673ce926cf0903580e340e506a5158ee429e561a
[deliverable/linux.git] / fs / f2fs / node.h
1 /*
2 * fs/f2fs/node.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 /* start node id of a node block dedicated to the given node id */
12 #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13
14 /* node block offset on the NAT area dedicated to the given start node id */
15 #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16
17 /* # of pages to perform synchronous readahead before building free nids */
18 #define FREE_NID_PAGES 4
19
20 #define DEF_RA_NID_PAGES 4 /* # of nid pages to be readaheaded */
21
22 /* maximum readahead size for node during getting data blocks */
23 #define MAX_RA_NODE 128
24
25 /* control the memory footprint threshold (10MB per 1GB ram) */
26 #define DEF_RAM_THRESHOLD 1
27
28 /* control dirty nats ratio threshold (default: 10% over max nid count) */
29 #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
30 /* control total # of nats */
31 #define DEF_NAT_CACHE_THRESHOLD 100000
32
33 /* vector size for gang look-up from nat cache that consists of radix tree */
34 #define NATVEC_SIZE 64
35 #define SETVEC_SIZE 32
36
37 /* return value for read_node_page */
38 #define LOCKED_PAGE 1
39
40 /* For flag in struct node_info */
41 enum {
42 IS_CHECKPOINTED, /* is it checkpointed before? */
43 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
44 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
45 IS_DIRTY, /* this nat entry is dirty? */
46 };
47
48 /*
49 * For node information
50 */
51 struct node_info {
52 nid_t nid; /* node id */
53 nid_t ino; /* inode number of the node's owner */
54 block_t blk_addr; /* block address of the node */
55 unsigned char version; /* version of the node */
56 unsigned char flag; /* for node information bits */
57 };
58
59 struct nat_entry {
60 struct list_head list; /* for clean or dirty nat list */
61 struct node_info ni; /* in-memory node information */
62 };
63
64 #define nat_get_nid(nat) (nat->ni.nid)
65 #define nat_set_nid(nat, n) (nat->ni.nid = n)
66 #define nat_get_blkaddr(nat) (nat->ni.blk_addr)
67 #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
68 #define nat_get_ino(nat) (nat->ni.ino)
69 #define nat_set_ino(nat, i) (nat->ni.ino = i)
70 #define nat_get_version(nat) (nat->ni.version)
71 #define nat_set_version(nat, v) (nat->ni.version = v)
72
73 #define inc_node_version(version) (++version)
74
75 static inline void copy_node_info(struct node_info *dst,
76 struct node_info *src)
77 {
78 dst->nid = src->nid;
79 dst->ino = src->ino;
80 dst->blk_addr = src->blk_addr;
81 dst->version = src->version;
82 /* should not copy flag here */
83 }
84
85 static inline void set_nat_flag(struct nat_entry *ne,
86 unsigned int type, bool set)
87 {
88 unsigned char mask = 0x01 << type;
89 if (set)
90 ne->ni.flag |= mask;
91 else
92 ne->ni.flag &= ~mask;
93 }
94
95 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
96 {
97 unsigned char mask = 0x01 << type;
98 return ne->ni.flag & mask;
99 }
100
101 static inline void nat_reset_flag(struct nat_entry *ne)
102 {
103 /* these states can be set only after checkpoint was done */
104 set_nat_flag(ne, IS_CHECKPOINTED, true);
105 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
106 set_nat_flag(ne, HAS_LAST_FSYNC, true);
107 }
108
109 static inline void node_info_from_raw_nat(struct node_info *ni,
110 struct f2fs_nat_entry *raw_ne)
111 {
112 ni->ino = le32_to_cpu(raw_ne->ino);
113 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
114 ni->version = raw_ne->version;
115 }
116
117 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
118 struct node_info *ni)
119 {
120 raw_ne->ino = cpu_to_le32(ni->ino);
121 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
122 raw_ne->version = ni->version;
123 }
124
125 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
126 {
127 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
128 NM_I(sbi)->dirty_nats_ratio / 100;
129 }
130
131 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
132 {
133 return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
134 }
135
136 enum mem_type {
137 FREE_NIDS, /* indicates the free nid list */
138 NAT_ENTRIES, /* indicates the cached nat entry */
139 DIRTY_DENTS, /* indicates dirty dentry pages */
140 INO_ENTRIES, /* indicates inode entries */
141 EXTENT_CACHE, /* indicates extent cache */
142 BASE_CHECK, /* check kernel status */
143 };
144
145 struct nat_entry_set {
146 struct list_head set_list; /* link with other nat sets */
147 struct list_head entry_list; /* link with dirty nat entries */
148 nid_t set; /* set number*/
149 unsigned int entry_cnt; /* the # of nat entries in set */
150 };
151
152 /*
153 * For free nid mangement
154 */
155 enum nid_state {
156 NID_NEW, /* newly added to free nid list */
157 NID_ALLOC /* it is allocated */
158 };
159
160 struct free_nid {
161 struct list_head list; /* for free node id list */
162 nid_t nid; /* node id */
163 int state; /* in use or not: NID_NEW or NID_ALLOC */
164 };
165
166 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
167 {
168 struct f2fs_nm_info *nm_i = NM_I(sbi);
169 struct free_nid *fnid;
170
171 spin_lock(&nm_i->free_nid_list_lock);
172 if (nm_i->fcnt <= 0) {
173 spin_unlock(&nm_i->free_nid_list_lock);
174 return;
175 }
176 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
177 *nid = fnid->nid;
178 spin_unlock(&nm_i->free_nid_list_lock);
179 }
180
181 /*
182 * inline functions
183 */
184 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
185 {
186 struct f2fs_nm_info *nm_i = NM_I(sbi);
187 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
188 }
189
190 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
191 {
192 struct f2fs_nm_info *nm_i = NM_I(sbi);
193 pgoff_t block_off;
194 pgoff_t block_addr;
195 int seg_off;
196
197 block_off = NAT_BLOCK_OFFSET(start);
198 seg_off = block_off >> sbi->log_blocks_per_seg;
199
200 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
201 (seg_off << sbi->log_blocks_per_seg << 1) +
202 (block_off & (sbi->blocks_per_seg - 1)));
203
204 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
205 block_addr += sbi->blocks_per_seg;
206
207 return block_addr;
208 }
209
210 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
211 pgoff_t block_addr)
212 {
213 struct f2fs_nm_info *nm_i = NM_I(sbi);
214
215 block_addr -= nm_i->nat_blkaddr;
216 if ((block_addr >> sbi->log_blocks_per_seg) % 2)
217 block_addr -= sbi->blocks_per_seg;
218 else
219 block_addr += sbi->blocks_per_seg;
220
221 return block_addr + nm_i->nat_blkaddr;
222 }
223
224 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
225 {
226 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
227
228 f2fs_change_bit(block_off, nm_i->nat_bitmap);
229 }
230
231 static inline void fill_node_footer(struct page *page, nid_t nid,
232 nid_t ino, unsigned int ofs, bool reset)
233 {
234 struct f2fs_node *rn = F2FS_NODE(page);
235 unsigned int old_flag = 0;
236
237 if (reset)
238 memset(rn, 0, sizeof(*rn));
239 else
240 old_flag = le32_to_cpu(rn->footer.flag);
241
242 rn->footer.nid = cpu_to_le32(nid);
243 rn->footer.ino = cpu_to_le32(ino);
244
245 /* should remain old flag bits such as COLD_BIT_SHIFT */
246 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
247 (old_flag & OFFSET_BIT_MASK));
248 }
249
250 static inline void copy_node_footer(struct page *dst, struct page *src)
251 {
252 struct f2fs_node *src_rn = F2FS_NODE(src);
253 struct f2fs_node *dst_rn = F2FS_NODE(dst);
254 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
255 }
256
257 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
258 {
259 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
260 struct f2fs_node *rn = F2FS_NODE(page);
261
262 rn->footer.cp_ver = ckpt->checkpoint_ver;
263 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
264 }
265
266 static inline nid_t ino_of_node(struct page *node_page)
267 {
268 struct f2fs_node *rn = F2FS_NODE(node_page);
269 return le32_to_cpu(rn->footer.ino);
270 }
271
272 static inline nid_t nid_of_node(struct page *node_page)
273 {
274 struct f2fs_node *rn = F2FS_NODE(node_page);
275 return le32_to_cpu(rn->footer.nid);
276 }
277
278 static inline unsigned int ofs_of_node(struct page *node_page)
279 {
280 struct f2fs_node *rn = F2FS_NODE(node_page);
281 unsigned flag = le32_to_cpu(rn->footer.flag);
282 return flag >> OFFSET_BIT_SHIFT;
283 }
284
285 static inline unsigned long long cpver_of_node(struct page *node_page)
286 {
287 struct f2fs_node *rn = F2FS_NODE(node_page);
288 return le64_to_cpu(rn->footer.cp_ver);
289 }
290
291 static inline block_t next_blkaddr_of_node(struct page *node_page)
292 {
293 struct f2fs_node *rn = F2FS_NODE(node_page);
294 return le32_to_cpu(rn->footer.next_blkaddr);
295 }
296
297 /*
298 * f2fs assigns the following node offsets described as (num).
299 * N = NIDS_PER_BLOCK
300 *
301 * Inode block (0)
302 * |- direct node (1)
303 * |- direct node (2)
304 * |- indirect node (3)
305 * | `- direct node (4 => 4 + N - 1)
306 * |- indirect node (4 + N)
307 * | `- direct node (5 + N => 5 + 2N - 1)
308 * `- double indirect node (5 + 2N)
309 * `- indirect node (6 + 2N)
310 * `- direct node
311 * ......
312 * `- indirect node ((6 + 2N) + x(N + 1))
313 * `- direct node
314 * ......
315 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
316 * `- direct node
317 */
318 static inline bool IS_DNODE(struct page *node_page)
319 {
320 unsigned int ofs = ofs_of_node(node_page);
321
322 if (f2fs_has_xattr_block(ofs))
323 return false;
324
325 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
326 ofs == 5 + 2 * NIDS_PER_BLOCK)
327 return false;
328 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
329 ofs -= 6 + 2 * NIDS_PER_BLOCK;
330 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
331 return false;
332 }
333 return true;
334 }
335
336 static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
337 {
338 struct f2fs_node *rn = F2FS_NODE(p);
339
340 f2fs_wait_on_page_writeback(p, NODE, true);
341
342 if (i)
343 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
344 else
345 rn->in.nid[off] = cpu_to_le32(nid);
346 return set_page_dirty(p);
347 }
348
349 static inline nid_t get_nid(struct page *p, int off, bool i)
350 {
351 struct f2fs_node *rn = F2FS_NODE(p);
352
353 if (i)
354 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
355 return le32_to_cpu(rn->in.nid[off]);
356 }
357
358 /*
359 * Coldness identification:
360 * - Mark cold files in f2fs_inode_info
361 * - Mark cold node blocks in their node footer
362 * - Mark cold data pages in page cache
363 */
364 static inline int is_cold_data(struct page *page)
365 {
366 return PageChecked(page);
367 }
368
369 static inline void set_cold_data(struct page *page)
370 {
371 SetPageChecked(page);
372 }
373
374 static inline void clear_cold_data(struct page *page)
375 {
376 ClearPageChecked(page);
377 }
378
379 static inline int is_node(struct page *page, int type)
380 {
381 struct f2fs_node *rn = F2FS_NODE(page);
382 return le32_to_cpu(rn->footer.flag) & (1 << type);
383 }
384
385 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
386 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
387 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
388
389 static inline int is_inline_node(struct page *page)
390 {
391 return PageChecked(page);
392 }
393
394 static inline void set_inline_node(struct page *page)
395 {
396 SetPageChecked(page);
397 }
398
399 static inline void clear_inline_node(struct page *page)
400 {
401 ClearPageChecked(page);
402 }
403
404 static inline void set_cold_node(struct inode *inode, struct page *page)
405 {
406 struct f2fs_node *rn = F2FS_NODE(page);
407 unsigned int flag = le32_to_cpu(rn->footer.flag);
408
409 if (S_ISDIR(inode->i_mode))
410 flag &= ~(0x1 << COLD_BIT_SHIFT);
411 else
412 flag |= (0x1 << COLD_BIT_SHIFT);
413 rn->footer.flag = cpu_to_le32(flag);
414 }
415
416 static inline void set_mark(struct page *page, int mark, int type)
417 {
418 struct f2fs_node *rn = F2FS_NODE(page);
419 unsigned int flag = le32_to_cpu(rn->footer.flag);
420 if (mark)
421 flag |= (0x1 << type);
422 else
423 flag &= ~(0x1 << type);
424 rn->footer.flag = cpu_to_le32(flag);
425 }
426 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
427 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)
This page took 0.141449 seconds and 4 git commands to generate.