NFSv4: Fix a compile warning about no prototype for nfs4_ioctl()
[deliverable/linux.git] / fs / f2fs / segment.c
1 /*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *sit_entry_set_slab;
30 static struct kmem_cache *inmem_entry_slab;
31
32 static unsigned long __reverse_ulong(unsigned char *str)
33 {
34 unsigned long tmp = 0;
35 int shift = 24, idx = 0;
36
37 #if BITS_PER_LONG == 64
38 shift = 56;
39 #endif
40 while (shift >= 0) {
41 tmp |= (unsigned long)str[idx++] << shift;
42 shift -= BITS_PER_BYTE;
43 }
44 return tmp;
45 }
46
47 /*
48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
49 * MSB and LSB are reversed in a byte by f2fs_set_bit.
50 */
51 static inline unsigned long __reverse_ffs(unsigned long word)
52 {
53 int num = 0;
54
55 #if BITS_PER_LONG == 64
56 if ((word & 0xffffffff00000000UL) == 0)
57 num += 32;
58 else
59 word >>= 32;
60 #endif
61 if ((word & 0xffff0000) == 0)
62 num += 16;
63 else
64 word >>= 16;
65
66 if ((word & 0xff00) == 0)
67 num += 8;
68 else
69 word >>= 8;
70
71 if ((word & 0xf0) == 0)
72 num += 4;
73 else
74 word >>= 4;
75
76 if ((word & 0xc) == 0)
77 num += 2;
78 else
79 word >>= 2;
80
81 if ((word & 0x2) == 0)
82 num += 1;
83 return num;
84 }
85
86 /*
87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
88 * f2fs_set_bit makes MSB and LSB reversed in a byte.
89 * Example:
90 * MSB <--> LSB
91 * f2fs_set_bit(0, bitmap) => 1000 0000
92 * f2fs_set_bit(7, bitmap) => 0000 0001
93 */
94 static unsigned long __find_rev_next_bit(const unsigned long *addr,
95 unsigned long size, unsigned long offset)
96 {
97 const unsigned long *p = addr + BIT_WORD(offset);
98 unsigned long result = offset & ~(BITS_PER_LONG - 1);
99 unsigned long tmp;
100
101 if (offset >= size)
102 return size;
103
104 size -= result;
105 offset %= BITS_PER_LONG;
106 if (!offset)
107 goto aligned;
108
109 tmp = __reverse_ulong((unsigned char *)p);
110 tmp &= ~0UL >> offset;
111
112 if (size < BITS_PER_LONG)
113 goto found_first;
114 if (tmp)
115 goto found_middle;
116
117 size -= BITS_PER_LONG;
118 result += BITS_PER_LONG;
119 p++;
120 aligned:
121 while (size & ~(BITS_PER_LONG-1)) {
122 tmp = __reverse_ulong((unsigned char *)p);
123 if (tmp)
124 goto found_middle;
125 result += BITS_PER_LONG;
126 size -= BITS_PER_LONG;
127 p++;
128 }
129 if (!size)
130 return result;
131
132 tmp = __reverse_ulong((unsigned char *)p);
133 found_first:
134 tmp &= (~0UL << (BITS_PER_LONG - size));
135 if (!tmp) /* Are any bits set? */
136 return result + size; /* Nope. */
137 found_middle:
138 return result + __reverse_ffs(tmp);
139 }
140
141 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
142 unsigned long size, unsigned long offset)
143 {
144 const unsigned long *p = addr + BIT_WORD(offset);
145 unsigned long result = offset & ~(BITS_PER_LONG - 1);
146 unsigned long tmp;
147
148 if (offset >= size)
149 return size;
150
151 size -= result;
152 offset %= BITS_PER_LONG;
153 if (!offset)
154 goto aligned;
155
156 tmp = __reverse_ulong((unsigned char *)p);
157 tmp |= ~((~0UL << offset) >> offset);
158
159 if (size < BITS_PER_LONG)
160 goto found_first;
161 if (tmp != ~0UL)
162 goto found_middle;
163
164 size -= BITS_PER_LONG;
165 result += BITS_PER_LONG;
166 p++;
167 aligned:
168 while (size & ~(BITS_PER_LONG - 1)) {
169 tmp = __reverse_ulong((unsigned char *)p);
170 if (tmp != ~0UL)
171 goto found_middle;
172 result += BITS_PER_LONG;
173 size -= BITS_PER_LONG;
174 p++;
175 }
176 if (!size)
177 return result;
178
179 tmp = __reverse_ulong((unsigned char *)p);
180 found_first:
181 tmp |= ~(~0UL << (BITS_PER_LONG - size));
182 if (tmp == ~0UL) /* Are any bits zero? */
183 return result + size; /* Nope. */
184 found_middle:
185 return result + __reverse_ffz(tmp);
186 }
187
188 void register_inmem_page(struct inode *inode, struct page *page)
189 {
190 struct f2fs_inode_info *fi = F2FS_I(inode);
191 struct inmem_pages *new;
192
193 f2fs_trace_pid(page);
194
195 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
196 SetPagePrivate(page);
197
198 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
199
200 /* add atomic page indices to the list */
201 new->page = page;
202 INIT_LIST_HEAD(&new->list);
203
204 /* increase reference count with clean state */
205 mutex_lock(&fi->inmem_lock);
206 get_page(page);
207 list_add_tail(&new->list, &fi->inmem_pages);
208 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
209 mutex_unlock(&fi->inmem_lock);
210
211 trace_f2fs_register_inmem_page(page, INMEM);
212 }
213
214 int commit_inmem_pages(struct inode *inode, bool abort)
215 {
216 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
217 struct f2fs_inode_info *fi = F2FS_I(inode);
218 struct inmem_pages *cur, *tmp;
219 bool submit_bio = false;
220 struct f2fs_io_info fio = {
221 .sbi = sbi,
222 .type = DATA,
223 .rw = WRITE_SYNC | REQ_PRIO,
224 .encrypted_page = NULL,
225 };
226 int err = 0;
227
228 /*
229 * The abort is true only when f2fs_evict_inode is called.
230 * Basically, the f2fs_evict_inode doesn't produce any data writes, so
231 * that we don't need to call f2fs_balance_fs.
232 * Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this
233 * inode becomes free by iget_locked in f2fs_iget.
234 */
235 if (!abort) {
236 f2fs_balance_fs(sbi);
237 f2fs_lock_op(sbi);
238 }
239
240 mutex_lock(&fi->inmem_lock);
241 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
242 lock_page(cur->page);
243 if (!abort) {
244 if (cur->page->mapping == inode->i_mapping) {
245 set_page_dirty(cur->page);
246 f2fs_wait_on_page_writeback(cur->page, DATA);
247 if (clear_page_dirty_for_io(cur->page))
248 inode_dec_dirty_pages(inode);
249 trace_f2fs_commit_inmem_page(cur->page, INMEM);
250 fio.page = cur->page;
251 err = do_write_data_page(&fio);
252 if (err) {
253 unlock_page(cur->page);
254 break;
255 }
256 clear_cold_data(cur->page);
257 submit_bio = true;
258 }
259 } else {
260 trace_f2fs_commit_inmem_page(cur->page, INMEM_DROP);
261 }
262 set_page_private(cur->page, 0);
263 ClearPagePrivate(cur->page);
264 f2fs_put_page(cur->page, 1);
265
266 list_del(&cur->list);
267 kmem_cache_free(inmem_entry_slab, cur);
268 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
269 }
270 mutex_unlock(&fi->inmem_lock);
271
272 if (!abort) {
273 f2fs_unlock_op(sbi);
274 if (submit_bio)
275 f2fs_submit_merged_bio(sbi, DATA, WRITE);
276 }
277 return err;
278 }
279
280 /*
281 * This function balances dirty node and dentry pages.
282 * In addition, it controls garbage collection.
283 */
284 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
285 {
286 /*
287 * We should do GC or end up with checkpoint, if there are so many dirty
288 * dir/node pages without enough free segments.
289 */
290 if (has_not_enough_free_secs(sbi, 0)) {
291 mutex_lock(&sbi->gc_mutex);
292 f2fs_gc(sbi, false);
293 }
294 }
295
296 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
297 {
298 /* try to shrink extent cache when there is no enough memory */
299 if (!available_free_memory(sbi, EXTENT_CACHE))
300 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
301
302 /* check the # of cached NAT entries */
303 if (!available_free_memory(sbi, NAT_ENTRIES))
304 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
305
306 if (!available_free_memory(sbi, FREE_NIDS))
307 try_to_free_nids(sbi, NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES);
308
309 /* checkpoint is the only way to shrink partial cached entries */
310 if (!available_free_memory(sbi, NAT_ENTRIES) ||
311 excess_prefree_segs(sbi) ||
312 !available_free_memory(sbi, INO_ENTRIES) ||
313 jiffies > sbi->cp_expires)
314 f2fs_sync_fs(sbi->sb, true);
315 }
316
317 static int issue_flush_thread(void *data)
318 {
319 struct f2fs_sb_info *sbi = data;
320 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
321 wait_queue_head_t *q = &fcc->flush_wait_queue;
322 repeat:
323 if (kthread_should_stop())
324 return 0;
325
326 if (!llist_empty(&fcc->issue_list)) {
327 struct bio *bio;
328 struct flush_cmd *cmd, *next;
329 int ret;
330
331 bio = f2fs_bio_alloc(0);
332
333 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
334 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
335
336 bio->bi_bdev = sbi->sb->s_bdev;
337 ret = submit_bio_wait(WRITE_FLUSH, bio);
338
339 llist_for_each_entry_safe(cmd, next,
340 fcc->dispatch_list, llnode) {
341 cmd->ret = ret;
342 complete(&cmd->wait);
343 }
344 bio_put(bio);
345 fcc->dispatch_list = NULL;
346 }
347
348 wait_event_interruptible(*q,
349 kthread_should_stop() || !llist_empty(&fcc->issue_list));
350 goto repeat;
351 }
352
353 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
354 {
355 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
356 struct flush_cmd cmd;
357
358 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
359 test_opt(sbi, FLUSH_MERGE));
360
361 if (test_opt(sbi, NOBARRIER))
362 return 0;
363
364 if (!test_opt(sbi, FLUSH_MERGE)) {
365 struct bio *bio = f2fs_bio_alloc(0);
366 int ret;
367
368 bio->bi_bdev = sbi->sb->s_bdev;
369 ret = submit_bio_wait(WRITE_FLUSH, bio);
370 bio_put(bio);
371 return ret;
372 }
373
374 init_completion(&cmd.wait);
375
376 llist_add(&cmd.llnode, &fcc->issue_list);
377
378 if (!fcc->dispatch_list)
379 wake_up(&fcc->flush_wait_queue);
380
381 wait_for_completion(&cmd.wait);
382
383 return cmd.ret;
384 }
385
386 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
387 {
388 dev_t dev = sbi->sb->s_bdev->bd_dev;
389 struct flush_cmd_control *fcc;
390 int err = 0;
391
392 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
393 if (!fcc)
394 return -ENOMEM;
395 init_waitqueue_head(&fcc->flush_wait_queue);
396 init_llist_head(&fcc->issue_list);
397 SM_I(sbi)->cmd_control_info = fcc;
398 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
399 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
400 if (IS_ERR(fcc->f2fs_issue_flush)) {
401 err = PTR_ERR(fcc->f2fs_issue_flush);
402 kfree(fcc);
403 SM_I(sbi)->cmd_control_info = NULL;
404 return err;
405 }
406
407 return err;
408 }
409
410 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
411 {
412 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
413
414 if (fcc && fcc->f2fs_issue_flush)
415 kthread_stop(fcc->f2fs_issue_flush);
416 kfree(fcc);
417 SM_I(sbi)->cmd_control_info = NULL;
418 }
419
420 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
421 enum dirty_type dirty_type)
422 {
423 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
424
425 /* need not be added */
426 if (IS_CURSEG(sbi, segno))
427 return;
428
429 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
430 dirty_i->nr_dirty[dirty_type]++;
431
432 if (dirty_type == DIRTY) {
433 struct seg_entry *sentry = get_seg_entry(sbi, segno);
434 enum dirty_type t = sentry->type;
435
436 if (unlikely(t >= DIRTY)) {
437 f2fs_bug_on(sbi, 1);
438 return;
439 }
440 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
441 dirty_i->nr_dirty[t]++;
442 }
443 }
444
445 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
446 enum dirty_type dirty_type)
447 {
448 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
449
450 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
451 dirty_i->nr_dirty[dirty_type]--;
452
453 if (dirty_type == DIRTY) {
454 struct seg_entry *sentry = get_seg_entry(sbi, segno);
455 enum dirty_type t = sentry->type;
456
457 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
458 dirty_i->nr_dirty[t]--;
459
460 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
461 clear_bit(GET_SECNO(sbi, segno),
462 dirty_i->victim_secmap);
463 }
464 }
465
466 /*
467 * Should not occur error such as -ENOMEM.
468 * Adding dirty entry into seglist is not critical operation.
469 * If a given segment is one of current working segments, it won't be added.
470 */
471 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
472 {
473 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
474 unsigned short valid_blocks;
475
476 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
477 return;
478
479 mutex_lock(&dirty_i->seglist_lock);
480
481 valid_blocks = get_valid_blocks(sbi, segno, 0);
482
483 if (valid_blocks == 0) {
484 __locate_dirty_segment(sbi, segno, PRE);
485 __remove_dirty_segment(sbi, segno, DIRTY);
486 } else if (valid_blocks < sbi->blocks_per_seg) {
487 __locate_dirty_segment(sbi, segno, DIRTY);
488 } else {
489 /* Recovery routine with SSR needs this */
490 __remove_dirty_segment(sbi, segno, DIRTY);
491 }
492
493 mutex_unlock(&dirty_i->seglist_lock);
494 }
495
496 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
497 block_t blkstart, block_t blklen)
498 {
499 sector_t start = SECTOR_FROM_BLOCK(blkstart);
500 sector_t len = SECTOR_FROM_BLOCK(blklen);
501 struct seg_entry *se;
502 unsigned int offset;
503 block_t i;
504
505 for (i = blkstart; i < blkstart + blklen; i++) {
506 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
507 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
508
509 if (!f2fs_test_and_set_bit(offset, se->discard_map))
510 sbi->discard_blks--;
511 }
512 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
513 return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
514 }
515
516 bool discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
517 {
518 int err = -ENOTSUPP;
519
520 if (test_opt(sbi, DISCARD)) {
521 struct seg_entry *se = get_seg_entry(sbi,
522 GET_SEGNO(sbi, blkaddr));
523 unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
524
525 if (f2fs_test_bit(offset, se->discard_map))
526 return false;
527
528 err = f2fs_issue_discard(sbi, blkaddr, 1);
529 }
530
531 if (err) {
532 update_meta_page(sbi, NULL, blkaddr);
533 return true;
534 }
535 return false;
536 }
537
538 static void __add_discard_entry(struct f2fs_sb_info *sbi,
539 struct cp_control *cpc, struct seg_entry *se,
540 unsigned int start, unsigned int end)
541 {
542 struct list_head *head = &SM_I(sbi)->discard_list;
543 struct discard_entry *new, *last;
544
545 if (!list_empty(head)) {
546 last = list_last_entry(head, struct discard_entry, list);
547 if (START_BLOCK(sbi, cpc->trim_start) + start ==
548 last->blkaddr + last->len) {
549 last->len += end - start;
550 goto done;
551 }
552 }
553
554 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
555 INIT_LIST_HEAD(&new->list);
556 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
557 new->len = end - start;
558 list_add_tail(&new->list, head);
559 done:
560 SM_I(sbi)->nr_discards += end - start;
561 }
562
563 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
564 {
565 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
566 int max_blocks = sbi->blocks_per_seg;
567 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
568 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
569 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
570 unsigned long *discard_map = (unsigned long *)se->discard_map;
571 unsigned long *dmap = SIT_I(sbi)->tmp_map;
572 unsigned int start = 0, end = -1;
573 bool force = (cpc->reason == CP_DISCARD);
574 int i;
575
576 if (se->valid_blocks == max_blocks)
577 return;
578
579 if (!force) {
580 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
581 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
582 return;
583 }
584
585 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
586 for (i = 0; i < entries; i++)
587 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
588 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
589
590 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
591 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
592 if (start >= max_blocks)
593 break;
594
595 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
596 __add_discard_entry(sbi, cpc, se, start, end);
597 }
598 }
599
600 void release_discard_addrs(struct f2fs_sb_info *sbi)
601 {
602 struct list_head *head = &(SM_I(sbi)->discard_list);
603 struct discard_entry *entry, *this;
604
605 /* drop caches */
606 list_for_each_entry_safe(entry, this, head, list) {
607 list_del(&entry->list);
608 kmem_cache_free(discard_entry_slab, entry);
609 }
610 }
611
612 /*
613 * Should call clear_prefree_segments after checkpoint is done.
614 */
615 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
616 {
617 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
618 unsigned int segno;
619
620 mutex_lock(&dirty_i->seglist_lock);
621 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
622 __set_test_and_free(sbi, segno);
623 mutex_unlock(&dirty_i->seglist_lock);
624 }
625
626 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
627 {
628 struct list_head *head = &(SM_I(sbi)->discard_list);
629 struct discard_entry *entry, *this;
630 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
631 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
632 unsigned int start = 0, end = -1;
633
634 mutex_lock(&dirty_i->seglist_lock);
635
636 while (1) {
637 int i;
638 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
639 if (start >= MAIN_SEGS(sbi))
640 break;
641 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
642 start + 1);
643
644 for (i = start; i < end; i++)
645 clear_bit(i, prefree_map);
646
647 dirty_i->nr_dirty[PRE] -= end - start;
648
649 if (!test_opt(sbi, DISCARD))
650 continue;
651
652 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
653 (end - start) << sbi->log_blocks_per_seg);
654 }
655 mutex_unlock(&dirty_i->seglist_lock);
656
657 /* send small discards */
658 list_for_each_entry_safe(entry, this, head, list) {
659 if (cpc->reason == CP_DISCARD && entry->len < cpc->trim_minlen)
660 goto skip;
661 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
662 cpc->trimmed += entry->len;
663 skip:
664 list_del(&entry->list);
665 SM_I(sbi)->nr_discards -= entry->len;
666 kmem_cache_free(discard_entry_slab, entry);
667 }
668 }
669
670 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
671 {
672 struct sit_info *sit_i = SIT_I(sbi);
673
674 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
675 sit_i->dirty_sentries++;
676 return false;
677 }
678
679 return true;
680 }
681
682 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
683 unsigned int segno, int modified)
684 {
685 struct seg_entry *se = get_seg_entry(sbi, segno);
686 se->type = type;
687 if (modified)
688 __mark_sit_entry_dirty(sbi, segno);
689 }
690
691 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
692 {
693 struct seg_entry *se;
694 unsigned int segno, offset;
695 long int new_vblocks;
696
697 segno = GET_SEGNO(sbi, blkaddr);
698
699 se = get_seg_entry(sbi, segno);
700 new_vblocks = se->valid_blocks + del;
701 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
702
703 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
704 (new_vblocks > sbi->blocks_per_seg)));
705
706 se->valid_blocks = new_vblocks;
707 se->mtime = get_mtime(sbi);
708 SIT_I(sbi)->max_mtime = se->mtime;
709
710 /* Update valid block bitmap */
711 if (del > 0) {
712 if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
713 f2fs_bug_on(sbi, 1);
714 if (!f2fs_test_and_set_bit(offset, se->discard_map))
715 sbi->discard_blks--;
716 } else {
717 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
718 f2fs_bug_on(sbi, 1);
719 if (f2fs_test_and_clear_bit(offset, se->discard_map))
720 sbi->discard_blks++;
721 }
722 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
723 se->ckpt_valid_blocks += del;
724
725 __mark_sit_entry_dirty(sbi, segno);
726
727 /* update total number of valid blocks to be written in ckpt area */
728 SIT_I(sbi)->written_valid_blocks += del;
729
730 if (sbi->segs_per_sec > 1)
731 get_sec_entry(sbi, segno)->valid_blocks += del;
732 }
733
734 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
735 {
736 update_sit_entry(sbi, new, 1);
737 if (GET_SEGNO(sbi, old) != NULL_SEGNO)
738 update_sit_entry(sbi, old, -1);
739
740 locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
741 locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
742 }
743
744 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
745 {
746 unsigned int segno = GET_SEGNO(sbi, addr);
747 struct sit_info *sit_i = SIT_I(sbi);
748
749 f2fs_bug_on(sbi, addr == NULL_ADDR);
750 if (addr == NEW_ADDR)
751 return;
752
753 /* add it into sit main buffer */
754 mutex_lock(&sit_i->sentry_lock);
755
756 update_sit_entry(sbi, addr, -1);
757
758 /* add it into dirty seglist */
759 locate_dirty_segment(sbi, segno);
760
761 mutex_unlock(&sit_i->sentry_lock);
762 }
763
764 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
765 {
766 struct sit_info *sit_i = SIT_I(sbi);
767 unsigned int segno, offset;
768 struct seg_entry *se;
769 bool is_cp = false;
770
771 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
772 return true;
773
774 mutex_lock(&sit_i->sentry_lock);
775
776 segno = GET_SEGNO(sbi, blkaddr);
777 se = get_seg_entry(sbi, segno);
778 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
779
780 if (f2fs_test_bit(offset, se->ckpt_valid_map))
781 is_cp = true;
782
783 mutex_unlock(&sit_i->sentry_lock);
784
785 return is_cp;
786 }
787
788 /*
789 * This function should be resided under the curseg_mutex lock
790 */
791 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
792 struct f2fs_summary *sum)
793 {
794 struct curseg_info *curseg = CURSEG_I(sbi, type);
795 void *addr = curseg->sum_blk;
796 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
797 memcpy(addr, sum, sizeof(struct f2fs_summary));
798 }
799
800 /*
801 * Calculate the number of current summary pages for writing
802 */
803 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
804 {
805 int valid_sum_count = 0;
806 int i, sum_in_page;
807
808 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
809 if (sbi->ckpt->alloc_type[i] == SSR)
810 valid_sum_count += sbi->blocks_per_seg;
811 else {
812 if (for_ra)
813 valid_sum_count += le16_to_cpu(
814 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
815 else
816 valid_sum_count += curseg_blkoff(sbi, i);
817 }
818 }
819
820 sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
821 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
822 if (valid_sum_count <= sum_in_page)
823 return 1;
824 else if ((valid_sum_count - sum_in_page) <=
825 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
826 return 2;
827 return 3;
828 }
829
830 /*
831 * Caller should put this summary page
832 */
833 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
834 {
835 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
836 }
837
838 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
839 {
840 struct page *page = grab_meta_page(sbi, blk_addr);
841 void *dst = page_address(page);
842
843 if (src)
844 memcpy(dst, src, PAGE_CACHE_SIZE);
845 else
846 memset(dst, 0, PAGE_CACHE_SIZE);
847 set_page_dirty(page);
848 f2fs_put_page(page, 1);
849 }
850
851 static void write_sum_page(struct f2fs_sb_info *sbi,
852 struct f2fs_summary_block *sum_blk, block_t blk_addr)
853 {
854 update_meta_page(sbi, (void *)sum_blk, blk_addr);
855 }
856
857 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
858 {
859 struct curseg_info *curseg = CURSEG_I(sbi, type);
860 unsigned int segno = curseg->segno + 1;
861 struct free_segmap_info *free_i = FREE_I(sbi);
862
863 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
864 return !test_bit(segno, free_i->free_segmap);
865 return 0;
866 }
867
868 /*
869 * Find a new segment from the free segments bitmap to right order
870 * This function should be returned with success, otherwise BUG
871 */
872 static void get_new_segment(struct f2fs_sb_info *sbi,
873 unsigned int *newseg, bool new_sec, int dir)
874 {
875 struct free_segmap_info *free_i = FREE_I(sbi);
876 unsigned int segno, secno, zoneno;
877 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
878 unsigned int hint = *newseg / sbi->segs_per_sec;
879 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
880 unsigned int left_start = hint;
881 bool init = true;
882 int go_left = 0;
883 int i;
884
885 spin_lock(&free_i->segmap_lock);
886
887 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
888 segno = find_next_zero_bit(free_i->free_segmap,
889 MAIN_SEGS(sbi), *newseg + 1);
890 if (segno - *newseg < sbi->segs_per_sec -
891 (*newseg % sbi->segs_per_sec))
892 goto got_it;
893 }
894 find_other_zone:
895 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
896 if (secno >= MAIN_SECS(sbi)) {
897 if (dir == ALLOC_RIGHT) {
898 secno = find_next_zero_bit(free_i->free_secmap,
899 MAIN_SECS(sbi), 0);
900 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
901 } else {
902 go_left = 1;
903 left_start = hint - 1;
904 }
905 }
906 if (go_left == 0)
907 goto skip_left;
908
909 while (test_bit(left_start, free_i->free_secmap)) {
910 if (left_start > 0) {
911 left_start--;
912 continue;
913 }
914 left_start = find_next_zero_bit(free_i->free_secmap,
915 MAIN_SECS(sbi), 0);
916 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
917 break;
918 }
919 secno = left_start;
920 skip_left:
921 hint = secno;
922 segno = secno * sbi->segs_per_sec;
923 zoneno = secno / sbi->secs_per_zone;
924
925 /* give up on finding another zone */
926 if (!init)
927 goto got_it;
928 if (sbi->secs_per_zone == 1)
929 goto got_it;
930 if (zoneno == old_zoneno)
931 goto got_it;
932 if (dir == ALLOC_LEFT) {
933 if (!go_left && zoneno + 1 >= total_zones)
934 goto got_it;
935 if (go_left && zoneno == 0)
936 goto got_it;
937 }
938 for (i = 0; i < NR_CURSEG_TYPE; i++)
939 if (CURSEG_I(sbi, i)->zone == zoneno)
940 break;
941
942 if (i < NR_CURSEG_TYPE) {
943 /* zone is in user, try another */
944 if (go_left)
945 hint = zoneno * sbi->secs_per_zone - 1;
946 else if (zoneno + 1 >= total_zones)
947 hint = 0;
948 else
949 hint = (zoneno + 1) * sbi->secs_per_zone;
950 init = false;
951 goto find_other_zone;
952 }
953 got_it:
954 /* set it as dirty segment in free segmap */
955 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
956 __set_inuse(sbi, segno);
957 *newseg = segno;
958 spin_unlock(&free_i->segmap_lock);
959 }
960
961 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
962 {
963 struct curseg_info *curseg = CURSEG_I(sbi, type);
964 struct summary_footer *sum_footer;
965
966 curseg->segno = curseg->next_segno;
967 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
968 curseg->next_blkoff = 0;
969 curseg->next_segno = NULL_SEGNO;
970
971 sum_footer = &(curseg->sum_blk->footer);
972 memset(sum_footer, 0, sizeof(struct summary_footer));
973 if (IS_DATASEG(type))
974 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
975 if (IS_NODESEG(type))
976 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
977 __set_sit_entry_type(sbi, type, curseg->segno, modified);
978 }
979
980 /*
981 * Allocate a current working segment.
982 * This function always allocates a free segment in LFS manner.
983 */
984 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
985 {
986 struct curseg_info *curseg = CURSEG_I(sbi, type);
987 unsigned int segno = curseg->segno;
988 int dir = ALLOC_LEFT;
989
990 write_sum_page(sbi, curseg->sum_blk,
991 GET_SUM_BLOCK(sbi, segno));
992 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
993 dir = ALLOC_RIGHT;
994
995 if (test_opt(sbi, NOHEAP))
996 dir = ALLOC_RIGHT;
997
998 get_new_segment(sbi, &segno, new_sec, dir);
999 curseg->next_segno = segno;
1000 reset_curseg(sbi, type, 1);
1001 curseg->alloc_type = LFS;
1002 }
1003
1004 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1005 struct curseg_info *seg, block_t start)
1006 {
1007 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1008 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1009 unsigned long *target_map = SIT_I(sbi)->tmp_map;
1010 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1011 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1012 int i, pos;
1013
1014 for (i = 0; i < entries; i++)
1015 target_map[i] = ckpt_map[i] | cur_map[i];
1016
1017 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1018
1019 seg->next_blkoff = pos;
1020 }
1021
1022 /*
1023 * If a segment is written by LFS manner, next block offset is just obtained
1024 * by increasing the current block offset. However, if a segment is written by
1025 * SSR manner, next block offset obtained by calling __next_free_blkoff
1026 */
1027 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1028 struct curseg_info *seg)
1029 {
1030 if (seg->alloc_type == SSR)
1031 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1032 else
1033 seg->next_blkoff++;
1034 }
1035
1036 /*
1037 * This function always allocates a used segment(from dirty seglist) by SSR
1038 * manner, so it should recover the existing segment information of valid blocks
1039 */
1040 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1041 {
1042 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1043 struct curseg_info *curseg = CURSEG_I(sbi, type);
1044 unsigned int new_segno = curseg->next_segno;
1045 struct f2fs_summary_block *sum_node;
1046 struct page *sum_page;
1047
1048 write_sum_page(sbi, curseg->sum_blk,
1049 GET_SUM_BLOCK(sbi, curseg->segno));
1050 __set_test_and_inuse(sbi, new_segno);
1051
1052 mutex_lock(&dirty_i->seglist_lock);
1053 __remove_dirty_segment(sbi, new_segno, PRE);
1054 __remove_dirty_segment(sbi, new_segno, DIRTY);
1055 mutex_unlock(&dirty_i->seglist_lock);
1056
1057 reset_curseg(sbi, type, 1);
1058 curseg->alloc_type = SSR;
1059 __next_free_blkoff(sbi, curseg, 0);
1060
1061 if (reuse) {
1062 sum_page = get_sum_page(sbi, new_segno);
1063 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1064 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1065 f2fs_put_page(sum_page, 1);
1066 }
1067 }
1068
1069 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1070 {
1071 struct curseg_info *curseg = CURSEG_I(sbi, type);
1072 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1073
1074 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
1075 return v_ops->get_victim(sbi,
1076 &(curseg)->next_segno, BG_GC, type, SSR);
1077
1078 /* For data segments, let's do SSR more intensively */
1079 for (; type >= CURSEG_HOT_DATA; type--)
1080 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1081 BG_GC, type, SSR))
1082 return 1;
1083 return 0;
1084 }
1085
1086 /*
1087 * flush out current segment and replace it with new segment
1088 * This function should be returned with success, otherwise BUG
1089 */
1090 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1091 int type, bool force)
1092 {
1093 struct curseg_info *curseg = CURSEG_I(sbi, type);
1094
1095 if (force)
1096 new_curseg(sbi, type, true);
1097 else if (type == CURSEG_WARM_NODE)
1098 new_curseg(sbi, type, false);
1099 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1100 new_curseg(sbi, type, false);
1101 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1102 change_curseg(sbi, type, true);
1103 else
1104 new_curseg(sbi, type, false);
1105
1106 stat_inc_seg_type(sbi, curseg);
1107 }
1108
1109 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
1110 {
1111 struct curseg_info *curseg = CURSEG_I(sbi, type);
1112 unsigned int old_segno;
1113
1114 old_segno = curseg->segno;
1115 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
1116 locate_dirty_segment(sbi, old_segno);
1117 }
1118
1119 void allocate_new_segments(struct f2fs_sb_info *sbi)
1120 {
1121 int i;
1122
1123 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1124 __allocate_new_segments(sbi, i);
1125 }
1126
1127 static const struct segment_allocation default_salloc_ops = {
1128 .allocate_segment = allocate_segment_by_default,
1129 };
1130
1131 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1132 {
1133 __u64 start = F2FS_BYTES_TO_BLK(range->start);
1134 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1135 unsigned int start_segno, end_segno;
1136 struct cp_control cpc;
1137
1138 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1139 return -EINVAL;
1140
1141 cpc.trimmed = 0;
1142 if (end <= MAIN_BLKADDR(sbi))
1143 goto out;
1144
1145 /* start/end segment number in main_area */
1146 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1147 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1148 GET_SEGNO(sbi, end);
1149 cpc.reason = CP_DISCARD;
1150 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1151
1152 /* do checkpoint to issue discard commands safely */
1153 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1154 cpc.trim_start = start_segno;
1155
1156 if (sbi->discard_blks == 0)
1157 break;
1158 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1159 cpc.trim_end = end_segno;
1160 else
1161 cpc.trim_end = min_t(unsigned int,
1162 rounddown(start_segno +
1163 BATCHED_TRIM_SEGMENTS(sbi),
1164 sbi->segs_per_sec) - 1, end_segno);
1165
1166 mutex_lock(&sbi->gc_mutex);
1167 write_checkpoint(sbi, &cpc);
1168 mutex_unlock(&sbi->gc_mutex);
1169 }
1170 out:
1171 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1172 return 0;
1173 }
1174
1175 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1176 {
1177 struct curseg_info *curseg = CURSEG_I(sbi, type);
1178 if (curseg->next_blkoff < sbi->blocks_per_seg)
1179 return true;
1180 return false;
1181 }
1182
1183 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1184 {
1185 if (p_type == DATA)
1186 return CURSEG_HOT_DATA;
1187 else
1188 return CURSEG_HOT_NODE;
1189 }
1190
1191 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1192 {
1193 if (p_type == DATA) {
1194 struct inode *inode = page->mapping->host;
1195
1196 if (S_ISDIR(inode->i_mode))
1197 return CURSEG_HOT_DATA;
1198 else
1199 return CURSEG_COLD_DATA;
1200 } else {
1201 if (IS_DNODE(page) && is_cold_node(page))
1202 return CURSEG_WARM_NODE;
1203 else
1204 return CURSEG_COLD_NODE;
1205 }
1206 }
1207
1208 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1209 {
1210 if (p_type == DATA) {
1211 struct inode *inode = page->mapping->host;
1212
1213 if (S_ISDIR(inode->i_mode))
1214 return CURSEG_HOT_DATA;
1215 else if (is_cold_data(page) || file_is_cold(inode))
1216 return CURSEG_COLD_DATA;
1217 else
1218 return CURSEG_WARM_DATA;
1219 } else {
1220 if (IS_DNODE(page))
1221 return is_cold_node(page) ? CURSEG_WARM_NODE :
1222 CURSEG_HOT_NODE;
1223 else
1224 return CURSEG_COLD_NODE;
1225 }
1226 }
1227
1228 static int __get_segment_type(struct page *page, enum page_type p_type)
1229 {
1230 switch (F2FS_P_SB(page)->active_logs) {
1231 case 2:
1232 return __get_segment_type_2(page, p_type);
1233 case 4:
1234 return __get_segment_type_4(page, p_type);
1235 }
1236 /* NR_CURSEG_TYPE(6) logs by default */
1237 f2fs_bug_on(F2FS_P_SB(page),
1238 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1239 return __get_segment_type_6(page, p_type);
1240 }
1241
1242 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1243 block_t old_blkaddr, block_t *new_blkaddr,
1244 struct f2fs_summary *sum, int type)
1245 {
1246 struct sit_info *sit_i = SIT_I(sbi);
1247 struct curseg_info *curseg;
1248 bool direct_io = (type == CURSEG_DIRECT_IO);
1249
1250 type = direct_io ? CURSEG_WARM_DATA : type;
1251
1252 curseg = CURSEG_I(sbi, type);
1253
1254 mutex_lock(&curseg->curseg_mutex);
1255 mutex_lock(&sit_i->sentry_lock);
1256
1257 /* direct_io'ed data is aligned to the segment for better performance */
1258 if (direct_io && curseg->next_blkoff &&
1259 !has_not_enough_free_secs(sbi, 0))
1260 __allocate_new_segments(sbi, type);
1261
1262 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1263
1264 /*
1265 * __add_sum_entry should be resided under the curseg_mutex
1266 * because, this function updates a summary entry in the
1267 * current summary block.
1268 */
1269 __add_sum_entry(sbi, type, sum);
1270
1271 __refresh_next_blkoff(sbi, curseg);
1272
1273 stat_inc_block_count(sbi, curseg);
1274
1275 if (!__has_curseg_space(sbi, type))
1276 sit_i->s_ops->allocate_segment(sbi, type, false);
1277 /*
1278 * SIT information should be updated before segment allocation,
1279 * since SSR needs latest valid block information.
1280 */
1281 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1282
1283 mutex_unlock(&sit_i->sentry_lock);
1284
1285 if (page && IS_NODESEG(type))
1286 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1287
1288 mutex_unlock(&curseg->curseg_mutex);
1289 }
1290
1291 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1292 {
1293 int type = __get_segment_type(fio->page, fio->type);
1294
1295 allocate_data_block(fio->sbi, fio->page, fio->blk_addr,
1296 &fio->blk_addr, sum, type);
1297
1298 /* writeout dirty page into bdev */
1299 f2fs_submit_page_mbio(fio);
1300 }
1301
1302 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1303 {
1304 struct f2fs_io_info fio = {
1305 .sbi = sbi,
1306 .type = META,
1307 .rw = WRITE_SYNC | REQ_META | REQ_PRIO,
1308 .blk_addr = page->index,
1309 .page = page,
1310 .encrypted_page = NULL,
1311 };
1312
1313 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1314 fio.rw &= ~REQ_META;
1315
1316 set_page_writeback(page);
1317 f2fs_submit_page_mbio(&fio);
1318 }
1319
1320 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1321 {
1322 struct f2fs_summary sum;
1323
1324 set_summary(&sum, nid, 0, 0);
1325 do_write_page(&sum, fio);
1326 }
1327
1328 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1329 {
1330 struct f2fs_sb_info *sbi = fio->sbi;
1331 struct f2fs_summary sum;
1332 struct node_info ni;
1333
1334 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1335 get_node_info(sbi, dn->nid, &ni);
1336 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1337 do_write_page(&sum, fio);
1338 dn->data_blkaddr = fio->blk_addr;
1339 }
1340
1341 void rewrite_data_page(struct f2fs_io_info *fio)
1342 {
1343 stat_inc_inplace_blocks(fio->sbi);
1344 f2fs_submit_page_mbio(fio);
1345 }
1346
1347 static void __f2fs_replace_block(struct f2fs_sb_info *sbi,
1348 struct f2fs_summary *sum,
1349 block_t old_blkaddr, block_t new_blkaddr,
1350 bool recover_curseg)
1351 {
1352 struct sit_info *sit_i = SIT_I(sbi);
1353 struct curseg_info *curseg;
1354 unsigned int segno, old_cursegno;
1355 struct seg_entry *se;
1356 int type;
1357 unsigned short old_blkoff;
1358
1359 segno = GET_SEGNO(sbi, new_blkaddr);
1360 se = get_seg_entry(sbi, segno);
1361 type = se->type;
1362
1363 if (!recover_curseg) {
1364 /* for recovery flow */
1365 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1366 if (old_blkaddr == NULL_ADDR)
1367 type = CURSEG_COLD_DATA;
1368 else
1369 type = CURSEG_WARM_DATA;
1370 }
1371 } else {
1372 if (!IS_CURSEG(sbi, segno))
1373 type = CURSEG_WARM_DATA;
1374 }
1375
1376 curseg = CURSEG_I(sbi, type);
1377
1378 mutex_lock(&curseg->curseg_mutex);
1379 mutex_lock(&sit_i->sentry_lock);
1380
1381 old_cursegno = curseg->segno;
1382 old_blkoff = curseg->next_blkoff;
1383
1384 /* change the current segment */
1385 if (segno != curseg->segno) {
1386 curseg->next_segno = segno;
1387 change_curseg(sbi, type, true);
1388 }
1389
1390 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1391 __add_sum_entry(sbi, type, sum);
1392
1393 if (!recover_curseg)
1394 update_sit_entry(sbi, new_blkaddr, 1);
1395 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1396 update_sit_entry(sbi, old_blkaddr, -1);
1397
1398 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1399 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1400
1401 locate_dirty_segment(sbi, old_cursegno);
1402
1403 if (recover_curseg) {
1404 if (old_cursegno != curseg->segno) {
1405 curseg->next_segno = old_cursegno;
1406 change_curseg(sbi, type, true);
1407 }
1408 curseg->next_blkoff = old_blkoff;
1409 }
1410
1411 mutex_unlock(&sit_i->sentry_lock);
1412 mutex_unlock(&curseg->curseg_mutex);
1413 }
1414
1415 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1416 block_t old_addr, block_t new_addr,
1417 unsigned char version, bool recover_curseg)
1418 {
1419 struct f2fs_summary sum;
1420
1421 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1422
1423 __f2fs_replace_block(sbi, &sum, old_addr, new_addr, recover_curseg);
1424
1425 dn->data_blkaddr = new_addr;
1426 set_data_blkaddr(dn);
1427 f2fs_update_extent_cache(dn);
1428 }
1429
1430 static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1431 struct page *page, enum page_type type)
1432 {
1433 enum page_type btype = PAGE_TYPE_OF_BIO(type);
1434 struct f2fs_bio_info *io = &sbi->write_io[btype];
1435 struct bio_vec *bvec;
1436 struct page *target;
1437 int i;
1438
1439 down_read(&io->io_rwsem);
1440 if (!io->bio) {
1441 up_read(&io->io_rwsem);
1442 return false;
1443 }
1444
1445 bio_for_each_segment_all(bvec, io->bio, i) {
1446
1447 if (bvec->bv_page->mapping) {
1448 target = bvec->bv_page;
1449 } else {
1450 struct f2fs_crypto_ctx *ctx;
1451
1452 /* encrypted page */
1453 ctx = (struct f2fs_crypto_ctx *)page_private(
1454 bvec->bv_page);
1455 target = ctx->w.control_page;
1456 }
1457
1458 if (page == target) {
1459 up_read(&io->io_rwsem);
1460 return true;
1461 }
1462 }
1463
1464 up_read(&io->io_rwsem);
1465 return false;
1466 }
1467
1468 void f2fs_wait_on_page_writeback(struct page *page,
1469 enum page_type type)
1470 {
1471 if (PageWriteback(page)) {
1472 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1473
1474 if (is_merged_page(sbi, page, type))
1475 f2fs_submit_merged_bio(sbi, type, WRITE);
1476 wait_on_page_writeback(page);
1477 }
1478 }
1479
1480 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1481 block_t blkaddr)
1482 {
1483 struct page *cpage;
1484
1485 if (blkaddr == NEW_ADDR)
1486 return;
1487
1488 f2fs_bug_on(sbi, blkaddr == NULL_ADDR);
1489
1490 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1491 if (cpage) {
1492 f2fs_wait_on_page_writeback(cpage, DATA);
1493 f2fs_put_page(cpage, 1);
1494 }
1495 }
1496
1497 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1498 {
1499 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1500 struct curseg_info *seg_i;
1501 unsigned char *kaddr;
1502 struct page *page;
1503 block_t start;
1504 int i, j, offset;
1505
1506 start = start_sum_block(sbi);
1507
1508 page = get_meta_page(sbi, start++);
1509 kaddr = (unsigned char *)page_address(page);
1510
1511 /* Step 1: restore nat cache */
1512 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1513 memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1514
1515 /* Step 2: restore sit cache */
1516 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1517 memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1518 SUM_JOURNAL_SIZE);
1519 offset = 2 * SUM_JOURNAL_SIZE;
1520
1521 /* Step 3: restore summary entries */
1522 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1523 unsigned short blk_off;
1524 unsigned int segno;
1525
1526 seg_i = CURSEG_I(sbi, i);
1527 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1528 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1529 seg_i->next_segno = segno;
1530 reset_curseg(sbi, i, 0);
1531 seg_i->alloc_type = ckpt->alloc_type[i];
1532 seg_i->next_blkoff = blk_off;
1533
1534 if (seg_i->alloc_type == SSR)
1535 blk_off = sbi->blocks_per_seg;
1536
1537 for (j = 0; j < blk_off; j++) {
1538 struct f2fs_summary *s;
1539 s = (struct f2fs_summary *)(kaddr + offset);
1540 seg_i->sum_blk->entries[j] = *s;
1541 offset += SUMMARY_SIZE;
1542 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1543 SUM_FOOTER_SIZE)
1544 continue;
1545
1546 f2fs_put_page(page, 1);
1547 page = NULL;
1548
1549 page = get_meta_page(sbi, start++);
1550 kaddr = (unsigned char *)page_address(page);
1551 offset = 0;
1552 }
1553 }
1554 f2fs_put_page(page, 1);
1555 return 0;
1556 }
1557
1558 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1559 {
1560 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1561 struct f2fs_summary_block *sum;
1562 struct curseg_info *curseg;
1563 struct page *new;
1564 unsigned short blk_off;
1565 unsigned int segno = 0;
1566 block_t blk_addr = 0;
1567
1568 /* get segment number and block addr */
1569 if (IS_DATASEG(type)) {
1570 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1571 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1572 CURSEG_HOT_DATA]);
1573 if (__exist_node_summaries(sbi))
1574 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1575 else
1576 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1577 } else {
1578 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1579 CURSEG_HOT_NODE]);
1580 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1581 CURSEG_HOT_NODE]);
1582 if (__exist_node_summaries(sbi))
1583 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1584 type - CURSEG_HOT_NODE);
1585 else
1586 blk_addr = GET_SUM_BLOCK(sbi, segno);
1587 }
1588
1589 new = get_meta_page(sbi, blk_addr);
1590 sum = (struct f2fs_summary_block *)page_address(new);
1591
1592 if (IS_NODESEG(type)) {
1593 if (__exist_node_summaries(sbi)) {
1594 struct f2fs_summary *ns = &sum->entries[0];
1595 int i;
1596 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1597 ns->version = 0;
1598 ns->ofs_in_node = 0;
1599 }
1600 } else {
1601 int err;
1602
1603 err = restore_node_summary(sbi, segno, sum);
1604 if (err) {
1605 f2fs_put_page(new, 1);
1606 return err;
1607 }
1608 }
1609 }
1610
1611 /* set uncompleted segment to curseg */
1612 curseg = CURSEG_I(sbi, type);
1613 mutex_lock(&curseg->curseg_mutex);
1614 memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1615 curseg->next_segno = segno;
1616 reset_curseg(sbi, type, 0);
1617 curseg->alloc_type = ckpt->alloc_type[type];
1618 curseg->next_blkoff = blk_off;
1619 mutex_unlock(&curseg->curseg_mutex);
1620 f2fs_put_page(new, 1);
1621 return 0;
1622 }
1623
1624 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1625 {
1626 int type = CURSEG_HOT_DATA;
1627 int err;
1628
1629 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1630 int npages = npages_for_summary_flush(sbi, true);
1631
1632 if (npages >= 2)
1633 ra_meta_pages(sbi, start_sum_block(sbi), npages,
1634 META_CP, true);
1635
1636 /* restore for compacted data summary */
1637 if (read_compacted_summaries(sbi))
1638 return -EINVAL;
1639 type = CURSEG_HOT_NODE;
1640 }
1641
1642 if (__exist_node_summaries(sbi))
1643 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1644 NR_CURSEG_TYPE - type, META_CP, true);
1645
1646 for (; type <= CURSEG_COLD_NODE; type++) {
1647 err = read_normal_summaries(sbi, type);
1648 if (err)
1649 return err;
1650 }
1651
1652 return 0;
1653 }
1654
1655 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1656 {
1657 struct page *page;
1658 unsigned char *kaddr;
1659 struct f2fs_summary *summary;
1660 struct curseg_info *seg_i;
1661 int written_size = 0;
1662 int i, j;
1663
1664 page = grab_meta_page(sbi, blkaddr++);
1665 kaddr = (unsigned char *)page_address(page);
1666
1667 /* Step 1: write nat cache */
1668 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1669 memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1670 written_size += SUM_JOURNAL_SIZE;
1671
1672 /* Step 2: write sit cache */
1673 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1674 memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1675 SUM_JOURNAL_SIZE);
1676 written_size += SUM_JOURNAL_SIZE;
1677
1678 /* Step 3: write summary entries */
1679 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1680 unsigned short blkoff;
1681 seg_i = CURSEG_I(sbi, i);
1682 if (sbi->ckpt->alloc_type[i] == SSR)
1683 blkoff = sbi->blocks_per_seg;
1684 else
1685 blkoff = curseg_blkoff(sbi, i);
1686
1687 for (j = 0; j < blkoff; j++) {
1688 if (!page) {
1689 page = grab_meta_page(sbi, blkaddr++);
1690 kaddr = (unsigned char *)page_address(page);
1691 written_size = 0;
1692 }
1693 summary = (struct f2fs_summary *)(kaddr + written_size);
1694 *summary = seg_i->sum_blk->entries[j];
1695 written_size += SUMMARY_SIZE;
1696
1697 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1698 SUM_FOOTER_SIZE)
1699 continue;
1700
1701 set_page_dirty(page);
1702 f2fs_put_page(page, 1);
1703 page = NULL;
1704 }
1705 }
1706 if (page) {
1707 set_page_dirty(page);
1708 f2fs_put_page(page, 1);
1709 }
1710 }
1711
1712 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1713 block_t blkaddr, int type)
1714 {
1715 int i, end;
1716 if (IS_DATASEG(type))
1717 end = type + NR_CURSEG_DATA_TYPE;
1718 else
1719 end = type + NR_CURSEG_NODE_TYPE;
1720
1721 for (i = type; i < end; i++) {
1722 struct curseg_info *sum = CURSEG_I(sbi, i);
1723 mutex_lock(&sum->curseg_mutex);
1724 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1725 mutex_unlock(&sum->curseg_mutex);
1726 }
1727 }
1728
1729 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1730 {
1731 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1732 write_compacted_summaries(sbi, start_blk);
1733 else
1734 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1735 }
1736
1737 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1738 {
1739 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1740 }
1741
1742 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1743 unsigned int val, int alloc)
1744 {
1745 int i;
1746
1747 if (type == NAT_JOURNAL) {
1748 for (i = 0; i < nats_in_cursum(sum); i++) {
1749 if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1750 return i;
1751 }
1752 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1753 return update_nats_in_cursum(sum, 1);
1754 } else if (type == SIT_JOURNAL) {
1755 for (i = 0; i < sits_in_cursum(sum); i++)
1756 if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1757 return i;
1758 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1759 return update_sits_in_cursum(sum, 1);
1760 }
1761 return -1;
1762 }
1763
1764 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1765 unsigned int segno)
1766 {
1767 return get_meta_page(sbi, current_sit_addr(sbi, segno));
1768 }
1769
1770 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1771 unsigned int start)
1772 {
1773 struct sit_info *sit_i = SIT_I(sbi);
1774 struct page *src_page, *dst_page;
1775 pgoff_t src_off, dst_off;
1776 void *src_addr, *dst_addr;
1777
1778 src_off = current_sit_addr(sbi, start);
1779 dst_off = next_sit_addr(sbi, src_off);
1780
1781 /* get current sit block page without lock */
1782 src_page = get_meta_page(sbi, src_off);
1783 dst_page = grab_meta_page(sbi, dst_off);
1784 f2fs_bug_on(sbi, PageDirty(src_page));
1785
1786 src_addr = page_address(src_page);
1787 dst_addr = page_address(dst_page);
1788 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1789
1790 set_page_dirty(dst_page);
1791 f2fs_put_page(src_page, 1);
1792
1793 set_to_next_sit(sit_i, start);
1794
1795 return dst_page;
1796 }
1797
1798 static struct sit_entry_set *grab_sit_entry_set(void)
1799 {
1800 struct sit_entry_set *ses =
1801 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
1802
1803 ses->entry_cnt = 0;
1804 INIT_LIST_HEAD(&ses->set_list);
1805 return ses;
1806 }
1807
1808 static void release_sit_entry_set(struct sit_entry_set *ses)
1809 {
1810 list_del(&ses->set_list);
1811 kmem_cache_free(sit_entry_set_slab, ses);
1812 }
1813
1814 static void adjust_sit_entry_set(struct sit_entry_set *ses,
1815 struct list_head *head)
1816 {
1817 struct sit_entry_set *next = ses;
1818
1819 if (list_is_last(&ses->set_list, head))
1820 return;
1821
1822 list_for_each_entry_continue(next, head, set_list)
1823 if (ses->entry_cnt <= next->entry_cnt)
1824 break;
1825
1826 list_move_tail(&ses->set_list, &next->set_list);
1827 }
1828
1829 static void add_sit_entry(unsigned int segno, struct list_head *head)
1830 {
1831 struct sit_entry_set *ses;
1832 unsigned int start_segno = START_SEGNO(segno);
1833
1834 list_for_each_entry(ses, head, set_list) {
1835 if (ses->start_segno == start_segno) {
1836 ses->entry_cnt++;
1837 adjust_sit_entry_set(ses, head);
1838 return;
1839 }
1840 }
1841
1842 ses = grab_sit_entry_set();
1843
1844 ses->start_segno = start_segno;
1845 ses->entry_cnt++;
1846 list_add(&ses->set_list, head);
1847 }
1848
1849 static void add_sits_in_set(struct f2fs_sb_info *sbi)
1850 {
1851 struct f2fs_sm_info *sm_info = SM_I(sbi);
1852 struct list_head *set_list = &sm_info->sit_entry_set;
1853 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1854 unsigned int segno;
1855
1856 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
1857 add_sit_entry(segno, set_list);
1858 }
1859
1860 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1861 {
1862 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1863 struct f2fs_summary_block *sum = curseg->sum_blk;
1864 int i;
1865
1866 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1867 unsigned int segno;
1868 bool dirtied;
1869
1870 segno = le32_to_cpu(segno_in_journal(sum, i));
1871 dirtied = __mark_sit_entry_dirty(sbi, segno);
1872
1873 if (!dirtied)
1874 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1875 }
1876 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1877 }
1878
1879 /*
1880 * CP calls this function, which flushes SIT entries including sit_journal,
1881 * and moves prefree segs to free segs.
1882 */
1883 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1884 {
1885 struct sit_info *sit_i = SIT_I(sbi);
1886 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1887 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1888 struct f2fs_summary_block *sum = curseg->sum_blk;
1889 struct sit_entry_set *ses, *tmp;
1890 struct list_head *head = &SM_I(sbi)->sit_entry_set;
1891 bool to_journal = true;
1892 struct seg_entry *se;
1893
1894 mutex_lock(&curseg->curseg_mutex);
1895 mutex_lock(&sit_i->sentry_lock);
1896
1897 if (!sit_i->dirty_sentries)
1898 goto out;
1899
1900 /*
1901 * add and account sit entries of dirty bitmap in sit entry
1902 * set temporarily
1903 */
1904 add_sits_in_set(sbi);
1905
1906 /*
1907 * if there are no enough space in journal to store dirty sit
1908 * entries, remove all entries from journal and add and account
1909 * them in sit entry set.
1910 */
1911 if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL))
1912 remove_sits_in_journal(sbi);
1913
1914 /*
1915 * there are two steps to flush sit entries:
1916 * #1, flush sit entries to journal in current cold data summary block.
1917 * #2, flush sit entries to sit page.
1918 */
1919 list_for_each_entry_safe(ses, tmp, head, set_list) {
1920 struct page *page = NULL;
1921 struct f2fs_sit_block *raw_sit = NULL;
1922 unsigned int start_segno = ses->start_segno;
1923 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
1924 (unsigned long)MAIN_SEGS(sbi));
1925 unsigned int segno = start_segno;
1926
1927 if (to_journal &&
1928 !__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL))
1929 to_journal = false;
1930
1931 if (!to_journal) {
1932 page = get_next_sit_page(sbi, start_segno);
1933 raw_sit = page_address(page);
1934 }
1935
1936 /* flush dirty sit entries in region of current sit set */
1937 for_each_set_bit_from(segno, bitmap, end) {
1938 int offset, sit_offset;
1939
1940 se = get_seg_entry(sbi, segno);
1941
1942 /* add discard candidates */
1943 if (cpc->reason != CP_DISCARD) {
1944 cpc->trim_start = segno;
1945 add_discard_addrs(sbi, cpc);
1946 }
1947
1948 if (to_journal) {
1949 offset = lookup_journal_in_cursum(sum,
1950 SIT_JOURNAL, segno, 1);
1951 f2fs_bug_on(sbi, offset < 0);
1952 segno_in_journal(sum, offset) =
1953 cpu_to_le32(segno);
1954 seg_info_to_raw_sit(se,
1955 &sit_in_journal(sum, offset));
1956 } else {
1957 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1958 seg_info_to_raw_sit(se,
1959 &raw_sit->entries[sit_offset]);
1960 }
1961
1962 __clear_bit(segno, bitmap);
1963 sit_i->dirty_sentries--;
1964 ses->entry_cnt--;
1965 }
1966
1967 if (!to_journal)
1968 f2fs_put_page(page, 1);
1969
1970 f2fs_bug_on(sbi, ses->entry_cnt);
1971 release_sit_entry_set(ses);
1972 }
1973
1974 f2fs_bug_on(sbi, !list_empty(head));
1975 f2fs_bug_on(sbi, sit_i->dirty_sentries);
1976 out:
1977 if (cpc->reason == CP_DISCARD) {
1978 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
1979 add_discard_addrs(sbi, cpc);
1980 }
1981 mutex_unlock(&sit_i->sentry_lock);
1982 mutex_unlock(&curseg->curseg_mutex);
1983
1984 set_prefree_as_free_segments(sbi);
1985 }
1986
1987 static int build_sit_info(struct f2fs_sb_info *sbi)
1988 {
1989 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1990 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1991 struct sit_info *sit_i;
1992 unsigned int sit_segs, start;
1993 char *src_bitmap, *dst_bitmap;
1994 unsigned int bitmap_size;
1995
1996 /* allocate memory for SIT information */
1997 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1998 if (!sit_i)
1999 return -ENOMEM;
2000
2001 SM_I(sbi)->sit_info = sit_i;
2002
2003 sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2004 sizeof(struct seg_entry), GFP_KERNEL);
2005 if (!sit_i->sentries)
2006 return -ENOMEM;
2007
2008 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2009 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2010 if (!sit_i->dirty_sentries_bitmap)
2011 return -ENOMEM;
2012
2013 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2014 sit_i->sentries[start].cur_valid_map
2015 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2016 sit_i->sentries[start].ckpt_valid_map
2017 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2018 sit_i->sentries[start].discard_map
2019 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2020 if (!sit_i->sentries[start].cur_valid_map ||
2021 !sit_i->sentries[start].ckpt_valid_map ||
2022 !sit_i->sentries[start].discard_map)
2023 return -ENOMEM;
2024 }
2025
2026 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2027 if (!sit_i->tmp_map)
2028 return -ENOMEM;
2029
2030 if (sbi->segs_per_sec > 1) {
2031 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2032 sizeof(struct sec_entry), GFP_KERNEL);
2033 if (!sit_i->sec_entries)
2034 return -ENOMEM;
2035 }
2036
2037 /* get information related with SIT */
2038 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2039
2040 /* setup SIT bitmap from ckeckpoint pack */
2041 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2042 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2043
2044 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2045 if (!dst_bitmap)
2046 return -ENOMEM;
2047
2048 /* init SIT information */
2049 sit_i->s_ops = &default_salloc_ops;
2050
2051 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2052 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2053 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
2054 sit_i->sit_bitmap = dst_bitmap;
2055 sit_i->bitmap_size = bitmap_size;
2056 sit_i->dirty_sentries = 0;
2057 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2058 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2059 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2060 mutex_init(&sit_i->sentry_lock);
2061 return 0;
2062 }
2063
2064 static int build_free_segmap(struct f2fs_sb_info *sbi)
2065 {
2066 struct free_segmap_info *free_i;
2067 unsigned int bitmap_size, sec_bitmap_size;
2068
2069 /* allocate memory for free segmap information */
2070 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2071 if (!free_i)
2072 return -ENOMEM;
2073
2074 SM_I(sbi)->free_info = free_i;
2075
2076 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2077 free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2078 if (!free_i->free_segmap)
2079 return -ENOMEM;
2080
2081 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2082 free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2083 if (!free_i->free_secmap)
2084 return -ENOMEM;
2085
2086 /* set all segments as dirty temporarily */
2087 memset(free_i->free_segmap, 0xff, bitmap_size);
2088 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2089
2090 /* init free segmap information */
2091 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2092 free_i->free_segments = 0;
2093 free_i->free_sections = 0;
2094 spin_lock_init(&free_i->segmap_lock);
2095 return 0;
2096 }
2097
2098 static int build_curseg(struct f2fs_sb_info *sbi)
2099 {
2100 struct curseg_info *array;
2101 int i;
2102
2103 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2104 if (!array)
2105 return -ENOMEM;
2106
2107 SM_I(sbi)->curseg_array = array;
2108
2109 for (i = 0; i < NR_CURSEG_TYPE; i++) {
2110 mutex_init(&array[i].curseg_mutex);
2111 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
2112 if (!array[i].sum_blk)
2113 return -ENOMEM;
2114 array[i].segno = NULL_SEGNO;
2115 array[i].next_blkoff = 0;
2116 }
2117 return restore_curseg_summaries(sbi);
2118 }
2119
2120 static void build_sit_entries(struct f2fs_sb_info *sbi)
2121 {
2122 struct sit_info *sit_i = SIT_I(sbi);
2123 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2124 struct f2fs_summary_block *sum = curseg->sum_blk;
2125 int sit_blk_cnt = SIT_BLK_CNT(sbi);
2126 unsigned int i, start, end;
2127 unsigned int readed, start_blk = 0;
2128 int nrpages = MAX_BIO_BLOCKS(sbi);
2129
2130 do {
2131 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true);
2132
2133 start = start_blk * sit_i->sents_per_block;
2134 end = (start_blk + readed) * sit_i->sents_per_block;
2135
2136 for (; start < end && start < MAIN_SEGS(sbi); start++) {
2137 struct seg_entry *se = &sit_i->sentries[start];
2138 struct f2fs_sit_block *sit_blk;
2139 struct f2fs_sit_entry sit;
2140 struct page *page;
2141
2142 mutex_lock(&curseg->curseg_mutex);
2143 for (i = 0; i < sits_in_cursum(sum); i++) {
2144 if (le32_to_cpu(segno_in_journal(sum, i))
2145 == start) {
2146 sit = sit_in_journal(sum, i);
2147 mutex_unlock(&curseg->curseg_mutex);
2148 goto got_it;
2149 }
2150 }
2151 mutex_unlock(&curseg->curseg_mutex);
2152
2153 page = get_current_sit_page(sbi, start);
2154 sit_blk = (struct f2fs_sit_block *)page_address(page);
2155 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2156 f2fs_put_page(page, 1);
2157 got_it:
2158 check_block_count(sbi, start, &sit);
2159 seg_info_from_raw_sit(se, &sit);
2160
2161 /* build discard map only one time */
2162 memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
2163 sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks;
2164
2165 if (sbi->segs_per_sec > 1) {
2166 struct sec_entry *e = get_sec_entry(sbi, start);
2167 e->valid_blocks += se->valid_blocks;
2168 }
2169 }
2170 start_blk += readed;
2171 } while (start_blk < sit_blk_cnt);
2172 }
2173
2174 static void init_free_segmap(struct f2fs_sb_info *sbi)
2175 {
2176 unsigned int start;
2177 int type;
2178
2179 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2180 struct seg_entry *sentry = get_seg_entry(sbi, start);
2181 if (!sentry->valid_blocks)
2182 __set_free(sbi, start);
2183 }
2184
2185 /* set use the current segments */
2186 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2187 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2188 __set_test_and_inuse(sbi, curseg_t->segno);
2189 }
2190 }
2191
2192 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2193 {
2194 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2195 struct free_segmap_info *free_i = FREE_I(sbi);
2196 unsigned int segno = 0, offset = 0;
2197 unsigned short valid_blocks;
2198
2199 while (1) {
2200 /* find dirty segment based on free segmap */
2201 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2202 if (segno >= MAIN_SEGS(sbi))
2203 break;
2204 offset = segno + 1;
2205 valid_blocks = get_valid_blocks(sbi, segno, 0);
2206 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2207 continue;
2208 if (valid_blocks > sbi->blocks_per_seg) {
2209 f2fs_bug_on(sbi, 1);
2210 continue;
2211 }
2212 mutex_lock(&dirty_i->seglist_lock);
2213 __locate_dirty_segment(sbi, segno, DIRTY);
2214 mutex_unlock(&dirty_i->seglist_lock);
2215 }
2216 }
2217
2218 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2219 {
2220 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2221 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2222
2223 dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2224 if (!dirty_i->victim_secmap)
2225 return -ENOMEM;
2226 return 0;
2227 }
2228
2229 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2230 {
2231 struct dirty_seglist_info *dirty_i;
2232 unsigned int bitmap_size, i;
2233
2234 /* allocate memory for dirty segments list information */
2235 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2236 if (!dirty_i)
2237 return -ENOMEM;
2238
2239 SM_I(sbi)->dirty_info = dirty_i;
2240 mutex_init(&dirty_i->seglist_lock);
2241
2242 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2243
2244 for (i = 0; i < NR_DIRTY_TYPE; i++) {
2245 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2246 if (!dirty_i->dirty_segmap[i])
2247 return -ENOMEM;
2248 }
2249
2250 init_dirty_segmap(sbi);
2251 return init_victim_secmap(sbi);
2252 }
2253
2254 /*
2255 * Update min, max modified time for cost-benefit GC algorithm
2256 */
2257 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2258 {
2259 struct sit_info *sit_i = SIT_I(sbi);
2260 unsigned int segno;
2261
2262 mutex_lock(&sit_i->sentry_lock);
2263
2264 sit_i->min_mtime = LLONG_MAX;
2265
2266 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2267 unsigned int i;
2268 unsigned long long mtime = 0;
2269
2270 for (i = 0; i < sbi->segs_per_sec; i++)
2271 mtime += get_seg_entry(sbi, segno + i)->mtime;
2272
2273 mtime = div_u64(mtime, sbi->segs_per_sec);
2274
2275 if (sit_i->min_mtime > mtime)
2276 sit_i->min_mtime = mtime;
2277 }
2278 sit_i->max_mtime = get_mtime(sbi);
2279 mutex_unlock(&sit_i->sentry_lock);
2280 }
2281
2282 int build_segment_manager(struct f2fs_sb_info *sbi)
2283 {
2284 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2285 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2286 struct f2fs_sm_info *sm_info;
2287 int err;
2288
2289 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2290 if (!sm_info)
2291 return -ENOMEM;
2292
2293 /* init sm info */
2294 sbi->sm_info = sm_info;
2295 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2296 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2297 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2298 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2299 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2300 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2301 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2302 sm_info->rec_prefree_segments = sm_info->main_segments *
2303 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2304 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2305 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2306 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2307
2308 INIT_LIST_HEAD(&sm_info->discard_list);
2309 sm_info->nr_discards = 0;
2310 sm_info->max_discards = 0;
2311
2312 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2313
2314 INIT_LIST_HEAD(&sm_info->sit_entry_set);
2315
2316 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2317 err = create_flush_cmd_control(sbi);
2318 if (err)
2319 return err;
2320 }
2321
2322 err = build_sit_info(sbi);
2323 if (err)
2324 return err;
2325 err = build_free_segmap(sbi);
2326 if (err)
2327 return err;
2328 err = build_curseg(sbi);
2329 if (err)
2330 return err;
2331
2332 /* reinit free segmap based on SIT */
2333 build_sit_entries(sbi);
2334
2335 init_free_segmap(sbi);
2336 err = build_dirty_segmap(sbi);
2337 if (err)
2338 return err;
2339
2340 init_min_max_mtime(sbi);
2341 return 0;
2342 }
2343
2344 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2345 enum dirty_type dirty_type)
2346 {
2347 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2348
2349 mutex_lock(&dirty_i->seglist_lock);
2350 kvfree(dirty_i->dirty_segmap[dirty_type]);
2351 dirty_i->nr_dirty[dirty_type] = 0;
2352 mutex_unlock(&dirty_i->seglist_lock);
2353 }
2354
2355 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2356 {
2357 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2358 kvfree(dirty_i->victim_secmap);
2359 }
2360
2361 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2362 {
2363 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2364 int i;
2365
2366 if (!dirty_i)
2367 return;
2368
2369 /* discard pre-free/dirty segments list */
2370 for (i = 0; i < NR_DIRTY_TYPE; i++)
2371 discard_dirty_segmap(sbi, i);
2372
2373 destroy_victim_secmap(sbi);
2374 SM_I(sbi)->dirty_info = NULL;
2375 kfree(dirty_i);
2376 }
2377
2378 static void destroy_curseg(struct f2fs_sb_info *sbi)
2379 {
2380 struct curseg_info *array = SM_I(sbi)->curseg_array;
2381 int i;
2382
2383 if (!array)
2384 return;
2385 SM_I(sbi)->curseg_array = NULL;
2386 for (i = 0; i < NR_CURSEG_TYPE; i++)
2387 kfree(array[i].sum_blk);
2388 kfree(array);
2389 }
2390
2391 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2392 {
2393 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2394 if (!free_i)
2395 return;
2396 SM_I(sbi)->free_info = NULL;
2397 kvfree(free_i->free_segmap);
2398 kvfree(free_i->free_secmap);
2399 kfree(free_i);
2400 }
2401
2402 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2403 {
2404 struct sit_info *sit_i = SIT_I(sbi);
2405 unsigned int start;
2406
2407 if (!sit_i)
2408 return;
2409
2410 if (sit_i->sentries) {
2411 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2412 kfree(sit_i->sentries[start].cur_valid_map);
2413 kfree(sit_i->sentries[start].ckpt_valid_map);
2414 kfree(sit_i->sentries[start].discard_map);
2415 }
2416 }
2417 kfree(sit_i->tmp_map);
2418
2419 kvfree(sit_i->sentries);
2420 kvfree(sit_i->sec_entries);
2421 kvfree(sit_i->dirty_sentries_bitmap);
2422
2423 SM_I(sbi)->sit_info = NULL;
2424 kfree(sit_i->sit_bitmap);
2425 kfree(sit_i);
2426 }
2427
2428 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2429 {
2430 struct f2fs_sm_info *sm_info = SM_I(sbi);
2431
2432 if (!sm_info)
2433 return;
2434 destroy_flush_cmd_control(sbi);
2435 destroy_dirty_segmap(sbi);
2436 destroy_curseg(sbi);
2437 destroy_free_segmap(sbi);
2438 destroy_sit_info(sbi);
2439 sbi->sm_info = NULL;
2440 kfree(sm_info);
2441 }
2442
2443 int __init create_segment_manager_caches(void)
2444 {
2445 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2446 sizeof(struct discard_entry));
2447 if (!discard_entry_slab)
2448 goto fail;
2449
2450 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2451 sizeof(struct sit_entry_set));
2452 if (!sit_entry_set_slab)
2453 goto destory_discard_entry;
2454
2455 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2456 sizeof(struct inmem_pages));
2457 if (!inmem_entry_slab)
2458 goto destroy_sit_entry_set;
2459 return 0;
2460
2461 destroy_sit_entry_set:
2462 kmem_cache_destroy(sit_entry_set_slab);
2463 destory_discard_entry:
2464 kmem_cache_destroy(discard_entry_slab);
2465 fail:
2466 return -ENOMEM;
2467 }
2468
2469 void destroy_segment_manager_caches(void)
2470 {
2471 kmem_cache_destroy(sit_entry_set_slab);
2472 kmem_cache_destroy(discard_entry_slab);
2473 kmem_cache_destroy(inmem_entry_slab);
2474 }
This page took 0.083122 seconds and 5 git commands to generate.