Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / fs / f2fs / node.h
1 /*
2 * fs/f2fs/node.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 /* start node id of a node block dedicated to the given node id */
12 #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13
14 /* node block offset on the NAT area dedicated to the given start node id */
15 #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16
17 /* # of pages to perform readahead before building free nids */
18 #define FREE_NID_PAGES 4
19
20 /* maximum readahead size for node during getting data blocks */
21 #define MAX_RA_NODE 128
22
23 /* control the memory footprint threshold (10MB per 1GB ram) */
24 #define DEF_RAM_THRESHOLD 10
25
26 /* vector size for gang look-up from nat cache that consists of radix tree */
27 #define NATVEC_SIZE 64
28
29 /* return value for read_node_page */
30 #define LOCKED_PAGE 1
31
32 /*
33 * For node information
34 */
35 struct node_info {
36 nid_t nid; /* node id */
37 nid_t ino; /* inode number of the node's owner */
38 block_t blk_addr; /* block address of the node */
39 unsigned char version; /* version of the node */
40 };
41
42 enum {
43 IS_CHECKPOINTED, /* is it checkpointed before? */
44 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
45 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
46 IS_DIRTY, /* this nat entry is dirty? */
47 };
48
49 struct nat_entry {
50 struct list_head list; /* for clean or dirty nat list */
51 unsigned char flag; /* for node information bits */
52 struct node_info ni; /* in-memory node information */
53 };
54
55 #define nat_get_nid(nat) (nat->ni.nid)
56 #define nat_set_nid(nat, n) (nat->ni.nid = n)
57 #define nat_get_blkaddr(nat) (nat->ni.blk_addr)
58 #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
59 #define nat_get_ino(nat) (nat->ni.ino)
60 #define nat_set_ino(nat, i) (nat->ni.ino = i)
61 #define nat_get_version(nat) (nat->ni.version)
62 #define nat_set_version(nat, v) (nat->ni.version = v)
63
64 #define inc_node_version(version) (++version)
65
66 static inline void set_nat_flag(struct nat_entry *ne,
67 unsigned int type, bool set)
68 {
69 unsigned char mask = 0x01 << type;
70 if (set)
71 ne->flag |= mask;
72 else
73 ne->flag &= ~mask;
74 }
75
76 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
77 {
78 unsigned char mask = 0x01 << type;
79 return ne->flag & mask;
80 }
81
82 static inline void nat_reset_flag(struct nat_entry *ne)
83 {
84 /* these states can be set only after checkpoint was done */
85 set_nat_flag(ne, IS_CHECKPOINTED, true);
86 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
87 set_nat_flag(ne, HAS_LAST_FSYNC, true);
88 }
89
90 static inline void node_info_from_raw_nat(struct node_info *ni,
91 struct f2fs_nat_entry *raw_ne)
92 {
93 ni->ino = le32_to_cpu(raw_ne->ino);
94 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
95 ni->version = raw_ne->version;
96 }
97
98 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
99 struct node_info *ni)
100 {
101 raw_ne->ino = cpu_to_le32(ni->ino);
102 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
103 raw_ne->version = ni->version;
104 }
105
106 enum mem_type {
107 FREE_NIDS, /* indicates the free nid list */
108 NAT_ENTRIES, /* indicates the cached nat entry */
109 DIRTY_DENTS /* indicates dirty dentry pages */
110 };
111
112 struct nat_entry_set {
113 struct list_head set_list; /* link with other nat sets */
114 struct list_head entry_list; /* link with dirty nat entries */
115 nid_t set; /* set number*/
116 unsigned int entry_cnt; /* the # of nat entries in set */
117 };
118
119 /*
120 * For free nid mangement
121 */
122 enum nid_state {
123 NID_NEW, /* newly added to free nid list */
124 NID_ALLOC /* it is allocated */
125 };
126
127 struct free_nid {
128 struct list_head list; /* for free node id list */
129 nid_t nid; /* node id */
130 int state; /* in use or not: NID_NEW or NID_ALLOC */
131 };
132
133 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
134 {
135 struct f2fs_nm_info *nm_i = NM_I(sbi);
136 struct free_nid *fnid;
137
138 spin_lock(&nm_i->free_nid_list_lock);
139 if (nm_i->fcnt <= 0) {
140 spin_unlock(&nm_i->free_nid_list_lock);
141 return;
142 }
143 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
144 *nid = fnid->nid;
145 spin_unlock(&nm_i->free_nid_list_lock);
146 }
147
148 /*
149 * inline functions
150 */
151 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
152 {
153 struct f2fs_nm_info *nm_i = NM_I(sbi);
154 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
155 }
156
157 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
158 {
159 struct f2fs_nm_info *nm_i = NM_I(sbi);
160 pgoff_t block_off;
161 pgoff_t block_addr;
162 int seg_off;
163
164 block_off = NAT_BLOCK_OFFSET(start);
165 seg_off = block_off >> sbi->log_blocks_per_seg;
166
167 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
168 (seg_off << sbi->log_blocks_per_seg << 1) +
169 (block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
170
171 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
172 block_addr += sbi->blocks_per_seg;
173
174 return block_addr;
175 }
176
177 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
178 pgoff_t block_addr)
179 {
180 struct f2fs_nm_info *nm_i = NM_I(sbi);
181
182 block_addr -= nm_i->nat_blkaddr;
183 if ((block_addr >> sbi->log_blocks_per_seg) % 2)
184 block_addr -= sbi->blocks_per_seg;
185 else
186 block_addr += sbi->blocks_per_seg;
187
188 return block_addr + nm_i->nat_blkaddr;
189 }
190
191 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
192 {
193 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
194
195 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
196 f2fs_clear_bit(block_off, nm_i->nat_bitmap);
197 else
198 f2fs_set_bit(block_off, nm_i->nat_bitmap);
199 }
200
201 static inline void fill_node_footer(struct page *page, nid_t nid,
202 nid_t ino, unsigned int ofs, bool reset)
203 {
204 struct f2fs_node *rn = F2FS_NODE(page);
205 if (reset)
206 memset(rn, 0, sizeof(*rn));
207 rn->footer.nid = cpu_to_le32(nid);
208 rn->footer.ino = cpu_to_le32(ino);
209 rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT);
210 }
211
212 static inline void copy_node_footer(struct page *dst, struct page *src)
213 {
214 struct f2fs_node *src_rn = F2FS_NODE(src);
215 struct f2fs_node *dst_rn = F2FS_NODE(dst);
216 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
217 }
218
219 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
220 {
221 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
222 struct f2fs_node *rn = F2FS_NODE(page);
223
224 rn->footer.cp_ver = ckpt->checkpoint_ver;
225 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
226 }
227
228 static inline nid_t ino_of_node(struct page *node_page)
229 {
230 struct f2fs_node *rn = F2FS_NODE(node_page);
231 return le32_to_cpu(rn->footer.ino);
232 }
233
234 static inline nid_t nid_of_node(struct page *node_page)
235 {
236 struct f2fs_node *rn = F2FS_NODE(node_page);
237 return le32_to_cpu(rn->footer.nid);
238 }
239
240 static inline unsigned int ofs_of_node(struct page *node_page)
241 {
242 struct f2fs_node *rn = F2FS_NODE(node_page);
243 unsigned flag = le32_to_cpu(rn->footer.flag);
244 return flag >> OFFSET_BIT_SHIFT;
245 }
246
247 static inline unsigned long long cpver_of_node(struct page *node_page)
248 {
249 struct f2fs_node *rn = F2FS_NODE(node_page);
250 return le64_to_cpu(rn->footer.cp_ver);
251 }
252
253 static inline block_t next_blkaddr_of_node(struct page *node_page)
254 {
255 struct f2fs_node *rn = F2FS_NODE(node_page);
256 return le32_to_cpu(rn->footer.next_blkaddr);
257 }
258
259 /*
260 * f2fs assigns the following node offsets described as (num).
261 * N = NIDS_PER_BLOCK
262 *
263 * Inode block (0)
264 * |- direct node (1)
265 * |- direct node (2)
266 * |- indirect node (3)
267 * | `- direct node (4 => 4 + N - 1)
268 * |- indirect node (4 + N)
269 * | `- direct node (5 + N => 5 + 2N - 1)
270 * `- double indirect node (5 + 2N)
271 * `- indirect node (6 + 2N)
272 * `- direct node
273 * ......
274 * `- indirect node ((6 + 2N) + x(N + 1))
275 * `- direct node
276 * ......
277 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
278 * `- direct node
279 */
280 static inline bool IS_DNODE(struct page *node_page)
281 {
282 unsigned int ofs = ofs_of_node(node_page);
283
284 if (f2fs_has_xattr_block(ofs))
285 return false;
286
287 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
288 ofs == 5 + 2 * NIDS_PER_BLOCK)
289 return false;
290 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
291 ofs -= 6 + 2 * NIDS_PER_BLOCK;
292 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
293 return false;
294 }
295 return true;
296 }
297
298 static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
299 {
300 struct f2fs_node *rn = F2FS_NODE(p);
301
302 f2fs_wait_on_page_writeback(p, NODE);
303
304 if (i)
305 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
306 else
307 rn->in.nid[off] = cpu_to_le32(nid);
308 set_page_dirty(p);
309 }
310
311 static inline nid_t get_nid(struct page *p, int off, bool i)
312 {
313 struct f2fs_node *rn = F2FS_NODE(p);
314
315 if (i)
316 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
317 return le32_to_cpu(rn->in.nid[off]);
318 }
319
320 /*
321 * Coldness identification:
322 * - Mark cold files in f2fs_inode_info
323 * - Mark cold node blocks in their node footer
324 * - Mark cold data pages in page cache
325 */
326 static inline int is_file(struct inode *inode, int type)
327 {
328 return F2FS_I(inode)->i_advise & type;
329 }
330
331 static inline void set_file(struct inode *inode, int type)
332 {
333 F2FS_I(inode)->i_advise |= type;
334 }
335
336 static inline void clear_file(struct inode *inode, int type)
337 {
338 F2FS_I(inode)->i_advise &= ~type;
339 }
340
341 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
342 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
343 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
344 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
345 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
346 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
347
348 static inline int is_cold_data(struct page *page)
349 {
350 return PageChecked(page);
351 }
352
353 static inline void set_cold_data(struct page *page)
354 {
355 SetPageChecked(page);
356 }
357
358 static inline void clear_cold_data(struct page *page)
359 {
360 ClearPageChecked(page);
361 }
362
363 static inline int is_node(struct page *page, int type)
364 {
365 struct f2fs_node *rn = F2FS_NODE(page);
366 return le32_to_cpu(rn->footer.flag) & (1 << type);
367 }
368
369 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
370 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
371 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
372
373 static inline void set_cold_node(struct inode *inode, struct page *page)
374 {
375 struct f2fs_node *rn = F2FS_NODE(page);
376 unsigned int flag = le32_to_cpu(rn->footer.flag);
377
378 if (S_ISDIR(inode->i_mode))
379 flag &= ~(0x1 << COLD_BIT_SHIFT);
380 else
381 flag |= (0x1 << COLD_BIT_SHIFT);
382 rn->footer.flag = cpu_to_le32(flag);
383 }
384
385 static inline void set_mark(struct page *page, int mark, int type)
386 {
387 struct f2fs_node *rn = F2FS_NODE(page);
388 unsigned int flag = le32_to_cpu(rn->footer.flag);
389 if (mark)
390 flag |= (0x1 << type);
391 else
392 flag &= ~(0x1 << type);
393 rn->footer.flag = cpu_to_le32(flag);
394 }
395 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
396 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)
This page took 0.044938 seconds and 5 git commands to generate.