f2fs: remove redundant lock_page calls
[deliverable/linux.git] / fs / f2fs / node.h
1 /*
2 * fs/f2fs/node.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 /* start node id of a node block dedicated to the given node id */
12 #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13
14 /* node block offset on the NAT area dedicated to the given start node id */
15 #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16
17 /* # of pages to perform readahead before building free nids */
18 #define FREE_NID_PAGES 4
19
20 /* maximum # of free node ids to produce during build_free_nids */
21 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
22
23 /* maximum readahead size for node during getting data blocks */
24 #define MAX_RA_NODE 128
25
26 /* maximum cached nat entries to manage memory footprint */
27 #define NM_WOUT_THRESHOLD (64 * NAT_ENTRY_PER_BLOCK)
28
29 /* vector size for gang look-up from nat cache that consists of radix tree */
30 #define NATVEC_SIZE 64
31
32 /* return value for read_node_page */
33 #define LOCKED_PAGE 1
34
35 /*
36 * For node information
37 */
38 struct node_info {
39 nid_t nid; /* node id */
40 nid_t ino; /* inode number of the node's owner */
41 block_t blk_addr; /* block address of the node */
42 unsigned char version; /* version of the node */
43 };
44
45 struct nat_entry {
46 struct list_head list; /* for clean or dirty nat list */
47 bool checkpointed; /* whether it is checkpointed or not */
48 struct node_info ni; /* in-memory node information */
49 };
50
51 #define nat_get_nid(nat) (nat->ni.nid)
52 #define nat_set_nid(nat, n) (nat->ni.nid = n)
53 #define nat_get_blkaddr(nat) (nat->ni.blk_addr)
54 #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
55 #define nat_get_ino(nat) (nat->ni.ino)
56 #define nat_set_ino(nat, i) (nat->ni.ino = i)
57 #define nat_get_version(nat) (nat->ni.version)
58 #define nat_set_version(nat, v) (nat->ni.version = v)
59
60 #define __set_nat_cache_dirty(nm_i, ne) \
61 list_move_tail(&ne->list, &nm_i->dirty_nat_entries);
62 #define __clear_nat_cache_dirty(nm_i, ne) \
63 list_move_tail(&ne->list, &nm_i->nat_entries);
64 #define inc_node_version(version) (++version)
65
66 static inline void node_info_from_raw_nat(struct node_info *ni,
67 struct f2fs_nat_entry *raw_ne)
68 {
69 ni->ino = le32_to_cpu(raw_ne->ino);
70 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
71 ni->version = raw_ne->version;
72 }
73
74 /*
75 * For free nid mangement
76 */
77 enum nid_state {
78 NID_NEW, /* newly added to free nid list */
79 NID_ALLOC /* it is allocated */
80 };
81
82 struct free_nid {
83 struct list_head list; /* for free node id list */
84 nid_t nid; /* node id */
85 int state; /* in use or not: NID_NEW or NID_ALLOC */
86 };
87
88 static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
89 {
90 struct f2fs_nm_info *nm_i = NM_I(sbi);
91 struct free_nid *fnid;
92
93 if (nm_i->fcnt <= 0)
94 return -1;
95 spin_lock(&nm_i->free_nid_list_lock);
96 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
97 *nid = fnid->nid;
98 spin_unlock(&nm_i->free_nid_list_lock);
99 return 0;
100 }
101
102 /*
103 * inline functions
104 */
105 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
106 {
107 struct f2fs_nm_info *nm_i = NM_I(sbi);
108 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
109 }
110
111 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
112 {
113 struct f2fs_nm_info *nm_i = NM_I(sbi);
114 pgoff_t block_off;
115 pgoff_t block_addr;
116 int seg_off;
117
118 block_off = NAT_BLOCK_OFFSET(start);
119 seg_off = block_off >> sbi->log_blocks_per_seg;
120
121 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
122 (seg_off << sbi->log_blocks_per_seg << 1) +
123 (block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
124
125 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
126 block_addr += sbi->blocks_per_seg;
127
128 return block_addr;
129 }
130
131 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
132 pgoff_t block_addr)
133 {
134 struct f2fs_nm_info *nm_i = NM_I(sbi);
135
136 block_addr -= nm_i->nat_blkaddr;
137 if ((block_addr >> sbi->log_blocks_per_seg) % 2)
138 block_addr -= sbi->blocks_per_seg;
139 else
140 block_addr += sbi->blocks_per_seg;
141
142 return block_addr + nm_i->nat_blkaddr;
143 }
144
145 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
146 {
147 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
148
149 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
150 f2fs_clear_bit(block_off, nm_i->nat_bitmap);
151 else
152 f2fs_set_bit(block_off, nm_i->nat_bitmap);
153 }
154
155 static inline void fill_node_footer(struct page *page, nid_t nid,
156 nid_t ino, unsigned int ofs, bool reset)
157 {
158 void *kaddr = page_address(page);
159 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
160 if (reset)
161 memset(rn, 0, sizeof(*rn));
162 rn->footer.nid = cpu_to_le32(nid);
163 rn->footer.ino = cpu_to_le32(ino);
164 rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT);
165 }
166
167 static inline void copy_node_footer(struct page *dst, struct page *src)
168 {
169 void *src_addr = page_address(src);
170 void *dst_addr = page_address(dst);
171 struct f2fs_node *src_rn = (struct f2fs_node *)src_addr;
172 struct f2fs_node *dst_rn = (struct f2fs_node *)dst_addr;
173 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
174 }
175
176 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
177 {
178 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
179 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
180 void *kaddr = page_address(page);
181 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
182 rn->footer.cp_ver = ckpt->checkpoint_ver;
183 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
184 }
185
186 static inline nid_t ino_of_node(struct page *node_page)
187 {
188 void *kaddr = page_address(node_page);
189 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
190 return le32_to_cpu(rn->footer.ino);
191 }
192
193 static inline nid_t nid_of_node(struct page *node_page)
194 {
195 void *kaddr = page_address(node_page);
196 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
197 return le32_to_cpu(rn->footer.nid);
198 }
199
200 static inline unsigned int ofs_of_node(struct page *node_page)
201 {
202 void *kaddr = page_address(node_page);
203 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
204 unsigned flag = le32_to_cpu(rn->footer.flag);
205 return flag >> OFFSET_BIT_SHIFT;
206 }
207
208 static inline unsigned long long cpver_of_node(struct page *node_page)
209 {
210 void *kaddr = page_address(node_page);
211 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
212 return le64_to_cpu(rn->footer.cp_ver);
213 }
214
215 static inline block_t next_blkaddr_of_node(struct page *node_page)
216 {
217 void *kaddr = page_address(node_page);
218 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
219 return le32_to_cpu(rn->footer.next_blkaddr);
220 }
221
222 /*
223 * f2fs assigns the following node offsets described as (num).
224 * N = NIDS_PER_BLOCK
225 *
226 * Inode block (0)
227 * |- direct node (1)
228 * |- direct node (2)
229 * |- indirect node (3)
230 * | `- direct node (4 => 4 + N - 1)
231 * |- indirect node (4 + N)
232 * | `- direct node (5 + N => 5 + 2N - 1)
233 * `- double indirect node (5 + 2N)
234 * `- indirect node (6 + 2N)
235 * `- direct node (x(N + 1))
236 */
237 static inline bool IS_DNODE(struct page *node_page)
238 {
239 unsigned int ofs = ofs_of_node(node_page);
240 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
241 ofs == 5 + 2 * NIDS_PER_BLOCK)
242 return false;
243 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
244 ofs -= 6 + 2 * NIDS_PER_BLOCK;
245 if ((long int)ofs % (NIDS_PER_BLOCK + 1))
246 return false;
247 }
248 return true;
249 }
250
251 static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
252 {
253 struct f2fs_node *rn = (struct f2fs_node *)page_address(p);
254
255 wait_on_page_writeback(p);
256
257 if (i)
258 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
259 else
260 rn->in.nid[off] = cpu_to_le32(nid);
261 set_page_dirty(p);
262 }
263
264 static inline nid_t get_nid(struct page *p, int off, bool i)
265 {
266 struct f2fs_node *rn = (struct f2fs_node *)page_address(p);
267 if (i)
268 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
269 return le32_to_cpu(rn->in.nid[off]);
270 }
271
272 /*
273 * Coldness identification:
274 * - Mark cold files in f2fs_inode_info
275 * - Mark cold node blocks in their node footer
276 * - Mark cold data pages in page cache
277 */
278 static inline int is_cold_file(struct inode *inode)
279 {
280 return F2FS_I(inode)->i_advise & FADVISE_COLD_BIT;
281 }
282
283 static inline void set_cold_file(struct inode *inode)
284 {
285 F2FS_I(inode)->i_advise |= FADVISE_COLD_BIT;
286 }
287
288 static inline int is_cp_file(struct inode *inode)
289 {
290 return F2FS_I(inode)->i_advise & FADVISE_CP_BIT;
291 }
292
293 static inline void set_cp_file(struct inode *inode)
294 {
295 F2FS_I(inode)->i_advise |= FADVISE_CP_BIT;
296 }
297
298 static inline int is_cold_data(struct page *page)
299 {
300 return PageChecked(page);
301 }
302
303 static inline void set_cold_data(struct page *page)
304 {
305 SetPageChecked(page);
306 }
307
308 static inline void clear_cold_data(struct page *page)
309 {
310 ClearPageChecked(page);
311 }
312
313 static inline int is_cold_node(struct page *page)
314 {
315 void *kaddr = page_address(page);
316 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
317 unsigned int flag = le32_to_cpu(rn->footer.flag);
318 return flag & (0x1 << COLD_BIT_SHIFT);
319 }
320
321 static inline unsigned char is_fsync_dnode(struct page *page)
322 {
323 void *kaddr = page_address(page);
324 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
325 unsigned int flag = le32_to_cpu(rn->footer.flag);
326 return flag & (0x1 << FSYNC_BIT_SHIFT);
327 }
328
329 static inline unsigned char is_dent_dnode(struct page *page)
330 {
331 void *kaddr = page_address(page);
332 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
333 unsigned int flag = le32_to_cpu(rn->footer.flag);
334 return flag & (0x1 << DENT_BIT_SHIFT);
335 }
336
337 static inline void set_cold_node(struct inode *inode, struct page *page)
338 {
339 struct f2fs_node *rn = (struct f2fs_node *)page_address(page);
340 unsigned int flag = le32_to_cpu(rn->footer.flag);
341
342 if (S_ISDIR(inode->i_mode))
343 flag &= ~(0x1 << COLD_BIT_SHIFT);
344 else
345 flag |= (0x1 << COLD_BIT_SHIFT);
346 rn->footer.flag = cpu_to_le32(flag);
347 }
348
349 static inline void set_fsync_mark(struct page *page, int mark)
350 {
351 void *kaddr = page_address(page);
352 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
353 unsigned int flag = le32_to_cpu(rn->footer.flag);
354 if (mark)
355 flag |= (0x1 << FSYNC_BIT_SHIFT);
356 else
357 flag &= ~(0x1 << FSYNC_BIT_SHIFT);
358 rn->footer.flag = cpu_to_le32(flag);
359 }
360
361 static inline void set_dentry_mark(struct page *page, int mark)
362 {
363 void *kaddr = page_address(page);
364 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
365 unsigned int flag = le32_to_cpu(rn->footer.flag);
366 if (mark)
367 flag |= (0x1 << DENT_BIT_SHIFT);
368 else
369 flag &= ~(0x1 << DENT_BIT_SHIFT);
370 rn->footer.flag = cpu_to_le32(flag);
371 }
This page took 0.062481 seconds and 5 git commands to generate.