_i->free_nid_list_lock);
2025
2026 /* destroy nat cache */
2027 down_write(&nm_i->nat_tree_lock);
2028 while ((found = __gang_lookup_nat_cache(nm_i,
2029 nid, NATVEC_SIZE, natvec))) {
2030 unsigned idx;
2031
2032 nid = nat_get_nid(natvec[found - 1]) + 1;
2033 for (idx = 0; idx < found; idx++)
2034 __del_from_nat_cache(nm_i, natvec[idx]);
2035 }
2036 f2fs_bug_on(sbi, nm_i->nat_cnt);
2037
2038 /* destroy nat set cache */
2039 nid = 0;
2040 while ((found = __gang_lookup_nat_set(nm_i,
2041 nid, SETVEC_SIZE, setvec))) {
2042 unsigned idx;
2043
2044 nid = setvec[found - 1]->set + 1;
2045 for (idx = 0; idx < found; idx++) {
2046 /* entry_cnt is not zero, when cp_error was occurred */
2047 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2048 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2049 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2050 }
2051 }
2052 up_write(&nm_i->nat_tree_lock);
2053
2054 kfree(nm_i->nat_bitmap);
2055 sbi->nm_info = NULL;
2056 kfree(nm_i);
2057 }
2058
2059 int __init create_node_manager_caches(void)
2060 {
2061 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2062 sizeof(struct nat_entry));
2063 if (!nat_entry_slab)
2064 goto fail;
2065
2066 free_nid_slab = f2fs_kmem_cache_create("free_nid",
2067 sizeof(struct free_nid));
2068 if (!free_nid_slab)
2069 goto destroy_nat_entry;
2070
2071 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2072 sizeof(struct nat_entry_set));
2073 if (!nat_entry_set_slab)
2074 goto destroy_free_nid;
2075 return 0;
2076
2077 destroy_free_nid:
2078 kmem_cache_destroy(free_nid_slab);
2079 destroy_nat_entry:
2080 kmem_cache_destroy(nat_entry_slab);
2081 fail:
2082 return -ENOMEM;
2083 }
2084
2085 void destroy_node_manager_caches(void)
2086 {
2087 kmem_cache_destroy(nat_entry_set_slab);
2088 kmem_cache_destroy(free_nid_slab);
2089 kmem_cache_destroy(nat_entry_slab);
2090 }
This page took 0.14729 seconds and 5 git commands to generate.