782975e791f1d9d173c7e762f2cb1f9d1e8f6711
[deliverable/linux.git] / fs / f2fs / segment.c
1 /*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *sit_entry_set_slab;
30 static struct kmem_cache *inmem_entry_slab;
31
32 static unsigned long __reverse_ulong(unsigned char *str)
33 {
34 unsigned long tmp = 0;
35 int shift = 24, idx = 0;
36
37 #if BITS_PER_LONG == 64
38 shift = 56;
39 #endif
40 while (shift >= 0) {
41 tmp |= (unsigned long)str[idx++] << shift;
42 shift -= BITS_PER_BYTE;
43 }
44 return tmp;
45 }
46
47 /*
48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
49 * MSB and LSB are reversed in a byte by f2fs_set_bit.
50 */
51 static inline unsigned long __reverse_ffs(unsigned long word)
52 {
53 int num = 0;
54
55 #if BITS_PER_LONG == 64
56 if ((word & 0xffffffff00000000UL) == 0)
57 num += 32;
58 else
59 word >>= 32;
60 #endif
61 if ((word & 0xffff0000) == 0)
62 num += 16;
63 else
64 word >>= 16;
65
66 if ((word & 0xff00) == 0)
67 num += 8;
68 else
69 word >>= 8;
70
71 if ((word & 0xf0) == 0)
72 num += 4;
73 else
74 word >>= 4;
75
76 if ((word & 0xc) == 0)
77 num += 2;
78 else
79 word >>= 2;
80
81 if ((word & 0x2) == 0)
82 num += 1;
83 return num;
84 }
85
86 /*
87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
88 * f2fs_set_bit makes MSB and LSB reversed in a byte.
89 * @size must be integral times of unsigned long.
90 * Example:
91 * MSB <--> LSB
92 * f2fs_set_bit(0, bitmap) => 1000 0000
93 * f2fs_set_bit(7, bitmap) => 0000 0001
94 */
95 static unsigned long __find_rev_next_bit(const unsigned long *addr,
96 unsigned long size, unsigned long offset)
97 {
98 const unsigned long *p = addr + BIT_WORD(offset);
99 unsigned long result = size;
100 unsigned long tmp;
101
102 if (offset >= size)
103 return size;
104
105 size -= (offset & ~(BITS_PER_LONG - 1));
106 offset %= BITS_PER_LONG;
107
108 while (1) {
109 if (*p == 0)
110 goto pass;
111
112 tmp = __reverse_ulong((unsigned char *)p);
113
114 tmp &= ~0UL >> offset;
115 if (size < BITS_PER_LONG)
116 tmp &= (~0UL << (BITS_PER_LONG - size));
117 if (tmp)
118 goto found;
119 pass:
120 if (size <= BITS_PER_LONG)
121 break;
122 size -= BITS_PER_LONG;
123 offset = 0;
124 p++;
125 }
126 return result;
127 found:
128 return result - size + __reverse_ffs(tmp);
129 }
130
131 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
132 unsigned long size, unsigned long offset)
133 {
134 const unsigned long *p = addr + BIT_WORD(offset);
135 unsigned long result = size;
136 unsigned long tmp;
137
138 if (offset >= size)
139 return size;
140
141 size -= (offset & ~(BITS_PER_LONG - 1));
142 offset %= BITS_PER_LONG;
143
144 while (1) {
145 if (*p == ~0UL)
146 goto pass;
147
148 tmp = __reverse_ulong((unsigned char *)p);
149
150 if (offset)
151 tmp |= ~0UL << (BITS_PER_LONG - offset);
152 if (size < BITS_PER_LONG)
153 tmp |= ~0UL >> size;
154 if (tmp != ~0UL)
155 goto found;
156 pass:
157 if (size <= BITS_PER_LONG)
158 break;
159 size -= BITS_PER_LONG;
160 offset = 0;
161 p++;
162 }
163 return result;
164 found:
165 return result - size + __reverse_ffz(tmp);
166 }
167
168 void register_inmem_page(struct inode *inode, struct page *page)
169 {
170 struct f2fs_inode_info *fi = F2FS_I(inode);
171 struct inmem_pages *new;
172
173 f2fs_trace_pid(page);
174
175 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
176 SetPagePrivate(page);
177
178 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
179
180 /* add atomic page indices to the list */
181 new->page = page;
182 INIT_LIST_HEAD(&new->list);
183
184 /* increase reference count with clean state */
185 mutex_lock(&fi->inmem_lock);
186 get_page(page);
187 list_add_tail(&new->list, &fi->inmem_pages);
188 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
189 mutex_unlock(&fi->inmem_lock);
190
191 trace_f2fs_register_inmem_page(page, INMEM);
192 }
193
194 static int __revoke_inmem_pages(struct inode *inode,
195 struct list_head *head, bool drop, bool recover)
196 {
197 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
198 struct inmem_pages *cur, *tmp;
199 int err = 0;
200
201 list_for_each_entry_safe(cur, tmp, head, list) {
202 struct page *page = cur->page;
203
204 if (drop)
205 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
206
207 lock_page(page);
208
209 if (recover) {
210 struct dnode_of_data dn;
211 struct node_info ni;
212
213 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
214
215 set_new_dnode(&dn, inode, NULL, NULL, 0);
216 if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
217 err = -EAGAIN;
218 goto next;
219 }
220 get_node_info(sbi, dn.nid, &ni);
221 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
222 cur->old_addr, ni.version, true, true);
223 f2fs_put_dnode(&dn);
224 }
225 next:
226 /* we don't need to invalidate this in the sccessful status */
227 if (drop || recover)
228 ClearPageUptodate(page);
229 set_page_private(page, 0);
230 ClearPagePrivate(page);
231 f2fs_put_page(page, 1);
232
233 list_del(&cur->list);
234 kmem_cache_free(inmem_entry_slab, cur);
235 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
236 }
237 return err;
238 }
239
240 void drop_inmem_pages(struct inode *inode)
241 {
242 struct f2fs_inode_info *fi = F2FS_I(inode);
243
244 clear_inode_flag(inode, FI_ATOMIC_FILE);
245
246 mutex_lock(&fi->inmem_lock);
247 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
248 mutex_unlock(&fi->inmem_lock);
249 }
250
251 static int __commit_inmem_pages(struct inode *inode,
252 struct list_head *revoke_list)
253 {
254 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
255 struct f2fs_inode_info *fi = F2FS_I(inode);
256 struct inmem_pages *cur, *tmp;
257 struct f2fs_io_info fio = {
258 .sbi = sbi,
259 .type = DATA,
260 .rw = WRITE_SYNC | REQ_PRIO,
261 .encrypted_page = NULL,
262 };
263 bool submit_bio = false;
264 int err = 0;
265
266 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
267 struct page *page = cur->page;
268
269 lock_page(page);
270 if (page->mapping == inode->i_mapping) {
271 trace_f2fs_commit_inmem_page(page, INMEM);
272
273 set_page_dirty(page);
274 f2fs_wait_on_page_writeback(page, DATA, true);
275 if (clear_page_dirty_for_io(page))
276 inode_dec_dirty_pages(inode);
277
278 fio.page = page;
279 err = do_write_data_page(&fio);
280 if (err) {
281 unlock_page(page);
282 break;
283 }
284
285 /* record old blkaddr for revoking */
286 cur->old_addr = fio.old_blkaddr;
287
288 clear_cold_data(page);
289 submit_bio = true;
290 }
291 unlock_page(page);
292 list_move_tail(&cur->list, revoke_list);
293 }
294
295 if (submit_bio)
296 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
297
298 if (!err)
299 __revoke_inmem_pages(inode, revoke_list, false, false);
300
301 return err;
302 }
303
304 int commit_inmem_pages(struct inode *inode)
305 {
306 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
307 struct f2fs_inode_info *fi = F2FS_I(inode);
308 struct list_head revoke_list;
309 int err;
310
311 INIT_LIST_HEAD(&revoke_list);
312 f2fs_balance_fs(sbi, true);
313 f2fs_lock_op(sbi);
314
315 mutex_lock(&fi->inmem_lock);
316 err = __commit_inmem_pages(inode, &revoke_list);
317 if (err) {
318 int ret;
319 /*
320 * try to revoke all committed pages, but still we could fail
321 * due to no memory or other reason, if that happened, EAGAIN
322 * will be returned, which means in such case, transaction is
323 * already not integrity, caller should use journal to do the
324 * recovery or rewrite & commit last transaction. For other
325 * error number, revoking was done by filesystem itself.
326 */
327 ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
328 if (ret)
329 err = ret;
330
331 /* drop all uncommitted pages */
332 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
333 }
334 mutex_unlock(&fi->inmem_lock);
335
336 f2fs_unlock_op(sbi);
337 return err;
338 }
339
340 /*
341 * This function balances dirty node and dentry pages.
342 * In addition, it controls garbage collection.
343 */
344 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
345 {
346 if (!need)
347 return;
348
349 /* balance_fs_bg is able to be pending */
350 if (excess_cached_nats(sbi))
351 f2fs_balance_fs_bg(sbi);
352
353 /*
354 * We should do GC or end up with checkpoint, if there are so many dirty
355 * dir/node pages without enough free segments.
356 */
357 if (has_not_enough_free_secs(sbi, 0)) {
358 mutex_lock(&sbi->gc_mutex);
359 f2fs_gc(sbi, false);
360 }
361 }
362
363 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
364 {
365 /* try to shrink extent cache when there is no enough memory */
366 if (!available_free_memory(sbi, EXTENT_CACHE))
367 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
368
369 /* check the # of cached NAT entries */
370 if (!available_free_memory(sbi, NAT_ENTRIES))
371 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
372
373 if (!available_free_memory(sbi, FREE_NIDS))
374 try_to_free_nids(sbi, NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES);
375
376 /* checkpoint is the only way to shrink partial cached entries */
377 if (!available_free_memory(sbi, NAT_ENTRIES) ||
378 !available_free_memory(sbi, INO_ENTRIES) ||
379 excess_prefree_segs(sbi) ||
380 excess_dirty_nats(sbi) ||
381 (is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) {
382 if (test_opt(sbi, DATA_FLUSH))
383 sync_dirty_inodes(sbi, FILE_INODE);
384 f2fs_sync_fs(sbi->sb, true);
385 stat_inc_bg_cp_count(sbi->stat_info);
386 }
387 }
388
389 static int issue_flush_thread(void *data)
390 {
391 struct f2fs_sb_info *sbi = data;
392 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
393 wait_queue_head_t *q = &fcc->flush_wait_queue;
394 repeat:
395 if (kthread_should_stop())
396 return 0;
397
398 if (!llist_empty(&fcc->issue_list)) {
399 struct bio *bio;
400 struct flush_cmd *cmd, *next;
401 int ret;
402
403 bio = f2fs_bio_alloc(0);
404
405 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
406 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
407
408 bio->bi_bdev = sbi->sb->s_bdev;
409 ret = submit_bio_wait(WRITE_FLUSH, bio);
410
411 llist_for_each_entry_safe(cmd, next,
412 fcc->dispatch_list, llnode) {
413 cmd->ret = ret;
414 complete(&cmd->wait);
415 }
416 bio_put(bio);
417 fcc->dispatch_list = NULL;
418 }
419
420 wait_event_interruptible(*q,
421 kthread_should_stop() || !llist_empty(&fcc->issue_list));
422 goto repeat;
423 }
424
425 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
426 {
427 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
428 struct flush_cmd cmd;
429
430 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
431 test_opt(sbi, FLUSH_MERGE));
432
433 if (test_opt(sbi, NOBARRIER))
434 return 0;
435
436 if (!test_opt(sbi, FLUSH_MERGE) || !atomic_read(&fcc->submit_flush)) {
437 struct bio *bio = f2fs_bio_alloc(0);
438 int ret;
439
440 atomic_inc(&fcc->submit_flush);
441 bio->bi_bdev = sbi->sb->s_bdev;
442 ret = submit_bio_wait(WRITE_FLUSH, bio);
443 atomic_dec(&fcc->submit_flush);
444 bio_put(bio);
445 return ret;
446 }
447
448 init_completion(&cmd.wait);
449
450 atomic_inc(&fcc->submit_flush);
451 llist_add(&cmd.llnode, &fcc->issue_list);
452
453 if (!fcc->dispatch_list)
454 wake_up(&fcc->flush_wait_queue);
455
456 wait_for_completion(&cmd.wait);
457 atomic_dec(&fcc->submit_flush);
458
459 return cmd.ret;
460 }
461
462 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
463 {
464 dev_t dev = sbi->sb->s_bdev->bd_dev;
465 struct flush_cmd_control *fcc;
466 int err = 0;
467
468 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
469 if (!fcc)
470 return -ENOMEM;
471 atomic_set(&fcc->submit_flush, 0);
472 init_waitqueue_head(&fcc->flush_wait_queue);
473 init_llist_head(&fcc->issue_list);
474 SM_I(sbi)->cmd_control_info = fcc;
475 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
476 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
477 if (IS_ERR(fcc->f2fs_issue_flush)) {
478 err = PTR_ERR(fcc->f2fs_issue_flush);
479 kfree(fcc);
480 SM_I(sbi)->cmd_control_info = NULL;
481 return err;
482 }
483
484 return err;
485 }
486
487 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
488 {
489 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
490
491 if (fcc && fcc->f2fs_issue_flush)
492 kthread_stop(fcc->f2fs_issue_flush);
493 kfree(fcc);
494 SM_I(sbi)->cmd_control_info = NULL;
495 }
496
497 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
498 enum dirty_type dirty_type)
499 {
500 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
501
502 /* need not be added */
503 if (IS_CURSEG(sbi, segno))
504 return;
505
506 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
507 dirty_i->nr_dirty[dirty_type]++;
508
509 if (dirty_type == DIRTY) {
510 struct seg_entry *sentry = get_seg_entry(sbi, segno);
511 enum dirty_type t = sentry->type;
512
513 if (unlikely(t >= DIRTY)) {
514 f2fs_bug_on(sbi, 1);
515 return;
516 }
517 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
518 dirty_i->nr_dirty[t]++;
519 }
520 }
521
522 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
523 enum dirty_type dirty_type)
524 {
525 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
526
527 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
528 dirty_i->nr_dirty[dirty_type]--;
529
530 if (dirty_type == DIRTY) {
531 struct seg_entry *sentry = get_seg_entry(sbi, segno);
532 enum dirty_type t = sentry->type;
533
534 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
535 dirty_i->nr_dirty[t]--;
536
537 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
538 clear_bit(GET_SECNO(sbi, segno),
539 dirty_i->victim_secmap);
540 }
541 }
542
543 /*
544 * Should not occur error such as -ENOMEM.
545 * Adding dirty entry into seglist is not critical operation.
546 * If a given segment is one of current working segments, it won't be added.
547 */
548 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
549 {
550 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
551 unsigned short valid_blocks;
552
553 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
554 return;
555
556 mutex_lock(&dirty_i->seglist_lock);
557
558 valid_blocks = get_valid_blocks(sbi, segno, 0);
559
560 if (valid_blocks == 0) {
561 __locate_dirty_segment(sbi, segno, PRE);
562 __remove_dirty_segment(sbi, segno, DIRTY);
563 } else if (valid_blocks < sbi->blocks_per_seg) {
564 __locate_dirty_segment(sbi, segno, DIRTY);
565 } else {
566 /* Recovery routine with SSR needs this */
567 __remove_dirty_segment(sbi, segno, DIRTY);
568 }
569
570 mutex_unlock(&dirty_i->seglist_lock);
571 }
572
573 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
574 block_t blkstart, block_t blklen)
575 {
576 sector_t start = SECTOR_FROM_BLOCK(blkstart);
577 sector_t len = SECTOR_FROM_BLOCK(blklen);
578 struct seg_entry *se;
579 unsigned int offset;
580 block_t i;
581
582 for (i = blkstart; i < blkstart + blklen; i++) {
583 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
584 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
585
586 if (!f2fs_test_and_set_bit(offset, se->discard_map))
587 sbi->discard_blks--;
588 }
589 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
590 return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
591 }
592
593 bool discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
594 {
595 int err = -EOPNOTSUPP;
596
597 if (test_opt(sbi, DISCARD)) {
598 struct seg_entry *se = get_seg_entry(sbi,
599 GET_SEGNO(sbi, blkaddr));
600 unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
601
602 if (f2fs_test_bit(offset, se->discard_map))
603 return false;
604
605 err = f2fs_issue_discard(sbi, blkaddr, 1);
606 }
607
608 if (err) {
609 update_meta_page(sbi, NULL, blkaddr);
610 return true;
611 }
612 return false;
613 }
614
615 static void __add_discard_entry(struct f2fs_sb_info *sbi,
616 struct cp_control *cpc, struct seg_entry *se,
617 unsigned int start, unsigned int end)
618 {
619 struct list_head *head = &SM_I(sbi)->discard_list;
620 struct discard_entry *new, *last;
621
622 if (!list_empty(head)) {
623 last = list_last_entry(head, struct discard_entry, list);
624 if (START_BLOCK(sbi, cpc->trim_start) + start ==
625 last->blkaddr + last->len) {
626 last->len += end - start;
627 goto done;
628 }
629 }
630
631 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
632 INIT_LIST_HEAD(&new->list);
633 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
634 new->len = end - start;
635 list_add_tail(&new->list, head);
636 done:
637 SM_I(sbi)->nr_discards += end - start;
638 }
639
640 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
641 {
642 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
643 int max_blocks = sbi->blocks_per_seg;
644 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
645 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
646 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
647 unsigned long *discard_map = (unsigned long *)se->discard_map;
648 unsigned long *dmap = SIT_I(sbi)->tmp_map;
649 unsigned int start = 0, end = -1;
650 bool force = (cpc->reason == CP_DISCARD);
651 int i;
652
653 if (se->valid_blocks == max_blocks)
654 return;
655
656 if (!force) {
657 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
658 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
659 return;
660 }
661
662 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
663 for (i = 0; i < entries; i++)
664 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
665 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
666
667 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
668 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
669 if (start >= max_blocks)
670 break;
671
672 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
673 __add_discard_entry(sbi, cpc, se, start, end);
674 }
675 }
676
677 void release_discard_addrs(struct f2fs_sb_info *sbi)
678 {
679 struct list_head *head = &(SM_I(sbi)->discard_list);
680 struct discard_entry *entry, *this;
681
682 /* drop caches */
683 list_for_each_entry_safe(entry, this, head, list) {
684 list_del(&entry->list);
685 kmem_cache_free(discard_entry_slab, entry);
686 }
687 }
688
689 /*
690 * Should call clear_prefree_segments after checkpoint is done.
691 */
692 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
693 {
694 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
695 unsigned int segno;
696
697 mutex_lock(&dirty_i->seglist_lock);
698 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
699 __set_test_and_free(sbi, segno);
700 mutex_unlock(&dirty_i->seglist_lock);
701 }
702
703 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
704 {
705 struct list_head *head = &(SM_I(sbi)->discard_list);
706 struct discard_entry *entry, *this;
707 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
708 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
709 unsigned int start = 0, end = -1;
710 unsigned int secno, start_segno;
711
712 mutex_lock(&dirty_i->seglist_lock);
713
714 while (1) {
715 int i;
716 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
717 if (start >= MAIN_SEGS(sbi))
718 break;
719 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
720 start + 1);
721
722 for (i = start; i < end; i++)
723 clear_bit(i, prefree_map);
724
725 dirty_i->nr_dirty[PRE] -= end - start;
726
727 if (!test_opt(sbi, DISCARD))
728 continue;
729
730 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
731 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
732 (end - start) << sbi->log_blocks_per_seg);
733 continue;
734 }
735 next:
736 secno = GET_SECNO(sbi, start);
737 start_segno = secno * sbi->segs_per_sec;
738 if (!IS_CURSEC(sbi, secno) &&
739 !get_valid_blocks(sbi, start, sbi->segs_per_sec))
740 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
741 sbi->segs_per_sec << sbi->log_blocks_per_seg);
742
743 start = start_segno + sbi->segs_per_sec;
744 if (start < end)
745 goto next;
746 }
747 mutex_unlock(&dirty_i->seglist_lock);
748
749 /* send small discards */
750 list_for_each_entry_safe(entry, this, head, list) {
751 if (cpc->reason == CP_DISCARD && entry->len < cpc->trim_minlen)
752 goto skip;
753 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
754 cpc->trimmed += entry->len;
755 skip:
756 list_del(&entry->list);
757 SM_I(sbi)->nr_discards -= entry->len;
758 kmem_cache_free(discard_entry_slab, entry);
759 }
760 }
761
762 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
763 {
764 struct sit_info *sit_i = SIT_I(sbi);
765
766 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
767 sit_i->dirty_sentries++;
768 return false;
769 }
770
771 return true;
772 }
773
774 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
775 unsigned int segno, int modified)
776 {
777 struct seg_entry *se = get_seg_entry(sbi, segno);
778 se->type = type;
779 if (modified)
780 __mark_sit_entry_dirty(sbi, segno);
781 }
782
783 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
784 {
785 struct seg_entry *se;
786 unsigned int segno, offset;
787 long int new_vblocks;
788
789 segno = GET_SEGNO(sbi, blkaddr);
790
791 se = get_seg_entry(sbi, segno);
792 new_vblocks = se->valid_blocks + del;
793 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
794
795 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
796 (new_vblocks > sbi->blocks_per_seg)));
797
798 se->valid_blocks = new_vblocks;
799 se->mtime = get_mtime(sbi);
800 SIT_I(sbi)->max_mtime = se->mtime;
801
802 /* Update valid block bitmap */
803 if (del > 0) {
804 if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
805 f2fs_bug_on(sbi, 1);
806 if (!f2fs_test_and_set_bit(offset, se->discard_map))
807 sbi->discard_blks--;
808 } else {
809 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
810 f2fs_bug_on(sbi, 1);
811 if (f2fs_test_and_clear_bit(offset, se->discard_map))
812 sbi->discard_blks++;
813 }
814 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
815 se->ckpt_valid_blocks += del;
816
817 __mark_sit_entry_dirty(sbi, segno);
818
819 /* update total number of valid blocks to be written in ckpt area */
820 SIT_I(sbi)->written_valid_blocks += del;
821
822 if (sbi->segs_per_sec > 1)
823 get_sec_entry(sbi, segno)->valid_blocks += del;
824 }
825
826 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
827 {
828 update_sit_entry(sbi, new, 1);
829 if (GET_SEGNO(sbi, old) != NULL_SEGNO)
830 update_sit_entry(sbi, old, -1);
831
832 locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
833 locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
834 }
835
836 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
837 {
838 unsigned int segno = GET_SEGNO(sbi, addr);
839 struct sit_info *sit_i = SIT_I(sbi);
840
841 f2fs_bug_on(sbi, addr == NULL_ADDR);
842 if (addr == NEW_ADDR)
843 return;
844
845 /* add it into sit main buffer */
846 mutex_lock(&sit_i->sentry_lock);
847
848 update_sit_entry(sbi, addr, -1);
849
850 /* add it into dirty seglist */
851 locate_dirty_segment(sbi, segno);
852
853 mutex_unlock(&sit_i->sentry_lock);
854 }
855
856 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
857 {
858 struct sit_info *sit_i = SIT_I(sbi);
859 unsigned int segno, offset;
860 struct seg_entry *se;
861 bool is_cp = false;
862
863 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
864 return true;
865
866 mutex_lock(&sit_i->sentry_lock);
867
868 segno = GET_SEGNO(sbi, blkaddr);
869 se = get_seg_entry(sbi, segno);
870 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
871
872 if (f2fs_test_bit(offset, se->ckpt_valid_map))
873 is_cp = true;
874
875 mutex_unlock(&sit_i->sentry_lock);
876
877 return is_cp;
878 }
879
880 /*
881 * This function should be resided under the curseg_mutex lock
882 */
883 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
884 struct f2fs_summary *sum)
885 {
886 struct curseg_info *curseg = CURSEG_I(sbi, type);
887 void *addr = curseg->sum_blk;
888 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
889 memcpy(addr, sum, sizeof(struct f2fs_summary));
890 }
891
892 /*
893 * Calculate the number of current summary pages for writing
894 */
895 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
896 {
897 int valid_sum_count = 0;
898 int i, sum_in_page;
899
900 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
901 if (sbi->ckpt->alloc_type[i] == SSR)
902 valid_sum_count += sbi->blocks_per_seg;
903 else {
904 if (for_ra)
905 valid_sum_count += le16_to_cpu(
906 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
907 else
908 valid_sum_count += curseg_blkoff(sbi, i);
909 }
910 }
911
912 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
913 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
914 if (valid_sum_count <= sum_in_page)
915 return 1;
916 else if ((valid_sum_count - sum_in_page) <=
917 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
918 return 2;
919 return 3;
920 }
921
922 /*
923 * Caller should put this summary page
924 */
925 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
926 {
927 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
928 }
929
930 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
931 {
932 struct page *page = grab_meta_page(sbi, blk_addr);
933 void *dst = page_address(page);
934
935 if (src)
936 memcpy(dst, src, PAGE_SIZE);
937 else
938 memset(dst, 0, PAGE_SIZE);
939 set_page_dirty(page);
940 f2fs_put_page(page, 1);
941 }
942
943 static void write_sum_page(struct f2fs_sb_info *sbi,
944 struct f2fs_summary_block *sum_blk, block_t blk_addr)
945 {
946 update_meta_page(sbi, (void *)sum_blk, blk_addr);
947 }
948
949 static void write_current_sum_page(struct f2fs_sb_info *sbi,
950 int type, block_t blk_addr)
951 {
952 struct curseg_info *curseg = CURSEG_I(sbi, type);
953 struct page *page = grab_meta_page(sbi, blk_addr);
954 struct f2fs_summary_block *src = curseg->sum_blk;
955 struct f2fs_summary_block *dst;
956
957 dst = (struct f2fs_summary_block *)page_address(page);
958
959 mutex_lock(&curseg->curseg_mutex);
960
961 down_read(&curseg->journal_rwsem);
962 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
963 up_read(&curseg->journal_rwsem);
964
965 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
966 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
967
968 mutex_unlock(&curseg->curseg_mutex);
969
970 set_page_dirty(page);
971 f2fs_put_page(page, 1);
972 }
973
974 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
975 {
976 struct curseg_info *curseg = CURSEG_I(sbi, type);
977 unsigned int segno = curseg->segno + 1;
978 struct free_segmap_info *free_i = FREE_I(sbi);
979
980 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
981 return !test_bit(segno, free_i->free_segmap);
982 return 0;
983 }
984
985 /*
986 * Find a new segment from the free segments bitmap to right order
987 * This function should be returned with success, otherwise BUG
988 */
989 static void get_new_segment(struct f2fs_sb_info *sbi,
990 unsigned int *newseg, bool new_sec, int dir)
991 {
992 struct free_segmap_info *free_i = FREE_I(sbi);
993 unsigned int segno, secno, zoneno;
994 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
995 unsigned int hint = *newseg / sbi->segs_per_sec;
996 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
997 unsigned int left_start = hint;
998 bool init = true;
999 int go_left = 0;
1000 int i;
1001
1002 spin_lock(&free_i->segmap_lock);
1003
1004 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
1005 segno = find_next_zero_bit(free_i->free_segmap,
1006 (hint + 1) * sbi->segs_per_sec, *newseg + 1);
1007 if (segno < (hint + 1) * sbi->segs_per_sec)
1008 goto got_it;
1009 }
1010 find_other_zone:
1011 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
1012 if (secno >= MAIN_SECS(sbi)) {
1013 if (dir == ALLOC_RIGHT) {
1014 secno = find_next_zero_bit(free_i->free_secmap,
1015 MAIN_SECS(sbi), 0);
1016 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
1017 } else {
1018 go_left = 1;
1019 left_start = hint - 1;
1020 }
1021 }
1022 if (go_left == 0)
1023 goto skip_left;
1024
1025 while (test_bit(left_start, free_i->free_secmap)) {
1026 if (left_start > 0) {
1027 left_start--;
1028 continue;
1029 }
1030 left_start = find_next_zero_bit(free_i->free_secmap,
1031 MAIN_SECS(sbi), 0);
1032 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1033 break;
1034 }
1035 secno = left_start;
1036 skip_left:
1037 hint = secno;
1038 segno = secno * sbi->segs_per_sec;
1039 zoneno = secno / sbi->secs_per_zone;
1040
1041 /* give up on finding another zone */
1042 if (!init)
1043 goto got_it;
1044 if (sbi->secs_per_zone == 1)
1045 goto got_it;
1046 if (zoneno == old_zoneno)
1047 goto got_it;
1048 if (dir == ALLOC_LEFT) {
1049 if (!go_left && zoneno + 1 >= total_zones)
1050 goto got_it;
1051 if (go_left && zoneno == 0)
1052 goto got_it;
1053 }
1054 for (i = 0; i < NR_CURSEG_TYPE; i++)
1055 if (CURSEG_I(sbi, i)->zone == zoneno)
1056 break;
1057
1058 if (i < NR_CURSEG_TYPE) {
1059 /* zone is in user, try another */
1060 if (go_left)
1061 hint = zoneno * sbi->secs_per_zone - 1;
1062 else if (zoneno + 1 >= total_zones)
1063 hint = 0;
1064 else
1065 hint = (zoneno + 1) * sbi->secs_per_zone;
1066 init = false;
1067 goto find_other_zone;
1068 }
1069 got_it:
1070 /* set it as dirty segment in free segmap */
1071 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1072 __set_inuse(sbi, segno);
1073 *newseg = segno;
1074 spin_unlock(&free_i->segmap_lock);
1075 }
1076
1077 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1078 {
1079 struct curseg_info *curseg = CURSEG_I(sbi, type);
1080 struct summary_footer *sum_footer;
1081
1082 curseg->segno = curseg->next_segno;
1083 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
1084 curseg->next_blkoff = 0;
1085 curseg->next_segno = NULL_SEGNO;
1086
1087 sum_footer = &(curseg->sum_blk->footer);
1088 memset(sum_footer, 0, sizeof(struct summary_footer));
1089 if (IS_DATASEG(type))
1090 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1091 if (IS_NODESEG(type))
1092 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1093 __set_sit_entry_type(sbi, type, curseg->segno, modified);
1094 }
1095
1096 /*
1097 * Allocate a current working segment.
1098 * This function always allocates a free segment in LFS manner.
1099 */
1100 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1101 {
1102 struct curseg_info *curseg = CURSEG_I(sbi, type);
1103 unsigned int segno = curseg->segno;
1104 int dir = ALLOC_LEFT;
1105
1106 write_sum_page(sbi, curseg->sum_blk,
1107 GET_SUM_BLOCK(sbi, segno));
1108 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1109 dir = ALLOC_RIGHT;
1110
1111 if (test_opt(sbi, NOHEAP))
1112 dir = ALLOC_RIGHT;
1113
1114 get_new_segment(sbi, &segno, new_sec, dir);
1115 curseg->next_segno = segno;
1116 reset_curseg(sbi, type, 1);
1117 curseg->alloc_type = LFS;
1118 }
1119
1120 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1121 struct curseg_info *seg, block_t start)
1122 {
1123 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1124 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1125 unsigned long *target_map = SIT_I(sbi)->tmp_map;
1126 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1127 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1128 int i, pos;
1129
1130 for (i = 0; i < entries; i++)
1131 target_map[i] = ckpt_map[i] | cur_map[i];
1132
1133 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1134
1135 seg->next_blkoff = pos;
1136 }
1137
1138 /*
1139 * If a segment is written by LFS manner, next block offset is just obtained
1140 * by increasing the current block offset. However, if a segment is written by
1141 * SSR manner, next block offset obtained by calling __next_free_blkoff
1142 */
1143 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1144 struct curseg_info *seg)
1145 {
1146 if (seg->alloc_type == SSR)
1147 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1148 else
1149 seg->next_blkoff++;
1150 }
1151
1152 /*
1153 * This function always allocates a used segment(from dirty seglist) by SSR
1154 * manner, so it should recover the existing segment information of valid blocks
1155 */
1156 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1157 {
1158 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1159 struct curseg_info *curseg = CURSEG_I(sbi, type);
1160 unsigned int new_segno = curseg->next_segno;
1161 struct f2fs_summary_block *sum_node;
1162 struct page *sum_page;
1163
1164 write_sum_page(sbi, curseg->sum_blk,
1165 GET_SUM_BLOCK(sbi, curseg->segno));
1166 __set_test_and_inuse(sbi, new_segno);
1167
1168 mutex_lock(&dirty_i->seglist_lock);
1169 __remove_dirty_segment(sbi, new_segno, PRE);
1170 __remove_dirty_segment(sbi, new_segno, DIRTY);
1171 mutex_unlock(&dirty_i->seglist_lock);
1172
1173 reset_curseg(sbi, type, 1);
1174 curseg->alloc_type = SSR;
1175 __next_free_blkoff(sbi, curseg, 0);
1176
1177 if (reuse) {
1178 sum_page = get_sum_page(sbi, new_segno);
1179 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1180 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1181 f2fs_put_page(sum_page, 1);
1182 }
1183 }
1184
1185 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1186 {
1187 struct curseg_info *curseg = CURSEG_I(sbi, type);
1188 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1189
1190 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
1191 return v_ops->get_victim(sbi,
1192 &(curseg)->next_segno, BG_GC, type, SSR);
1193
1194 /* For data segments, let's do SSR more intensively */
1195 for (; type >= CURSEG_HOT_DATA; type--)
1196 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1197 BG_GC, type, SSR))
1198 return 1;
1199 return 0;
1200 }
1201
1202 /*
1203 * flush out current segment and replace it with new segment
1204 * This function should be returned with success, otherwise BUG
1205 */
1206 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1207 int type, bool force)
1208 {
1209 struct curseg_info *curseg = CURSEG_I(sbi, type);
1210
1211 if (force)
1212 new_curseg(sbi, type, true);
1213 else if (type == CURSEG_WARM_NODE)
1214 new_curseg(sbi, type, false);
1215 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1216 new_curseg(sbi, type, false);
1217 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1218 change_curseg(sbi, type, true);
1219 else
1220 new_curseg(sbi, type, false);
1221
1222 stat_inc_seg_type(sbi, curseg);
1223 }
1224
1225 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
1226 {
1227 struct curseg_info *curseg = CURSEG_I(sbi, type);
1228 unsigned int old_segno;
1229
1230 old_segno = curseg->segno;
1231 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
1232 locate_dirty_segment(sbi, old_segno);
1233 }
1234
1235 void allocate_new_segments(struct f2fs_sb_info *sbi)
1236 {
1237 int i;
1238
1239 if (test_opt(sbi, LFS))
1240 return;
1241
1242 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1243 __allocate_new_segments(sbi, i);
1244 }
1245
1246 static const struct segment_allocation default_salloc_ops = {
1247 .allocate_segment = allocate_segment_by_default,
1248 };
1249
1250 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1251 {
1252 __u64 start = F2FS_BYTES_TO_BLK(range->start);
1253 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1254 unsigned int start_segno, end_segno;
1255 struct cp_control cpc;
1256 int err = 0;
1257
1258 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1259 return -EINVAL;
1260
1261 cpc.trimmed = 0;
1262 if (end <= MAIN_BLKADDR(sbi))
1263 goto out;
1264
1265 /* start/end segment number in main_area */
1266 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1267 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1268 GET_SEGNO(sbi, end);
1269 cpc.reason = CP_DISCARD;
1270 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1271
1272 /* do checkpoint to issue discard commands safely */
1273 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1274 cpc.trim_start = start_segno;
1275
1276 if (sbi->discard_blks == 0)
1277 break;
1278 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1279 cpc.trim_end = end_segno;
1280 else
1281 cpc.trim_end = min_t(unsigned int,
1282 rounddown(start_segno +
1283 BATCHED_TRIM_SEGMENTS(sbi),
1284 sbi->segs_per_sec) - 1, end_segno);
1285
1286 mutex_lock(&sbi->gc_mutex);
1287 err = write_checkpoint(sbi, &cpc);
1288 mutex_unlock(&sbi->gc_mutex);
1289 }
1290 out:
1291 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1292 return err;
1293 }
1294
1295 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1296 {
1297 struct curseg_info *curseg = CURSEG_I(sbi, type);
1298 if (curseg->next_blkoff < sbi->blocks_per_seg)
1299 return true;
1300 return false;
1301 }
1302
1303 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1304 {
1305 if (p_type == DATA)
1306 return CURSEG_HOT_DATA;
1307 else
1308 return CURSEG_HOT_NODE;
1309 }
1310
1311 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1312 {
1313 if (p_type == DATA) {
1314 struct inode *inode = page->mapping->host;
1315
1316 if (S_ISDIR(inode->i_mode))
1317 return CURSEG_HOT_DATA;
1318 else
1319 return CURSEG_COLD_DATA;
1320 } else {
1321 if (IS_DNODE(page) && is_cold_node(page))
1322 return CURSEG_WARM_NODE;
1323 else
1324 return CURSEG_COLD_NODE;
1325 }
1326 }
1327
1328 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1329 {
1330 if (p_type == DATA) {
1331 struct inode *inode = page->mapping->host;
1332
1333 if (S_ISDIR(inode->i_mode))
1334 return CURSEG_HOT_DATA;
1335 else if (is_cold_data(page) || file_is_cold(inode))
1336 return CURSEG_COLD_DATA;
1337 else
1338 return CURSEG_WARM_DATA;
1339 } else {
1340 if (IS_DNODE(page))
1341 return is_cold_node(page) ? CURSEG_WARM_NODE :
1342 CURSEG_HOT_NODE;
1343 else
1344 return CURSEG_COLD_NODE;
1345 }
1346 }
1347
1348 static int __get_segment_type(struct page *page, enum page_type p_type)
1349 {
1350 switch (F2FS_P_SB(page)->active_logs) {
1351 case 2:
1352 return __get_segment_type_2(page, p_type);
1353 case 4:
1354 return __get_segment_type_4(page, p_type);
1355 }
1356 /* NR_CURSEG_TYPE(6) logs by default */
1357 f2fs_bug_on(F2FS_P_SB(page),
1358 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1359 return __get_segment_type_6(page, p_type);
1360 }
1361
1362 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1363 block_t old_blkaddr, block_t *new_blkaddr,
1364 struct f2fs_summary *sum, int type)
1365 {
1366 struct sit_info *sit_i = SIT_I(sbi);
1367 struct curseg_info *curseg;
1368 bool direct_io = (type == CURSEG_DIRECT_IO);
1369
1370 type = direct_io ? CURSEG_WARM_DATA : type;
1371
1372 curseg = CURSEG_I(sbi, type);
1373
1374 mutex_lock(&curseg->curseg_mutex);
1375 mutex_lock(&sit_i->sentry_lock);
1376
1377 /* direct_io'ed data is aligned to the segment for better performance */
1378 if (direct_io && curseg->next_blkoff &&
1379 !has_not_enough_free_secs(sbi, 0))
1380 __allocate_new_segments(sbi, type);
1381
1382 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1383
1384 /*
1385 * __add_sum_entry should be resided under the curseg_mutex
1386 * because, this function updates a summary entry in the
1387 * current summary block.
1388 */
1389 __add_sum_entry(sbi, type, sum);
1390
1391 __refresh_next_blkoff(sbi, curseg);
1392
1393 stat_inc_block_count(sbi, curseg);
1394
1395 if (!__has_curseg_space(sbi, type))
1396 sit_i->s_ops->allocate_segment(sbi, type, false);
1397 /*
1398 * SIT information should be updated before segment allocation,
1399 * since SSR needs latest valid block information.
1400 */
1401 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1402
1403 mutex_unlock(&sit_i->sentry_lock);
1404
1405 if (page && IS_NODESEG(type))
1406 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1407
1408 mutex_unlock(&curseg->curseg_mutex);
1409 }
1410
1411 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1412 {
1413 int type = __get_segment_type(fio->page, fio->type);
1414
1415 if (fio->type == NODE || fio->type == DATA)
1416 mutex_lock(&fio->sbi->wio_mutex[fio->type]);
1417
1418 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
1419 &fio->new_blkaddr, sum, type);
1420
1421 /* writeout dirty page into bdev */
1422 f2fs_submit_page_mbio(fio);
1423
1424 if (fio->type == NODE || fio->type == DATA)
1425 mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
1426 }
1427
1428 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1429 {
1430 struct f2fs_io_info fio = {
1431 .sbi = sbi,
1432 .type = META,
1433 .rw = WRITE_SYNC | REQ_META | REQ_PRIO,
1434 .old_blkaddr = page->index,
1435 .new_blkaddr = page->index,
1436 .page = page,
1437 .encrypted_page = NULL,
1438 };
1439
1440 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1441 fio.rw &= ~REQ_META;
1442
1443 set_page_writeback(page);
1444 f2fs_submit_page_mbio(&fio);
1445 }
1446
1447 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1448 {
1449 struct f2fs_summary sum;
1450
1451 set_summary(&sum, nid, 0, 0);
1452 do_write_page(&sum, fio);
1453 }
1454
1455 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1456 {
1457 struct f2fs_sb_info *sbi = fio->sbi;
1458 struct f2fs_summary sum;
1459 struct node_info ni;
1460
1461 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1462 get_node_info(sbi, dn->nid, &ni);
1463 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1464 do_write_page(&sum, fio);
1465 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
1466 }
1467
1468 void rewrite_data_page(struct f2fs_io_info *fio)
1469 {
1470 fio->new_blkaddr = fio->old_blkaddr;
1471 stat_inc_inplace_blocks(fio->sbi);
1472 f2fs_submit_page_mbio(fio);
1473 }
1474
1475 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1476 block_t old_blkaddr, block_t new_blkaddr,
1477 bool recover_curseg, bool recover_newaddr)
1478 {
1479 struct sit_info *sit_i = SIT_I(sbi);
1480 struct curseg_info *curseg;
1481 unsigned int segno, old_cursegno;
1482 struct seg_entry *se;
1483 int type;
1484 unsigned short old_blkoff;
1485
1486 segno = GET_SEGNO(sbi, new_blkaddr);
1487 se = get_seg_entry(sbi, segno);
1488 type = se->type;
1489
1490 if (!recover_curseg) {
1491 /* for recovery flow */
1492 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1493 if (old_blkaddr == NULL_ADDR)
1494 type = CURSEG_COLD_DATA;
1495 else
1496 type = CURSEG_WARM_DATA;
1497 }
1498 } else {
1499 if (!IS_CURSEG(sbi, segno))
1500 type = CURSEG_WARM_DATA;
1501 }
1502
1503 curseg = CURSEG_I(sbi, type);
1504
1505 mutex_lock(&curseg->curseg_mutex);
1506 mutex_lock(&sit_i->sentry_lock);
1507
1508 old_cursegno = curseg->segno;
1509 old_blkoff = curseg->next_blkoff;
1510
1511 /* change the current segment */
1512 if (segno != curseg->segno) {
1513 curseg->next_segno = segno;
1514 change_curseg(sbi, type, true);
1515 }
1516
1517 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1518 __add_sum_entry(sbi, type, sum);
1519
1520 if (!recover_curseg || recover_newaddr)
1521 update_sit_entry(sbi, new_blkaddr, 1);
1522 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1523 update_sit_entry(sbi, old_blkaddr, -1);
1524
1525 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1526 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1527
1528 locate_dirty_segment(sbi, old_cursegno);
1529
1530 if (recover_curseg) {
1531 if (old_cursegno != curseg->segno) {
1532 curseg->next_segno = old_cursegno;
1533 change_curseg(sbi, type, true);
1534 }
1535 curseg->next_blkoff = old_blkoff;
1536 }
1537
1538 mutex_unlock(&sit_i->sentry_lock);
1539 mutex_unlock(&curseg->curseg_mutex);
1540 }
1541
1542 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1543 block_t old_addr, block_t new_addr,
1544 unsigned char version, bool recover_curseg,
1545 bool recover_newaddr)
1546 {
1547 struct f2fs_summary sum;
1548
1549 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1550
1551 __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
1552 recover_curseg, recover_newaddr);
1553
1554 f2fs_update_data_blkaddr(dn, new_addr);
1555 }
1556
1557 void f2fs_wait_on_page_writeback(struct page *page,
1558 enum page_type type, bool ordered)
1559 {
1560 if (PageWriteback(page)) {
1561 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1562
1563 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE);
1564 if (ordered)
1565 wait_on_page_writeback(page);
1566 else
1567 wait_for_stable_page(page);
1568 }
1569 }
1570
1571 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1572 block_t blkaddr)
1573 {
1574 struct page *cpage;
1575
1576 if (blkaddr == NEW_ADDR)
1577 return;
1578
1579 f2fs_bug_on(sbi, blkaddr == NULL_ADDR);
1580
1581 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1582 if (cpage) {
1583 f2fs_wait_on_page_writeback(cpage, DATA, true);
1584 f2fs_put_page(cpage, 1);
1585 }
1586 }
1587
1588 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1589 {
1590 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1591 struct curseg_info *seg_i;
1592 unsigned char *kaddr;
1593 struct page *page;
1594 block_t start;
1595 int i, j, offset;
1596
1597 start = start_sum_block(sbi);
1598
1599 page = get_meta_page(sbi, start++);
1600 kaddr = (unsigned char *)page_address(page);
1601
1602 /* Step 1: restore nat cache */
1603 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1604 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
1605
1606 /* Step 2: restore sit cache */
1607 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1608 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
1609 offset = 2 * SUM_JOURNAL_SIZE;
1610
1611 /* Step 3: restore summary entries */
1612 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1613 unsigned short blk_off;
1614 unsigned int segno;
1615
1616 seg_i = CURSEG_I(sbi, i);
1617 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1618 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1619 seg_i->next_segno = segno;
1620 reset_curseg(sbi, i, 0);
1621 seg_i->alloc_type = ckpt->alloc_type[i];
1622 seg_i->next_blkoff = blk_off;
1623
1624 if (seg_i->alloc_type == SSR)
1625 blk_off = sbi->blocks_per_seg;
1626
1627 for (j = 0; j < blk_off; j++) {
1628 struct f2fs_summary *s;
1629 s = (struct f2fs_summary *)(kaddr + offset);
1630 seg_i->sum_blk->entries[j] = *s;
1631 offset += SUMMARY_SIZE;
1632 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
1633 SUM_FOOTER_SIZE)
1634 continue;
1635
1636 f2fs_put_page(page, 1);
1637 page = NULL;
1638
1639 page = get_meta_page(sbi, start++);
1640 kaddr = (unsigned char *)page_address(page);
1641 offset = 0;
1642 }
1643 }
1644 f2fs_put_page(page, 1);
1645 return 0;
1646 }
1647
1648 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1649 {
1650 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1651 struct f2fs_summary_block *sum;
1652 struct curseg_info *curseg;
1653 struct page *new;
1654 unsigned short blk_off;
1655 unsigned int segno = 0;
1656 block_t blk_addr = 0;
1657
1658 /* get segment number and block addr */
1659 if (IS_DATASEG(type)) {
1660 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1661 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1662 CURSEG_HOT_DATA]);
1663 if (__exist_node_summaries(sbi))
1664 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1665 else
1666 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1667 } else {
1668 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1669 CURSEG_HOT_NODE]);
1670 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1671 CURSEG_HOT_NODE]);
1672 if (__exist_node_summaries(sbi))
1673 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1674 type - CURSEG_HOT_NODE);
1675 else
1676 blk_addr = GET_SUM_BLOCK(sbi, segno);
1677 }
1678
1679 new = get_meta_page(sbi, blk_addr);
1680 sum = (struct f2fs_summary_block *)page_address(new);
1681
1682 if (IS_NODESEG(type)) {
1683 if (__exist_node_summaries(sbi)) {
1684 struct f2fs_summary *ns = &sum->entries[0];
1685 int i;
1686 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1687 ns->version = 0;
1688 ns->ofs_in_node = 0;
1689 }
1690 } else {
1691 int err;
1692
1693 err = restore_node_summary(sbi, segno, sum);
1694 if (err) {
1695 f2fs_put_page(new, 1);
1696 return err;
1697 }
1698 }
1699 }
1700
1701 /* set uncompleted segment to curseg */
1702 curseg = CURSEG_I(sbi, type);
1703 mutex_lock(&curseg->curseg_mutex);
1704
1705 /* update journal info */
1706 down_write(&curseg->journal_rwsem);
1707 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
1708 up_write(&curseg->journal_rwsem);
1709
1710 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
1711 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
1712 curseg->next_segno = segno;
1713 reset_curseg(sbi, type, 0);
1714 curseg->alloc_type = ckpt->alloc_type[type];
1715 curseg->next_blkoff = blk_off;
1716 mutex_unlock(&curseg->curseg_mutex);
1717 f2fs_put_page(new, 1);
1718 return 0;
1719 }
1720
1721 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1722 {
1723 int type = CURSEG_HOT_DATA;
1724 int err;
1725
1726 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1727 int npages = npages_for_summary_flush(sbi, true);
1728
1729 if (npages >= 2)
1730 ra_meta_pages(sbi, start_sum_block(sbi), npages,
1731 META_CP, true);
1732
1733 /* restore for compacted data summary */
1734 if (read_compacted_summaries(sbi))
1735 return -EINVAL;
1736 type = CURSEG_HOT_NODE;
1737 }
1738
1739 if (__exist_node_summaries(sbi))
1740 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1741 NR_CURSEG_TYPE - type, META_CP, true);
1742
1743 for (; type <= CURSEG_COLD_NODE; type++) {
1744 err = read_normal_summaries(sbi, type);
1745 if (err)
1746 return err;
1747 }
1748
1749 return 0;
1750 }
1751
1752 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1753 {
1754 struct page *page;
1755 unsigned char *kaddr;
1756 struct f2fs_summary *summary;
1757 struct curseg_info *seg_i;
1758 int written_size = 0;
1759 int i, j;
1760
1761 page = grab_meta_page(sbi, blkaddr++);
1762 kaddr = (unsigned char *)page_address(page);
1763
1764 /* Step 1: write nat cache */
1765 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1766 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
1767 written_size += SUM_JOURNAL_SIZE;
1768
1769 /* Step 2: write sit cache */
1770 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1771 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
1772 written_size += SUM_JOURNAL_SIZE;
1773
1774 /* Step 3: write summary entries */
1775 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1776 unsigned short blkoff;
1777 seg_i = CURSEG_I(sbi, i);
1778 if (sbi->ckpt->alloc_type[i] == SSR)
1779 blkoff = sbi->blocks_per_seg;
1780 else
1781 blkoff = curseg_blkoff(sbi, i);
1782
1783 for (j = 0; j < blkoff; j++) {
1784 if (!page) {
1785 page = grab_meta_page(sbi, blkaddr++);
1786 kaddr = (unsigned char *)page_address(page);
1787 written_size = 0;
1788 }
1789 summary = (struct f2fs_summary *)(kaddr + written_size);
1790 *summary = seg_i->sum_blk->entries[j];
1791 written_size += SUMMARY_SIZE;
1792
1793 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
1794 SUM_FOOTER_SIZE)
1795 continue;
1796
1797 set_page_dirty(page);
1798 f2fs_put_page(page, 1);
1799 page = NULL;
1800 }
1801 }
1802 if (page) {
1803 set_page_dirty(page);
1804 f2fs_put_page(page, 1);
1805 }
1806 }
1807
1808 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1809 block_t blkaddr, int type)
1810 {
1811 int i, end;
1812 if (IS_DATASEG(type))
1813 end = type + NR_CURSEG_DATA_TYPE;
1814 else
1815 end = type + NR_CURSEG_NODE_TYPE;
1816
1817 for (i = type; i < end; i++)
1818 write_current_sum_page(sbi, i, blkaddr + (i - type));
1819 }
1820
1821 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1822 {
1823 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1824 write_compacted_summaries(sbi, start_blk);
1825 else
1826 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1827 }
1828
1829 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1830 {
1831 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1832 }
1833
1834 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
1835 unsigned int val, int alloc)
1836 {
1837 int i;
1838
1839 if (type == NAT_JOURNAL) {
1840 for (i = 0; i < nats_in_cursum(journal); i++) {
1841 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
1842 return i;
1843 }
1844 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
1845 return update_nats_in_cursum(journal, 1);
1846 } else if (type == SIT_JOURNAL) {
1847 for (i = 0; i < sits_in_cursum(journal); i++)
1848 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
1849 return i;
1850 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
1851 return update_sits_in_cursum(journal, 1);
1852 }
1853 return -1;
1854 }
1855
1856 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1857 unsigned int segno)
1858 {
1859 return get_meta_page(sbi, current_sit_addr(sbi, segno));
1860 }
1861
1862 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1863 unsigned int start)
1864 {
1865 struct sit_info *sit_i = SIT_I(sbi);
1866 struct page *src_page, *dst_page;
1867 pgoff_t src_off, dst_off;
1868 void *src_addr, *dst_addr;
1869
1870 src_off = current_sit_addr(sbi, start);
1871 dst_off = next_sit_addr(sbi, src_off);
1872
1873 /* get current sit block page without lock */
1874 src_page = get_meta_page(sbi, src_off);
1875 dst_page = grab_meta_page(sbi, dst_off);
1876 f2fs_bug_on(sbi, PageDirty(src_page));
1877
1878 src_addr = page_address(src_page);
1879 dst_addr = page_address(dst_page);
1880 memcpy(dst_addr, src_addr, PAGE_SIZE);
1881
1882 set_page_dirty(dst_page);
1883 f2fs_put_page(src_page, 1);
1884
1885 set_to_next_sit(sit_i, start);
1886
1887 return dst_page;
1888 }
1889
1890 static struct sit_entry_set *grab_sit_entry_set(void)
1891 {
1892 struct sit_entry_set *ses =
1893 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
1894
1895 ses->entry_cnt = 0;
1896 INIT_LIST_HEAD(&ses->set_list);
1897 return ses;
1898 }
1899
1900 static void release_sit_entry_set(struct sit_entry_set *ses)
1901 {
1902 list_del(&ses->set_list);
1903 kmem_cache_free(sit_entry_set_slab, ses);
1904 }
1905
1906 static void adjust_sit_entry_set(struct sit_entry_set *ses,
1907 struct list_head *head)
1908 {
1909 struct sit_entry_set *next = ses;
1910
1911 if (list_is_last(&ses->set_list, head))
1912 return;
1913
1914 list_for_each_entry_continue(next, head, set_list)
1915 if (ses->entry_cnt <= next->entry_cnt)
1916 break;
1917
1918 list_move_tail(&ses->set_list, &next->set_list);
1919 }
1920
1921 static void add_sit_entry(unsigned int segno, struct list_head *head)
1922 {
1923 struct sit_entry_set *ses;
1924 unsigned int start_segno = START_SEGNO(segno);
1925
1926 list_for_each_entry(ses, head, set_list) {
1927 if (ses->start_segno == start_segno) {
1928 ses->entry_cnt++;
1929 adjust_sit_entry_set(ses, head);
1930 return;
1931 }
1932 }
1933
1934 ses = grab_sit_entry_set();
1935
1936 ses->start_segno = start_segno;
1937 ses->entry_cnt++;
1938 list_add(&ses->set_list, head);
1939 }
1940
1941 static void add_sits_in_set(struct f2fs_sb_info *sbi)
1942 {
1943 struct f2fs_sm_info *sm_info = SM_I(sbi);
1944 struct list_head *set_list = &sm_info->sit_entry_set;
1945 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1946 unsigned int segno;
1947
1948 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
1949 add_sit_entry(segno, set_list);
1950 }
1951
1952 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1953 {
1954 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1955 struct f2fs_journal *journal = curseg->journal;
1956 int i;
1957
1958 down_write(&curseg->journal_rwsem);
1959 for (i = 0; i < sits_in_cursum(journal); i++) {
1960 unsigned int segno;
1961 bool dirtied;
1962
1963 segno = le32_to_cpu(segno_in_journal(journal, i));
1964 dirtied = __mark_sit_entry_dirty(sbi, segno);
1965
1966 if (!dirtied)
1967 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1968 }
1969 update_sits_in_cursum(journal, -i);
1970 up_write(&curseg->journal_rwsem);
1971 }
1972
1973 /*
1974 * CP calls this function, which flushes SIT entries including sit_journal,
1975 * and moves prefree segs to free segs.
1976 */
1977 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1978 {
1979 struct sit_info *sit_i = SIT_I(sbi);
1980 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1981 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1982 struct f2fs_journal *journal = curseg->journal;
1983 struct sit_entry_set *ses, *tmp;
1984 struct list_head *head = &SM_I(sbi)->sit_entry_set;
1985 bool to_journal = true;
1986 struct seg_entry *se;
1987
1988 mutex_lock(&sit_i->sentry_lock);
1989
1990 if (!sit_i->dirty_sentries)
1991 goto out;
1992
1993 /*
1994 * add and account sit entries of dirty bitmap in sit entry
1995 * set temporarily
1996 */
1997 add_sits_in_set(sbi);
1998
1999 /*
2000 * if there are no enough space in journal to store dirty sit
2001 * entries, remove all entries from journal and add and account
2002 * them in sit entry set.
2003 */
2004 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
2005 remove_sits_in_journal(sbi);
2006
2007 /*
2008 * there are two steps to flush sit entries:
2009 * #1, flush sit entries to journal in current cold data summary block.
2010 * #2, flush sit entries to sit page.
2011 */
2012 list_for_each_entry_safe(ses, tmp, head, set_list) {
2013 struct page *page = NULL;
2014 struct f2fs_sit_block *raw_sit = NULL;
2015 unsigned int start_segno = ses->start_segno;
2016 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
2017 (unsigned long)MAIN_SEGS(sbi));
2018 unsigned int segno = start_segno;
2019
2020 if (to_journal &&
2021 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
2022 to_journal = false;
2023
2024 if (to_journal) {
2025 down_write(&curseg->journal_rwsem);
2026 } else {
2027 page = get_next_sit_page(sbi, start_segno);
2028 raw_sit = page_address(page);
2029 }
2030
2031 /* flush dirty sit entries in region of current sit set */
2032 for_each_set_bit_from(segno, bitmap, end) {
2033 int offset, sit_offset;
2034
2035 se = get_seg_entry(sbi, segno);
2036
2037 /* add discard candidates */
2038 if (cpc->reason != CP_DISCARD) {
2039 cpc->trim_start = segno;
2040 add_discard_addrs(sbi, cpc);
2041 }
2042
2043 if (to_journal) {
2044 offset = lookup_journal_in_cursum(journal,
2045 SIT_JOURNAL, segno, 1);
2046 f2fs_bug_on(sbi, offset < 0);
2047 segno_in_journal(journal, offset) =
2048 cpu_to_le32(segno);
2049 seg_info_to_raw_sit(se,
2050 &sit_in_journal(journal, offset));
2051 } else {
2052 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2053 seg_info_to_raw_sit(se,
2054 &raw_sit->entries[sit_offset]);
2055 }
2056
2057 __clear_bit(segno, bitmap);
2058 sit_i->dirty_sentries--;
2059 ses->entry_cnt--;
2060 }
2061
2062 if (to_journal)
2063 up_write(&curseg->journal_rwsem);
2064 else
2065 f2fs_put_page(page, 1);
2066
2067 f2fs_bug_on(sbi, ses->entry_cnt);
2068 release_sit_entry_set(ses);
2069 }
2070
2071 f2fs_bug_on(sbi, !list_empty(head));
2072 f2fs_bug_on(sbi, sit_i->dirty_sentries);
2073 out:
2074 if (cpc->reason == CP_DISCARD) {
2075 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2076 add_discard_addrs(sbi, cpc);
2077 }
2078 mutex_unlock(&sit_i->sentry_lock);
2079
2080 set_prefree_as_free_segments(sbi);
2081 }
2082
2083 static int build_sit_info(struct f2fs_sb_info *sbi)
2084 {
2085 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2086 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2087 struct sit_info *sit_i;
2088 unsigned int sit_segs, start;
2089 char *src_bitmap, *dst_bitmap;
2090 unsigned int bitmap_size;
2091
2092 /* allocate memory for SIT information */
2093 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2094 if (!sit_i)
2095 return -ENOMEM;
2096
2097 SM_I(sbi)->sit_info = sit_i;
2098
2099 sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2100 sizeof(struct seg_entry), GFP_KERNEL);
2101 if (!sit_i->sentries)
2102 return -ENOMEM;
2103
2104 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2105 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2106 if (!sit_i->dirty_sentries_bitmap)
2107 return -ENOMEM;
2108
2109 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2110 sit_i->sentries[start].cur_valid_map
2111 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2112 sit_i->sentries[start].ckpt_valid_map
2113 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2114 sit_i->sentries[start].discard_map
2115 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2116 if (!sit_i->sentries[start].cur_valid_map ||
2117 !sit_i->sentries[start].ckpt_valid_map ||
2118 !sit_i->sentries[start].discard_map)
2119 return -ENOMEM;
2120 }
2121
2122 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2123 if (!sit_i->tmp_map)
2124 return -ENOMEM;
2125
2126 if (sbi->segs_per_sec > 1) {
2127 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2128 sizeof(struct sec_entry), GFP_KERNEL);
2129 if (!sit_i->sec_entries)
2130 return -ENOMEM;
2131 }
2132
2133 /* get information related with SIT */
2134 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2135
2136 /* setup SIT bitmap from ckeckpoint pack */
2137 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2138 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2139
2140 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2141 if (!dst_bitmap)
2142 return -ENOMEM;
2143
2144 /* init SIT information */
2145 sit_i->s_ops = &default_salloc_ops;
2146
2147 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2148 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2149 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
2150 sit_i->sit_bitmap = dst_bitmap;
2151 sit_i->bitmap_size = bitmap_size;
2152 sit_i->dirty_sentries = 0;
2153 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2154 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2155 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2156 mutex_init(&sit_i->sentry_lock);
2157 return 0;
2158 }
2159
2160 static int build_free_segmap(struct f2fs_sb_info *sbi)
2161 {
2162 struct free_segmap_info *free_i;
2163 unsigned int bitmap_size, sec_bitmap_size;
2164
2165 /* allocate memory for free segmap information */
2166 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2167 if (!free_i)
2168 return -ENOMEM;
2169
2170 SM_I(sbi)->free_info = free_i;
2171
2172 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2173 free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2174 if (!free_i->free_segmap)
2175 return -ENOMEM;
2176
2177 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2178 free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2179 if (!free_i->free_secmap)
2180 return -ENOMEM;
2181
2182 /* set all segments as dirty temporarily */
2183 memset(free_i->free_segmap, 0xff, bitmap_size);
2184 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2185
2186 /* init free segmap information */
2187 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2188 free_i->free_segments = 0;
2189 free_i->free_sections = 0;
2190 spin_lock_init(&free_i->segmap_lock);
2191 return 0;
2192 }
2193
2194 static int build_curseg(struct f2fs_sb_info *sbi)
2195 {
2196 struct curseg_info *array;
2197 int i;
2198
2199 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2200 if (!array)
2201 return -ENOMEM;
2202
2203 SM_I(sbi)->curseg_array = array;
2204
2205 for (i = 0; i < NR_CURSEG_TYPE; i++) {
2206 mutex_init(&array[i].curseg_mutex);
2207 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2208 if (!array[i].sum_blk)
2209 return -ENOMEM;
2210 init_rwsem(&array[i].journal_rwsem);
2211 array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2212 GFP_KERNEL);
2213 if (!array[i].journal)
2214 return -ENOMEM;
2215 array[i].segno = NULL_SEGNO;
2216 array[i].next_blkoff = 0;
2217 }
2218 return restore_curseg_summaries(sbi);
2219 }
2220
2221 static void build_sit_entries(struct f2fs_sb_info *sbi)
2222 {
2223 struct sit_info *sit_i = SIT_I(sbi);
2224 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2225 struct f2fs_journal *journal = curseg->journal;
2226 int sit_blk_cnt = SIT_BLK_CNT(sbi);
2227 unsigned int i, start, end;
2228 unsigned int readed, start_blk = 0;
2229 int nrpages = MAX_BIO_BLOCKS(sbi) * 8;
2230
2231 do {
2232 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true);
2233
2234 start = start_blk * sit_i->sents_per_block;
2235 end = (start_blk + readed) * sit_i->sents_per_block;
2236
2237 for (; start < end && start < MAIN_SEGS(sbi); start++) {
2238 struct seg_entry *se = &sit_i->sentries[start];
2239 struct f2fs_sit_block *sit_blk;
2240 struct f2fs_sit_entry sit;
2241 struct page *page;
2242
2243 down_read(&curseg->journal_rwsem);
2244 for (i = 0; i < sits_in_cursum(journal); i++) {
2245 if (le32_to_cpu(segno_in_journal(journal, i))
2246 == start) {
2247 sit = sit_in_journal(journal, i);
2248 up_read(&curseg->journal_rwsem);
2249 goto got_it;
2250 }
2251 }
2252 up_read(&curseg->journal_rwsem);
2253
2254 page = get_current_sit_page(sbi, start);
2255 sit_blk = (struct f2fs_sit_block *)page_address(page);
2256 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2257 f2fs_put_page(page, 1);
2258 got_it:
2259 check_block_count(sbi, start, &sit);
2260 seg_info_from_raw_sit(se, &sit);
2261
2262 /* build discard map only one time */
2263 memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
2264 sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks;
2265
2266 if (sbi->segs_per_sec > 1) {
2267 struct sec_entry *e = get_sec_entry(sbi, start);
2268 e->valid_blocks += se->valid_blocks;
2269 }
2270 }
2271 start_blk += readed;
2272 } while (start_blk < sit_blk_cnt);
2273 }
2274
2275 static void init_free_segmap(struct f2fs_sb_info *sbi)
2276 {
2277 unsigned int start;
2278 int type;
2279
2280 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2281 struct seg_entry *sentry = get_seg_entry(sbi, start);
2282 if (!sentry->valid_blocks)
2283 __set_free(sbi, start);
2284 }
2285
2286 /* set use the current segments */
2287 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2288 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2289 __set_test_and_inuse(sbi, curseg_t->segno);
2290 }
2291 }
2292
2293 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2294 {
2295 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2296 struct free_segmap_info *free_i = FREE_I(sbi);
2297 unsigned int segno = 0, offset = 0;
2298 unsigned short valid_blocks;
2299
2300 while (1) {
2301 /* find dirty segment based on free segmap */
2302 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2303 if (segno >= MAIN_SEGS(sbi))
2304 break;
2305 offset = segno + 1;
2306 valid_blocks = get_valid_blocks(sbi, segno, 0);
2307 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2308 continue;
2309 if (valid_blocks > sbi->blocks_per_seg) {
2310 f2fs_bug_on(sbi, 1);
2311 continue;
2312 }
2313 mutex_lock(&dirty_i->seglist_lock);
2314 __locate_dirty_segment(sbi, segno, DIRTY);
2315 mutex_unlock(&dirty_i->seglist_lock);
2316 }
2317 }
2318
2319 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2320 {
2321 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2322 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2323
2324 dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2325 if (!dirty_i->victim_secmap)
2326 return -ENOMEM;
2327 return 0;
2328 }
2329
2330 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2331 {
2332 struct dirty_seglist_info *dirty_i;
2333 unsigned int bitmap_size, i;
2334
2335 /* allocate memory for dirty segments list information */
2336 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2337 if (!dirty_i)
2338 return -ENOMEM;
2339
2340 SM_I(sbi)->dirty_info = dirty_i;
2341 mutex_init(&dirty_i->seglist_lock);
2342
2343 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2344
2345 for (i = 0; i < NR_DIRTY_TYPE; i++) {
2346 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2347 if (!dirty_i->dirty_segmap[i])
2348 return -ENOMEM;
2349 }
2350
2351 init_dirty_segmap(sbi);
2352 return init_victim_secmap(sbi);
2353 }
2354
2355 /*
2356 * Update min, max modified time for cost-benefit GC algorithm
2357 */
2358 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2359 {
2360 struct sit_info *sit_i = SIT_I(sbi);
2361 unsigned int segno;
2362
2363 mutex_lock(&sit_i->sentry_lock);
2364
2365 sit_i->min_mtime = LLONG_MAX;
2366
2367 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2368 unsigned int i;
2369 unsigned long long mtime = 0;
2370
2371 for (i = 0; i < sbi->segs_per_sec; i++)
2372 mtime += get_seg_entry(sbi, segno + i)->mtime;
2373
2374 mtime = div_u64(mtime, sbi->segs_per_sec);
2375
2376 if (sit_i->min_mtime > mtime)
2377 sit_i->min_mtime = mtime;
2378 }
2379 sit_i->max_mtime = get_mtime(sbi);
2380 mutex_unlock(&sit_i->sentry_lock);
2381 }
2382
2383 int build_segment_manager(struct f2fs_sb_info *sbi)
2384 {
2385 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2386 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2387 struct f2fs_sm_info *sm_info;
2388 int err;
2389
2390 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2391 if (!sm_info)
2392 return -ENOMEM;
2393
2394 /* init sm info */
2395 sbi->sm_info = sm_info;
2396 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2397 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2398 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2399 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2400 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2401 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2402 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2403 sm_info->rec_prefree_segments = sm_info->main_segments *
2404 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2405 if (!test_opt(sbi, LFS))
2406 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2407 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2408 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2409
2410 INIT_LIST_HEAD(&sm_info->discard_list);
2411 sm_info->nr_discards = 0;
2412 sm_info->max_discards = 0;
2413
2414 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2415
2416 INIT_LIST_HEAD(&sm_info->sit_entry_set);
2417
2418 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2419 err = create_flush_cmd_control(sbi);
2420 if (err)
2421 return err;
2422 }
2423
2424 err = build_sit_info(sbi);
2425 if (err)
2426 return err;
2427 err = build_free_segmap(sbi);
2428 if (err)
2429 return err;
2430 err = build_curseg(sbi);
2431 if (err)
2432 return err;
2433
2434 /* reinit free segmap based on SIT */
2435 build_sit_entries(sbi);
2436
2437 init_free_segmap(sbi);
2438 err = build_dirty_segmap(sbi);
2439 if (err)
2440 return err;
2441
2442 init_min_max_mtime(sbi);
2443 return 0;
2444 }
2445
2446 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2447 enum dirty_type dirty_type)
2448 {
2449 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2450
2451 mutex_lock(&dirty_i->seglist_lock);
2452 kvfree(dirty_i->dirty_segmap[dirty_type]);
2453 dirty_i->nr_dirty[dirty_type] = 0;
2454 mutex_unlock(&dirty_i->seglist_lock);
2455 }
2456
2457 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2458 {
2459 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2460 kvfree(dirty_i->victim_secmap);
2461 }
2462
2463 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2464 {
2465 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2466 int i;
2467
2468 if (!dirty_i)
2469 return;
2470
2471 /* discard pre-free/dirty segments list */
2472 for (i = 0; i < NR_DIRTY_TYPE; i++)
2473 discard_dirty_segmap(sbi, i);
2474
2475 destroy_victim_secmap(sbi);
2476 SM_I(sbi)->dirty_info = NULL;
2477 kfree(dirty_i);
2478 }
2479
2480 static void destroy_curseg(struct f2fs_sb_info *sbi)
2481 {
2482 struct curseg_info *array = SM_I(sbi)->curseg_array;
2483 int i;
2484
2485 if (!array)
2486 return;
2487 SM_I(sbi)->curseg_array = NULL;
2488 for (i = 0; i < NR_CURSEG_TYPE; i++) {
2489 kfree(array[i].sum_blk);
2490 kfree(array[i].journal);
2491 }
2492 kfree(array);
2493 }
2494
2495 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2496 {
2497 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2498 if (!free_i)
2499 return;
2500 SM_I(sbi)->free_info = NULL;
2501 kvfree(free_i->free_segmap);
2502 kvfree(free_i->free_secmap);
2503 kfree(free_i);
2504 }
2505
2506 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2507 {
2508 struct sit_info *sit_i = SIT_I(sbi);
2509 unsigned int start;
2510
2511 if (!sit_i)
2512 return;
2513
2514 if (sit_i->sentries) {
2515 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2516 kfree(sit_i->sentries[start].cur_valid_map);
2517 kfree(sit_i->sentries[start].ckpt_valid_map);
2518 kfree(sit_i->sentries[start].discard_map);
2519 }
2520 }
2521 kfree(sit_i->tmp_map);
2522
2523 kvfree(sit_i->sentries);
2524 kvfree(sit_i->sec_entries);
2525 kvfree(sit_i->dirty_sentries_bitmap);
2526
2527 SM_I(sbi)->sit_info = NULL;
2528 kfree(sit_i->sit_bitmap);
2529 kfree(sit_i);
2530 }
2531
2532 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2533 {
2534 struct f2fs_sm_info *sm_info = SM_I(sbi);
2535
2536 if (!sm_info)
2537 return;
2538 destroy_flush_cmd_control(sbi);
2539 destroy_dirty_segmap(sbi);
2540 destroy_curseg(sbi);
2541 destroy_free_segmap(sbi);
2542 destroy_sit_info(sbi);
2543 sbi->sm_info = NULL;
2544 kfree(sm_info);
2545 }
2546
2547 int __init create_segment_manager_caches(void)
2548 {
2549 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2550 sizeof(struct discard_entry));
2551 if (!discard_entry_slab)
2552 goto fail;
2553
2554 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2555 sizeof(struct sit_entry_set));
2556 if (!sit_entry_set_slab)
2557 goto destory_discard_entry;
2558
2559 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2560 sizeof(struct inmem_pages));
2561 if (!inmem_entry_slab)
2562 goto destroy_sit_entry_set;
2563 return 0;
2564
2565 destroy_sit_entry_set:
2566 kmem_cache_destroy(sit_entry_set_slab);
2567 destory_discard_entry:
2568 kmem_cache_destroy(discard_entry_slab);
2569 fail:
2570 return -ENOMEM;
2571 }
2572
2573 void destroy_segment_manager_caches(void)
2574 {
2575 kmem_cache_destroy(sit_entry_set_slab);
2576 kmem_cache_destroy(discard_entry_slab);
2577 kmem_cache_destroy(inmem_entry_slab);
2578 }
This page took 0.125769 seconds and 4 git commands to generate.