f2fs: produce more nids and reduce readahead nats
[deliverable/linux.git] / fs / f2fs / node.h
1 /*
2 * fs/f2fs/node.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 /* start node id of a node block dedicated to the given node id */
12 #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13
14 /* node block offset on the NAT area dedicated to the given start node id */
15 #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16
17 /* # of pages to perform synchronous readahead before building free nids */
18 #define FREE_NID_PAGES 8
19 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
20
21 #define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
22
23 /* maximum readahead size for node during getting data blocks */
24 #define MAX_RA_NODE 128
25
26 /* control the memory footprint threshold (10MB per 1GB ram) */
27 #define DEF_RAM_THRESHOLD 1
28
29 /* control dirty nats ratio threshold (default: 10% over max nid count) */
30 #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
31 /* control total # of nats */
32 #define DEF_NAT_CACHE_THRESHOLD 100000
33
34 /* vector size for gang look-up from nat cache that consists of radix tree */
35 #define NATVEC_SIZE 64
36 #define SETVEC_SIZE 32
37
38 /* return value for read_node_page */
39 #define LOCKED_PAGE 1
40
41 /* For flag in struct node_info */
42 enum {
43 IS_CHECKPOINTED, /* is it checkpointed before? */
44 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
45 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
46 IS_DIRTY, /* this nat entry is dirty? */
47 };
48
49 /*
50 * For node information
51 */
52 struct node_info {
53 nid_t nid; /* node id */
54 nid_t ino; /* inode number of the node's owner */
55 block_t blk_addr; /* block address of the node */
56 unsigned char version; /* version of the node */
57 unsigned char flag; /* for node information bits */
58 };
59
60 struct nat_entry {
61 struct list_head list; /* for clean or dirty nat list */
62 struct node_info ni; /* in-memory node information */
63 };
64
65 #define nat_get_nid(nat) (nat->ni.nid)
66 #define nat_set_nid(nat, n) (nat->ni.nid = n)
67 #define nat_get_blkaddr(nat) (nat->ni.blk_addr)
68 #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
69 #define nat_get_ino(nat) (nat->ni.ino)
70 #define nat_set_ino(nat, i) (nat->ni.ino = i)
71 #define nat_get_version(nat) (nat->ni.version)
72 #define nat_set_version(nat, v) (nat->ni.version = v)
73
74 #define inc_node_version(version) (++version)
75
76 static inline void copy_node_info(struct node_info *dst,
77 struct node_info *src)
78 {
79 dst->nid = src->nid;
80 dst->ino = src->ino;
81 dst->blk_addr = src->blk_addr;
82 dst->version = src->version;
83 /* should not copy flag here */
84 }
85
86 static inline void set_nat_flag(struct nat_entry *ne,
87 unsigned int type, bool set)
88 {
89 unsigned char mask = 0x01 << type;
90 if (set)
91 ne->ni.flag |= mask;
92 else
93 ne->ni.flag &= ~mask;
94 }
95
96 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
97 {
98 unsigned char mask = 0x01 << type;
99 return ne->ni.flag & mask;
100 }
101
102 static inline void nat_reset_flag(struct nat_entry *ne)
103 {
104 /* these states can be set only after checkpoint was done */
105 set_nat_flag(ne, IS_CHECKPOINTED, true);
106 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
107 set_nat_flag(ne, HAS_LAST_FSYNC, true);
108 }
109
110 static inline void node_info_from_raw_nat(struct node_info *ni,
111 struct f2fs_nat_entry *raw_ne)
112 {
113 ni->ino = le32_to_cpu(raw_ne->ino);
114 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
115 ni->version = raw_ne->version;
116 }
117
118 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
119 struct node_info *ni)
120 {
121 raw_ne->ino = cpu_to_le32(ni->ino);
122 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
123 raw_ne->version = ni->version;
124 }
125
126 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
127 {
128 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
129 NM_I(sbi)->dirty_nats_ratio / 100;
130 }
131
132 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
133 {
134 return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
135 }
136
137 enum mem_type {
138 FREE_NIDS, /* indicates the free nid list */
139 NAT_ENTRIES, /* indicates the cached nat entry */
140 DIRTY_DENTS, /* indicates dirty dentry pages */
141 INO_ENTRIES, /* indicates inode entries */
142 EXTENT_CACHE, /* indicates extent cache */
143 BASE_CHECK, /* check kernel status */
144 };
145
146 struct nat_entry_set {
147 struct list_head set_list; /* link with other nat sets */
148 struct list_head entry_list; /* link with dirty nat entries */
149 nid_t set; /* set number*/
150 unsigned int entry_cnt; /* the # of nat entries in set */
151 };
152
153 /*
154 * For free nid mangement
155 */
156 enum nid_state {
157 NID_NEW, /* newly added to free nid list */
158 NID_ALLOC /* it is allocated */
159 };
160
161 struct free_nid {
162 struct list_head list; /* for free node id list */
163 nid_t nid; /* node id */
164 int state; /* in use or not: NID_NEW or NID_ALLOC */
165 };
166
167 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
168 {
169 struct f2fs_nm_info *nm_i = NM_I(sbi);
170 struct free_nid *fnid;
171
172 spin_lock(&nm_i->free_nid_list_lock);
173 if (nm_i->fcnt <= 0) {
174 spin_unlock(&nm_i->free_nid_list_lock);
175 return;
176 }
177 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
178 *nid = fnid->nid;
179 spin_unlock(&nm_i->free_nid_list_lock);
180 }
181
182 /*
183 * inline functions
184 */
185 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
186 {
187 struct f2fs_nm_info *nm_i = NM_I(sbi);
188 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
189 }
190
191 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
192 {
193 struct f2fs_nm_info *nm_i = NM_I(sbi);
194 pgoff_t block_off;
195 pgoff_t block_addr;
196 int seg_off;
197
198 block_off = NAT_BLOCK_OFFSET(start);
199 seg_off = block_off >> sbi->log_blocks_per_seg;
200
201 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
202 (seg_off << sbi->log_blocks_per_seg << 1) +
203 (block_off & (sbi->blocks_per_seg - 1)));
204
205 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
206 block_addr += sbi->blocks_per_seg;
207
208 return block_addr;
209 }
210
211 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
212 pgoff_t block_addr)
213 {
214 struct f2fs_nm_info *nm_i = NM_I(sbi);
215
216 block_addr -= nm_i->nat_blkaddr;
217 if ((block_addr >> sbi->log_blocks_per_seg) % 2)
218 block_addr -= sbi->blocks_per_seg;
219 else
220 block_addr += sbi->blocks_per_seg;
221
222 return block_addr + nm_i->nat_blkaddr;
223 }
224
225 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
226 {
227 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
228
229 f2fs_change_bit(block_off, nm_i->nat_bitmap);
230 }
231
232 static inline void fill_node_footer(struct page *page, nid_t nid,
233 nid_t ino, unsigned int ofs, bool reset)
234 {
235 struct f2fs_node *rn = F2FS_NODE(page);
236 unsigned int old_flag = 0;
237
238 if (reset)
239 memset(rn, 0, sizeof(*rn));
240 else
241 old_flag = le32_to_cpu(rn->footer.flag);
242
243 rn->footer.nid = cpu_to_le32(nid);
244 rn->footer.ino = cpu_to_le32(ino);
245
246 /* should remain old flag bits such as COLD_BIT_SHIFT */
247 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
248 (old_flag & OFFSET_BIT_MASK));
249 }
250
251 static inline void copy_node_footer(struct page *dst, struct page *src)
252 {
253 struct f2fs_node *src_rn = F2FS_NODE(src);
254 struct f2fs_node *dst_rn = F2FS_NODE(dst);
255 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
256 }
257
258 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
259 {
260 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
261 struct f2fs_node *rn = F2FS_NODE(page);
262
263 rn->footer.cp_ver = ckpt->checkpoint_ver;
264 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
265 }
266
267 static inline nid_t ino_of_node(struct page *node_page)
268 {
269 struct f2fs_node *rn = F2FS_NODE(node_page);
270 return le32_to_cpu(rn->footer.ino);
271 }
272
273 static inline nid_t nid_of_node(struct page *node_page)
274 {
275 struct f2fs_node *rn = F2FS_NODE(node_page);
276 return le32_to_cpu(rn->footer.nid);
277 }
278
279 static inline unsigned int ofs_of_node(struct page *node_page)
280 {
281 struct f2fs_node *rn = F2FS_NODE(node_page);
282 unsigned flag = le32_to_cpu(rn->footer.flag);
283 return flag >> OFFSET_BIT_SHIFT;
284 }
285
286 static inline unsigned long long cpver_of_node(struct page *node_page)
287 {
288 struct f2fs_node *rn = F2FS_NODE(node_page);
289 return le64_to_cpu(rn->footer.cp_ver);
290 }
291
292 static inline block_t next_blkaddr_of_node(struct page *node_page)
293 {
294 struct f2fs_node *rn = F2FS_NODE(node_page);
295 return le32_to_cpu(rn->footer.next_blkaddr);
296 }
297
298 /*
299 * f2fs assigns the following node offsets described as (num).
300 * N = NIDS_PER_BLOCK
301 *
302 * Inode block (0)
303 * |- direct node (1)
304 * |- direct node (2)
305 * |- indirect node (3)
306 * | `- direct node (4 => 4 + N - 1)
307 * |- indirect node (4 + N)
308 * | `- direct node (5 + N => 5 + 2N - 1)
309 * `- double indirect node (5 + 2N)
310 * `- indirect node (6 + 2N)
311 * `- direct node
312 * ......
313 * `- indirect node ((6 + 2N) + x(N + 1))
314 * `- direct node
315 * ......
316 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
317 * `- direct node
318 */
319 static inline bool IS_DNODE(struct page *node_page)
320 {
321 unsigned int ofs = ofs_of_node(node_page);
322
323 if (f2fs_has_xattr_block(ofs))
324 return false;
325
326 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
327 ofs == 5 + 2 * NIDS_PER_BLOCK)
328 return false;
329 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
330 ofs -= 6 + 2 * NIDS_PER_BLOCK;
331 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
332 return false;
333 }
334 return true;
335 }
336
337 static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
338 {
339 struct f2fs_node *rn = F2FS_NODE(p);
340
341 f2fs_wait_on_page_writeback(p, NODE, true);
342
343 if (i)
344 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
345 else
346 rn->in.nid[off] = cpu_to_le32(nid);
347 return set_page_dirty(p);
348 }
349
350 static inline nid_t get_nid(struct page *p, int off, bool i)
351 {
352 struct f2fs_node *rn = F2FS_NODE(p);
353
354 if (i)
355 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
356 return le32_to_cpu(rn->in.nid[off]);
357 }
358
359 /*
360 * Coldness identification:
361 * - Mark cold files in f2fs_inode_info
362 * - Mark cold node blocks in their node footer
363 * - Mark cold data pages in page cache
364 */
365 static inline int is_cold_data(struct page *page)
366 {
367 return PageChecked(page);
368 }
369
370 static inline void set_cold_data(struct page *page)
371 {
372 SetPageChecked(page);
373 }
374
375 static inline void clear_cold_data(struct page *page)
376 {
377 ClearPageChecked(page);
378 }
379
380 static inline int is_node(struct page *page, int type)
381 {
382 struct f2fs_node *rn = F2FS_NODE(page);
383 return le32_to_cpu(rn->footer.flag) & (1 << type);
384 }
385
386 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
387 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
388 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
389
390 static inline int is_inline_node(struct page *page)
391 {
392 return PageChecked(page);
393 }
394
395 static inline void set_inline_node(struct page *page)
396 {
397 SetPageChecked(page);
398 }
399
400 static inline void clear_inline_node(struct page *page)
401 {
402 ClearPageChecked(page);
403 }
404
405 static inline void set_cold_node(struct inode *inode, struct page *page)
406 {
407 struct f2fs_node *rn = F2FS_NODE(page);
408 unsigned int flag = le32_to_cpu(rn->footer.flag);
409
410 if (S_ISDIR(inode->i_mode))
411 flag &= ~(0x1 << COLD_BIT_SHIFT);
412 else
413 flag |= (0x1 << COLD_BIT_SHIFT);
414 rn->footer.flag = cpu_to_le32(flag);
415 }
416
417 static inline void set_mark(struct page *page, int mark, int type)
418 {
419 struct f2fs_node *rn = F2FS_NODE(page);
420 unsigned int flag = le32_to_cpu(rn->footer.flag);
421 if (mark)
422 flag |= (0x1 << type);
423 else
424 flag &= ~(0x1 << type);
425 rn->footer.flag = cpu_to_le32(flag);
426 }
427 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
428 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)
This page took 0.05354 seconds and 5 git commands to generate.