Merge tag 'kvm-arm-for-v4.7-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / fs / f2fs / node.h
1 /*
2 * fs/f2fs/node.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 /* start node id of a node block dedicated to the given node id */
12 #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13
14 /* node block offset on the NAT area dedicated to the given start node id */
15 #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16
17 /* # of pages to perform synchronous readahead before building free nids */
18 #define FREE_NID_PAGES 4
19
20 #define DEF_RA_NID_PAGES 4 /* # of nid pages to be readaheaded */
21
22 /* maximum readahead size for node during getting data blocks */
23 #define MAX_RA_NODE 128
24
25 /* control the memory footprint threshold (10MB per 1GB ram) */
26 #define DEF_RAM_THRESHOLD 10
27
28 /* control dirty nats ratio threshold (default: 10% over max nid count) */
29 #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
30
31 /* vector size for gang look-up from nat cache that consists of radix tree */
32 #define NATVEC_SIZE 64
33 #define SETVEC_SIZE 32
34
35 /* return value for read_node_page */
36 #define LOCKED_PAGE 1
37
38 /* For flag in struct node_info */
39 enum {
40 IS_CHECKPOINTED, /* is it checkpointed before? */
41 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
42 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
43 IS_DIRTY, /* this nat entry is dirty? */
44 };
45
46 /*
47 * For node information
48 */
49 struct node_info {
50 nid_t nid; /* node id */
51 nid_t ino; /* inode number of the node's owner */
52 block_t blk_addr; /* block address of the node */
53 unsigned char version; /* version of the node */
54 unsigned char flag; /* for node information bits */
55 };
56
57 struct nat_entry {
58 struct list_head list; /* for clean or dirty nat list */
59 struct node_info ni; /* in-memory node information */
60 };
61
62 #define nat_get_nid(nat) (nat->ni.nid)
63 #define nat_set_nid(nat, n) (nat->ni.nid = n)
64 #define nat_get_blkaddr(nat) (nat->ni.blk_addr)
65 #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
66 #define nat_get_ino(nat) (nat->ni.ino)
67 #define nat_set_ino(nat, i) (nat->ni.ino = i)
68 #define nat_get_version(nat) (nat->ni.version)
69 #define nat_set_version(nat, v) (nat->ni.version = v)
70
71 #define inc_node_version(version) (++version)
72
73 static inline void copy_node_info(struct node_info *dst,
74 struct node_info *src)
75 {
76 dst->nid = src->nid;
77 dst->ino = src->ino;
78 dst->blk_addr = src->blk_addr;
79 dst->version = src->version;
80 /* should not copy flag here */
81 }
82
83 static inline void set_nat_flag(struct nat_entry *ne,
84 unsigned int type, bool set)
85 {
86 unsigned char mask = 0x01 << type;
87 if (set)
88 ne->ni.flag |= mask;
89 else
90 ne->ni.flag &= ~mask;
91 }
92
93 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
94 {
95 unsigned char mask = 0x01 << type;
96 return ne->ni.flag & mask;
97 }
98
99 static inline void nat_reset_flag(struct nat_entry *ne)
100 {
101 /* these states can be set only after checkpoint was done */
102 set_nat_flag(ne, IS_CHECKPOINTED, true);
103 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
104 set_nat_flag(ne, HAS_LAST_FSYNC, true);
105 }
106
107 static inline void node_info_from_raw_nat(struct node_info *ni,
108 struct f2fs_nat_entry *raw_ne)
109 {
110 ni->ino = le32_to_cpu(raw_ne->ino);
111 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
112 ni->version = raw_ne->version;
113 }
114
115 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
116 struct node_info *ni)
117 {
118 raw_ne->ino = cpu_to_le32(ni->ino);
119 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
120 raw_ne->version = ni->version;
121 }
122
123 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
124 {
125 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
126 NM_I(sbi)->dirty_nats_ratio / 100;
127 }
128
129 enum mem_type {
130 FREE_NIDS, /* indicates the free nid list */
131 NAT_ENTRIES, /* indicates the cached nat entry */
132 DIRTY_DENTS, /* indicates dirty dentry pages */
133 INO_ENTRIES, /* indicates inode entries */
134 EXTENT_CACHE, /* indicates extent cache */
135 BASE_CHECK, /* check kernel status */
136 };
137
138 struct nat_entry_set {
139 struct list_head set_list; /* link with other nat sets */
140 struct list_head entry_list; /* link with dirty nat entries */
141 nid_t set; /* set number*/
142 unsigned int entry_cnt; /* the # of nat entries in set */
143 };
144
145 /*
146 * For free nid mangement
147 */
148 enum nid_state {
149 NID_NEW, /* newly added to free nid list */
150 NID_ALLOC /* it is allocated */
151 };
152
153 struct free_nid {
154 struct list_head list; /* for free node id list */
155 nid_t nid; /* node id */
156 int state; /* in use or not: NID_NEW or NID_ALLOC */
157 };
158
159 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
160 {
161 struct f2fs_nm_info *nm_i = NM_I(sbi);
162 struct free_nid *fnid;
163
164 spin_lock(&nm_i->free_nid_list_lock);
165 if (nm_i->fcnt <= 0) {
166 spin_unlock(&nm_i->free_nid_list_lock);
167 return;
168 }
169 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
170 *nid = fnid->nid;
171 spin_unlock(&nm_i->free_nid_list_lock);
172 }
173
174 /*
175 * inline functions
176 */
177 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
178 {
179 struct f2fs_nm_info *nm_i = NM_I(sbi);
180 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
181 }
182
183 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
184 {
185 struct f2fs_nm_info *nm_i = NM_I(sbi);
186 pgoff_t block_off;
187 pgoff_t block_addr;
188 int seg_off;
189
190 block_off = NAT_BLOCK_OFFSET(start);
191 seg_off = block_off >> sbi->log_blocks_per_seg;
192
193 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
194 (seg_off << sbi->log_blocks_per_seg << 1) +
195 (block_off & (sbi->blocks_per_seg - 1)));
196
197 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
198 block_addr += sbi->blocks_per_seg;
199
200 return block_addr;
201 }
202
203 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
204 pgoff_t block_addr)
205 {
206 struct f2fs_nm_info *nm_i = NM_I(sbi);
207
208 block_addr -= nm_i->nat_blkaddr;
209 if ((block_addr >> sbi->log_blocks_per_seg) % 2)
210 block_addr -= sbi->blocks_per_seg;
211 else
212 block_addr += sbi->blocks_per_seg;
213
214 return block_addr + nm_i->nat_blkaddr;
215 }
216
217 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
218 {
219 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
220
221 f2fs_change_bit(block_off, nm_i->nat_bitmap);
222 }
223
224 static inline void fill_node_footer(struct page *page, nid_t nid,
225 nid_t ino, unsigned int ofs, bool reset)
226 {
227 struct f2fs_node *rn = F2FS_NODE(page);
228 unsigned int old_flag = 0;
229
230 if (reset)
231 memset(rn, 0, sizeof(*rn));
232 else
233 old_flag = le32_to_cpu(rn->footer.flag);
234
235 rn->footer.nid = cpu_to_le32(nid);
236 rn->footer.ino = cpu_to_le32(ino);
237
238 /* should remain old flag bits such as COLD_BIT_SHIFT */
239 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
240 (old_flag & OFFSET_BIT_MASK));
241 }
242
243 static inline void copy_node_footer(struct page *dst, struct page *src)
244 {
245 struct f2fs_node *src_rn = F2FS_NODE(src);
246 struct f2fs_node *dst_rn = F2FS_NODE(dst);
247 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
248 }
249
250 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
251 {
252 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
253 struct f2fs_node *rn = F2FS_NODE(page);
254
255 rn->footer.cp_ver = ckpt->checkpoint_ver;
256 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
257 }
258
259 static inline nid_t ino_of_node(struct page *node_page)
260 {
261 struct f2fs_node *rn = F2FS_NODE(node_page);
262 return le32_to_cpu(rn->footer.ino);
263 }
264
265 static inline nid_t nid_of_node(struct page *node_page)
266 {
267 struct f2fs_node *rn = F2FS_NODE(node_page);
268 return le32_to_cpu(rn->footer.nid);
269 }
270
271 static inline unsigned int ofs_of_node(struct page *node_page)
272 {
273 struct f2fs_node *rn = F2FS_NODE(node_page);
274 unsigned flag = le32_to_cpu(rn->footer.flag);
275 return flag >> OFFSET_BIT_SHIFT;
276 }
277
278 static inline unsigned long long cpver_of_node(struct page *node_page)
279 {
280 struct f2fs_node *rn = F2FS_NODE(node_page);
281 return le64_to_cpu(rn->footer.cp_ver);
282 }
283
284 static inline block_t next_blkaddr_of_node(struct page *node_page)
285 {
286 struct f2fs_node *rn = F2FS_NODE(node_page);
287 return le32_to_cpu(rn->footer.next_blkaddr);
288 }
289
290 /*
291 * f2fs assigns the following node offsets described as (num).
292 * N = NIDS_PER_BLOCK
293 *
294 * Inode block (0)
295 * |- direct node (1)
296 * |- direct node (2)
297 * |- indirect node (3)
298 * | `- direct node (4 => 4 + N - 1)
299 * |- indirect node (4 + N)
300 * | `- direct node (5 + N => 5 + 2N - 1)
301 * `- double indirect node (5 + 2N)
302 * `- indirect node (6 + 2N)
303 * `- direct node
304 * ......
305 * `- indirect node ((6 + 2N) + x(N + 1))
306 * `- direct node
307 * ......
308 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
309 * `- direct node
310 */
311 static inline bool IS_DNODE(struct page *node_page)
312 {
313 unsigned int ofs = ofs_of_node(node_page);
314
315 if (f2fs_has_xattr_block(ofs))
316 return false;
317
318 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
319 ofs == 5 + 2 * NIDS_PER_BLOCK)
320 return false;
321 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
322 ofs -= 6 + 2 * NIDS_PER_BLOCK;
323 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
324 return false;
325 }
326 return true;
327 }
328
329 static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
330 {
331 struct f2fs_node *rn = F2FS_NODE(p);
332
333 f2fs_wait_on_page_writeback(p, NODE, true);
334
335 if (i)
336 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
337 else
338 rn->in.nid[off] = cpu_to_le32(nid);
339 return set_page_dirty(p);
340 }
341
342 static inline nid_t get_nid(struct page *p, int off, bool i)
343 {
344 struct f2fs_node *rn = F2FS_NODE(p);
345
346 if (i)
347 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
348 return le32_to_cpu(rn->in.nid[off]);
349 }
350
351 /*
352 * Coldness identification:
353 * - Mark cold files in f2fs_inode_info
354 * - Mark cold node blocks in their node footer
355 * - Mark cold data pages in page cache
356 */
357 static inline int is_cold_data(struct page *page)
358 {
359 return PageChecked(page);
360 }
361
362 static inline void set_cold_data(struct page *page)
363 {
364 SetPageChecked(page);
365 }
366
367 static inline void clear_cold_data(struct page *page)
368 {
369 ClearPageChecked(page);
370 }
371
372 static inline int is_node(struct page *page, int type)
373 {
374 struct f2fs_node *rn = F2FS_NODE(page);
375 return le32_to_cpu(rn->footer.flag) & (1 << type);
376 }
377
378 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
379 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
380 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
381
382 static inline int is_inline_node(struct page *page)
383 {
384 return PageChecked(page);
385 }
386
387 static inline void set_inline_node(struct page *page)
388 {
389 SetPageChecked(page);
390 }
391
392 static inline void clear_inline_node(struct page *page)
393 {
394 ClearPageChecked(page);
395 }
396
397 static inline void set_cold_node(struct inode *inode, struct page *page)
398 {
399 struct f2fs_node *rn = F2FS_NODE(page);
400 unsigned int flag = le32_to_cpu(rn->footer.flag);
401
402 if (S_ISDIR(inode->i_mode))
403 flag &= ~(0x1 << COLD_BIT_SHIFT);
404 else
405 flag |= (0x1 << COLD_BIT_SHIFT);
406 rn->footer.flag = cpu_to_le32(flag);
407 }
408
409 static inline void set_mark(struct page *page, int mark, int type)
410 {
411 struct f2fs_node *rn = F2FS_NODE(page);
412 unsigned int flag = le32_to_cpu(rn->footer.flag);
413 if (mark)
414 flag |= (0x1 << type);
415 else
416 flag &= ~(0x1 << type);
417 rn->footer.flag = cpu_to_le32(flag);
418 }
419 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
420 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)
This page took 0.053929 seconds and 5 git commands to generate.