f2fs: add F2FS_INLINE_DOTS to recover missing dot dentries
[deliverable/linux.git] / fs / f2fs / recovery.c
1 /*
2 * fs/f2fs/recovery.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include "f2fs.h"
14 #include "node.h"
15 #include "segment.h"
16
17 /*
18 * Roll forward recovery scenarios.
19 *
20 * [Term] F: fsync_mark, D: dentry_mark
21 *
22 * 1. inode(x) | CP | inode(x) | dnode(F)
23 * -> Update the latest inode(x).
24 *
25 * 2. inode(x) | CP | inode(F) | dnode(F)
26 * -> No problem.
27 *
28 * 3. inode(x) | CP | dnode(F) | inode(x)
29 * -> Recover to the latest dnode(F), and drop the last inode(x)
30 *
31 * 4. inode(x) | CP | dnode(F) | inode(F)
32 * -> No problem.
33 *
34 * 5. CP | inode(x) | dnode(F)
35 * -> The inode(DF) was missing. Should drop this dnode(F).
36 *
37 * 6. CP | inode(DF) | dnode(F)
38 * -> No problem.
39 *
40 * 7. CP | dnode(F) | inode(DF)
41 * -> If f2fs_iget fails, then goto next to find inode(DF).
42 *
43 * 8. CP | dnode(F) | inode(x)
44 * -> If f2fs_iget fails, then goto next to find inode(DF).
45 * But it will fail due to no inode(DF).
46 */
47
48 static struct kmem_cache *fsync_entry_slab;
49
50 bool space_for_roll_forward(struct f2fs_sb_info *sbi)
51 {
52 if (sbi->last_valid_block_count + sbi->alloc_valid_block_count
53 > sbi->user_block_count)
54 return false;
55 return true;
56 }
57
58 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
59 nid_t ino)
60 {
61 struct fsync_inode_entry *entry;
62
63 list_for_each_entry(entry, head, list)
64 if (entry->inode->i_ino == ino)
65 return entry;
66
67 return NULL;
68 }
69
70 static int recover_dentry(struct inode *inode, struct page *ipage)
71 {
72 struct f2fs_inode *raw_inode = F2FS_INODE(ipage);
73 nid_t pino = le32_to_cpu(raw_inode->i_pino);
74 struct f2fs_dir_entry *de;
75 struct qstr name;
76 struct page *page;
77 struct inode *dir, *einode;
78 int err = 0;
79
80 dir = f2fs_iget(inode->i_sb, pino);
81 if (IS_ERR(dir)) {
82 err = PTR_ERR(dir);
83 goto out;
84 }
85
86 name.len = le32_to_cpu(raw_inode->i_namelen);
87 name.name = raw_inode->i_name;
88
89 if (unlikely(name.len > F2FS_NAME_LEN)) {
90 WARN_ON(1);
91 err = -ENAMETOOLONG;
92 goto out_err;
93 }
94 retry:
95 de = f2fs_find_entry(dir, &name, &page);
96 if (de && inode->i_ino == le32_to_cpu(de->ino)) {
97 clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
98 goto out_unmap_put;
99 }
100 if (de) {
101 einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino));
102 if (IS_ERR(einode)) {
103 WARN_ON(1);
104 err = PTR_ERR(einode);
105 if (err == -ENOENT)
106 err = -EEXIST;
107 goto out_unmap_put;
108 }
109 err = acquire_orphan_inode(F2FS_I_SB(inode));
110 if (err) {
111 iput(einode);
112 goto out_unmap_put;
113 }
114 f2fs_delete_entry(de, page, dir, einode);
115 iput(einode);
116 goto retry;
117 }
118 err = __f2fs_add_link(dir, &name, inode, inode->i_ino, inode->i_mode);
119 if (err)
120 goto out_err;
121
122 if (is_inode_flag_set(F2FS_I(dir), FI_DELAY_IPUT)) {
123 iput(dir);
124 } else {
125 add_dirty_dir_inode(dir);
126 set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT);
127 }
128
129 goto out;
130
131 out_unmap_put:
132 f2fs_dentry_kunmap(dir, page);
133 f2fs_put_page(page, 0);
134 out_err:
135 iput(dir);
136 out:
137 f2fs_msg(inode->i_sb, KERN_NOTICE,
138 "%s: ino = %x, name = %s, dir = %lx, err = %d",
139 __func__, ino_of_node(ipage), raw_inode->i_name,
140 IS_ERR(dir) ? 0 : dir->i_ino, err);
141 return err;
142 }
143
144 static void recover_inode(struct inode *inode, struct page *page)
145 {
146 struct f2fs_inode *raw = F2FS_INODE(page);
147
148 inode->i_mode = le16_to_cpu(raw->i_mode);
149 i_size_write(inode, le64_to_cpu(raw->i_size));
150 inode->i_atime.tv_sec = le64_to_cpu(raw->i_mtime);
151 inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime);
152 inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime);
153 inode->i_atime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
154 inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec);
155 inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
156
157 f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s",
158 ino_of_node(page), F2FS_INODE(page)->i_name);
159 }
160
161 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
162 {
163 unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
164 struct curseg_info *curseg;
165 struct page *page = NULL;
166 block_t blkaddr;
167 int err = 0;
168
169 /* get node pages in the current segment */
170 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
171 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
172
173 ra_meta_pages(sbi, blkaddr, 1, META_POR);
174
175 while (1) {
176 struct fsync_inode_entry *entry;
177
178 if (blkaddr < MAIN_BLKADDR(sbi) || blkaddr >= MAX_BLKADDR(sbi))
179 return 0;
180
181 page = get_meta_page(sbi, blkaddr);
182
183 if (cp_ver != cpver_of_node(page))
184 break;
185
186 if (!is_fsync_dnode(page))
187 goto next;
188
189 entry = get_fsync_inode(head, ino_of_node(page));
190 if (entry) {
191 if (IS_INODE(page) && is_dent_dnode(page))
192 set_inode_flag(F2FS_I(entry->inode),
193 FI_INC_LINK);
194 } else {
195 if (IS_INODE(page) && is_dent_dnode(page)) {
196 err = recover_inode_page(sbi, page);
197 if (err)
198 break;
199 }
200
201 /* add this fsync inode to the list */
202 entry = kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO);
203 if (!entry) {
204 err = -ENOMEM;
205 break;
206 }
207 /*
208 * CP | dnode(F) | inode(DF)
209 * For this case, we should not give up now.
210 */
211 entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
212 if (IS_ERR(entry->inode)) {
213 err = PTR_ERR(entry->inode);
214 kmem_cache_free(fsync_entry_slab, entry);
215 if (err == -ENOENT) {
216 err = 0;
217 goto next;
218 }
219 break;
220 }
221 list_add_tail(&entry->list, head);
222 }
223 entry->blkaddr = blkaddr;
224
225 if (IS_INODE(page)) {
226 entry->last_inode = blkaddr;
227 if (is_dent_dnode(page))
228 entry->last_dentry = blkaddr;
229 }
230 next:
231 /* check next segment */
232 blkaddr = next_blkaddr_of_node(page);
233 f2fs_put_page(page, 1);
234
235 ra_meta_pages_cond(sbi, blkaddr);
236 }
237 f2fs_put_page(page, 1);
238 return err;
239 }
240
241 static void destroy_fsync_dnodes(struct list_head *head)
242 {
243 struct fsync_inode_entry *entry, *tmp;
244
245 list_for_each_entry_safe(entry, tmp, head, list) {
246 iput(entry->inode);
247 list_del(&entry->list);
248 kmem_cache_free(fsync_entry_slab, entry);
249 }
250 }
251
252 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
253 block_t blkaddr, struct dnode_of_data *dn)
254 {
255 struct seg_entry *sentry;
256 unsigned int segno = GET_SEGNO(sbi, blkaddr);
257 unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
258 struct f2fs_summary_block *sum_node;
259 struct f2fs_summary sum;
260 struct page *sum_page, *node_page;
261 struct dnode_of_data tdn = *dn;
262 nid_t ino, nid;
263 struct inode *inode;
264 unsigned int offset;
265 block_t bidx;
266 int i;
267
268 sentry = get_seg_entry(sbi, segno);
269 if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
270 return 0;
271
272 /* Get the previous summary */
273 for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
274 struct curseg_info *curseg = CURSEG_I(sbi, i);
275 if (curseg->segno == segno) {
276 sum = curseg->sum_blk->entries[blkoff];
277 goto got_it;
278 }
279 }
280
281 sum_page = get_sum_page(sbi, segno);
282 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
283 sum = sum_node->entries[blkoff];
284 f2fs_put_page(sum_page, 1);
285 got_it:
286 /* Use the locked dnode page and inode */
287 nid = le32_to_cpu(sum.nid);
288 if (dn->inode->i_ino == nid) {
289 tdn.nid = nid;
290 if (!dn->inode_page_locked)
291 lock_page(dn->inode_page);
292 tdn.node_page = dn->inode_page;
293 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
294 goto truncate_out;
295 } else if (dn->nid == nid) {
296 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
297 goto truncate_out;
298 }
299
300 /* Get the node page */
301 node_page = get_node_page(sbi, nid);
302 if (IS_ERR(node_page))
303 return PTR_ERR(node_page);
304
305 offset = ofs_of_node(node_page);
306 ino = ino_of_node(node_page);
307 f2fs_put_page(node_page, 1);
308
309 if (ino != dn->inode->i_ino) {
310 /* Deallocate previous index in the node page */
311 inode = f2fs_iget(sbi->sb, ino);
312 if (IS_ERR(inode))
313 return PTR_ERR(inode);
314 } else {
315 inode = dn->inode;
316 }
317
318 bidx = start_bidx_of_node(offset, F2FS_I(inode)) +
319 le16_to_cpu(sum.ofs_in_node);
320
321 /*
322 * if inode page is locked, unlock temporarily, but its reference
323 * count keeps alive.
324 */
325 if (ino == dn->inode->i_ino && dn->inode_page_locked)
326 unlock_page(dn->inode_page);
327
328 set_new_dnode(&tdn, inode, NULL, NULL, 0);
329 if (get_dnode_of_data(&tdn, bidx, LOOKUP_NODE))
330 goto out;
331
332 if (tdn.data_blkaddr == blkaddr)
333 truncate_data_blocks_range(&tdn, 1);
334
335 f2fs_put_dnode(&tdn);
336 out:
337 if (ino != dn->inode->i_ino)
338 iput(inode);
339 else if (dn->inode_page_locked)
340 lock_page(dn->inode_page);
341 return 0;
342
343 truncate_out:
344 if (datablock_addr(tdn.node_page, tdn.ofs_in_node) == blkaddr)
345 truncate_data_blocks_range(&tdn, 1);
346 if (dn->inode->i_ino == nid && !dn->inode_page_locked)
347 unlock_page(dn->inode_page);
348 return 0;
349 }
350
351 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
352 struct page *page, block_t blkaddr)
353 {
354 struct f2fs_inode_info *fi = F2FS_I(inode);
355 unsigned int start, end;
356 struct dnode_of_data dn;
357 struct f2fs_summary sum;
358 struct node_info ni;
359 int err = 0, recovered = 0;
360
361 /* step 1: recover xattr */
362 if (IS_INODE(page)) {
363 recover_inline_xattr(inode, page);
364 } else if (f2fs_has_xattr_block(ofs_of_node(page))) {
365 /*
366 * Deprecated; xattr blocks should be found from cold log.
367 * But, we should remain this for backward compatibility.
368 */
369 recover_xattr_data(inode, page, blkaddr);
370 goto out;
371 }
372
373 /* step 2: recover inline data */
374 if (recover_inline_data(inode, page))
375 goto out;
376
377 /* step 3: recover data indices */
378 start = start_bidx_of_node(ofs_of_node(page), fi);
379 end = start + ADDRS_PER_PAGE(page, fi);
380
381 f2fs_lock_op(sbi);
382
383 set_new_dnode(&dn, inode, NULL, NULL, 0);
384
385 err = get_dnode_of_data(&dn, start, ALLOC_NODE);
386 if (err) {
387 f2fs_unlock_op(sbi);
388 goto out;
389 }
390
391 f2fs_wait_on_page_writeback(dn.node_page, NODE);
392
393 get_node_info(sbi, dn.nid, &ni);
394 f2fs_bug_on(sbi, ni.ino != ino_of_node(page));
395 f2fs_bug_on(sbi, ofs_of_node(dn.node_page) != ofs_of_node(page));
396
397 for (; start < end; start++) {
398 block_t src, dest;
399
400 src = datablock_addr(dn.node_page, dn.ofs_in_node);
401 dest = datablock_addr(page, dn.ofs_in_node);
402
403 if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) {
404 if (src == NULL_ADDR) {
405 err = reserve_new_block(&dn);
406 /* We should not get -ENOSPC */
407 f2fs_bug_on(sbi, err);
408 }
409
410 /* Check the previous node page having this index */
411 err = check_index_in_prev_nodes(sbi, dest, &dn);
412 if (err)
413 goto err;
414
415 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
416
417 /* write dummy data page */
418 recover_data_page(sbi, NULL, &sum, src, dest);
419 dn.data_blkaddr = dest;
420 set_data_blkaddr(&dn);
421 f2fs_update_extent_cache(&dn);
422 recovered++;
423 }
424 dn.ofs_in_node++;
425 }
426
427 if (IS_INODE(dn.node_page))
428 sync_inode_page(&dn);
429
430 copy_node_footer(dn.node_page, page);
431 fill_node_footer(dn.node_page, dn.nid, ni.ino,
432 ofs_of_node(page), false);
433 set_page_dirty(dn.node_page);
434 err:
435 f2fs_put_dnode(&dn);
436 f2fs_unlock_op(sbi);
437 out:
438 f2fs_msg(sbi->sb, KERN_NOTICE,
439 "recover_data: ino = %lx, recovered = %d blocks, err = %d",
440 inode->i_ino, recovered, err);
441 return err;
442 }
443
444 static int recover_data(struct f2fs_sb_info *sbi,
445 struct list_head *head, int type)
446 {
447 unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
448 struct curseg_info *curseg;
449 struct page *page = NULL;
450 int err = 0;
451 block_t blkaddr;
452
453 /* get node pages in the current segment */
454 curseg = CURSEG_I(sbi, type);
455 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
456
457 while (1) {
458 struct fsync_inode_entry *entry;
459
460 if (blkaddr < MAIN_BLKADDR(sbi) || blkaddr >= MAX_BLKADDR(sbi))
461 break;
462
463 ra_meta_pages_cond(sbi, blkaddr);
464
465 page = get_meta_page(sbi, blkaddr);
466
467 if (cp_ver != cpver_of_node(page)) {
468 f2fs_put_page(page, 1);
469 break;
470 }
471
472 entry = get_fsync_inode(head, ino_of_node(page));
473 if (!entry)
474 goto next;
475 /*
476 * inode(x) | CP | inode(x) | dnode(F)
477 * In this case, we can lose the latest inode(x).
478 * So, call recover_inode for the inode update.
479 */
480 if (entry->last_inode == blkaddr)
481 recover_inode(entry->inode, page);
482 if (entry->last_dentry == blkaddr) {
483 err = recover_dentry(entry->inode, page);
484 if (err) {
485 f2fs_put_page(page, 1);
486 break;
487 }
488 }
489 err = do_recover_data(sbi, entry->inode, page, blkaddr);
490 if (err) {
491 f2fs_put_page(page, 1);
492 break;
493 }
494
495 if (entry->blkaddr == blkaddr) {
496 iput(entry->inode);
497 list_del(&entry->list);
498 kmem_cache_free(fsync_entry_slab, entry);
499 }
500 next:
501 /* check next segment */
502 blkaddr = next_blkaddr_of_node(page);
503 f2fs_put_page(page, 1);
504 }
505 if (!err)
506 allocate_new_segments(sbi);
507 return err;
508 }
509
510 int recover_fsync_data(struct f2fs_sb_info *sbi)
511 {
512 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
513 struct list_head inode_list;
514 block_t blkaddr;
515 int err;
516 bool need_writecp = false;
517
518 fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
519 sizeof(struct fsync_inode_entry));
520 if (!fsync_entry_slab)
521 return -ENOMEM;
522
523 INIT_LIST_HEAD(&inode_list);
524
525 /* step #1: find fsynced inode numbers */
526 set_sbi_flag(sbi, SBI_POR_DOING);
527
528 /* prevent checkpoint */
529 mutex_lock(&sbi->cp_mutex);
530
531 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
532
533 err = find_fsync_dnodes(sbi, &inode_list);
534 if (err)
535 goto out;
536
537 if (list_empty(&inode_list))
538 goto out;
539
540 need_writecp = true;
541
542 /* step #2: recover data */
543 err = recover_data(sbi, &inode_list, CURSEG_WARM_NODE);
544 if (!err)
545 f2fs_bug_on(sbi, !list_empty(&inode_list));
546 out:
547 destroy_fsync_dnodes(&inode_list);
548 kmem_cache_destroy(fsync_entry_slab);
549
550 /* truncate meta pages to be used by the recovery */
551 truncate_inode_pages_range(META_MAPPING(sbi),
552 MAIN_BLKADDR(sbi) << PAGE_CACHE_SHIFT, -1);
553
554 if (err) {
555 truncate_inode_pages_final(NODE_MAPPING(sbi));
556 truncate_inode_pages_final(META_MAPPING(sbi));
557 }
558
559 clear_sbi_flag(sbi, SBI_POR_DOING);
560 if (err) {
561 discard_next_dnode(sbi, blkaddr);
562
563 /* Flush all the NAT/SIT pages */
564 while (get_pages(sbi, F2FS_DIRTY_META))
565 sync_meta_pages(sbi, META, LONG_MAX);
566 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
567 mutex_unlock(&sbi->cp_mutex);
568 } else if (need_writecp) {
569 struct cp_control cpc = {
570 .reason = CP_SYNC,
571 };
572 mutex_unlock(&sbi->cp_mutex);
573 write_checkpoint(sbi, &cpc);
574 } else {
575 mutex_unlock(&sbi->cp_mutex);
576 }
577 return err;
578 }
This page took 0.041753 seconds and 5 git commands to generate.