f2fs: detect congestion of flush command issues
[deliverable/linux.git] / fs / f2fs / segment.c
1 /*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *sit_entry_set_slab;
30 static struct kmem_cache *inmem_entry_slab;
31
32 static unsigned long __reverse_ulong(unsigned char *str)
33 {
34 unsigned long tmp = 0;
35 int shift = 24, idx = 0;
36
37 #if BITS_PER_LONG == 64
38 shift = 56;
39 #endif
40 while (shift >= 0) {
41 tmp |= (unsigned long)str[idx++] << shift;
42 shift -= BITS_PER_BYTE;
43 }
44 return tmp;
45 }
46
47 /*
48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
49 * MSB and LSB are reversed in a byte by f2fs_set_bit.
50 */
51 static inline unsigned long __reverse_ffs(unsigned long word)
52 {
53 int num = 0;
54
55 #if BITS_PER_LONG == 64
56 if ((word & 0xffffffff00000000UL) == 0)
57 num += 32;
58 else
59 word >>= 32;
60 #endif
61 if ((word & 0xffff0000) == 0)
62 num += 16;
63 else
64 word >>= 16;
65
66 if ((word & 0xff00) == 0)
67 num += 8;
68 else
69 word >>= 8;
70
71 if ((word & 0xf0) == 0)
72 num += 4;
73 else
74 word >>= 4;
75
76 if ((word & 0xc) == 0)
77 num += 2;
78 else
79 word >>= 2;
80
81 if ((word & 0x2) == 0)
82 num += 1;
83 return num;
84 }
85
86 /*
87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
88 * f2fs_set_bit makes MSB and LSB reversed in a byte.
89 * @size must be integral times of unsigned long.
90 * Example:
91 * MSB <--> LSB
92 * f2fs_set_bit(0, bitmap) => 1000 0000
93 * f2fs_set_bit(7, bitmap) => 0000 0001
94 */
95 static unsigned long __find_rev_next_bit(const unsigned long *addr,
96 unsigned long size, unsigned long offset)
97 {
98 const unsigned long *p = addr + BIT_WORD(offset);
99 unsigned long result = size;
100 unsigned long tmp;
101
102 if (offset >= size)
103 return size;
104
105 size -= (offset & ~(BITS_PER_LONG - 1));
106 offset %= BITS_PER_LONG;
107
108 while (1) {
109 if (*p == 0)
110 goto pass;
111
112 tmp = __reverse_ulong((unsigned char *)p);
113
114 tmp &= ~0UL >> offset;
115 if (size < BITS_PER_LONG)
116 tmp &= (~0UL << (BITS_PER_LONG - size));
117 if (tmp)
118 goto found;
119 pass:
120 if (size <= BITS_PER_LONG)
121 break;
122 size -= BITS_PER_LONG;
123 offset = 0;
124 p++;
125 }
126 return result;
127 found:
128 return result - size + __reverse_ffs(tmp);
129 }
130
131 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
132 unsigned long size, unsigned long offset)
133 {
134 const unsigned long *p = addr + BIT_WORD(offset);
135 unsigned long result = size;
136 unsigned long tmp;
137
138 if (offset >= size)
139 return size;
140
141 size -= (offset & ~(BITS_PER_LONG - 1));
142 offset %= BITS_PER_LONG;
143
144 while (1) {
145 if (*p == ~0UL)
146 goto pass;
147
148 tmp = __reverse_ulong((unsigned char *)p);
149
150 if (offset)
151 tmp |= ~0UL << (BITS_PER_LONG - offset);
152 if (size < BITS_PER_LONG)
153 tmp |= ~0UL >> size;
154 if (tmp != ~0UL)
155 goto found;
156 pass:
157 if (size <= BITS_PER_LONG)
158 break;
159 size -= BITS_PER_LONG;
160 offset = 0;
161 p++;
162 }
163 return result;
164 found:
165 return result - size + __reverse_ffz(tmp);
166 }
167
168 void register_inmem_page(struct inode *inode, struct page *page)
169 {
170 struct f2fs_inode_info *fi = F2FS_I(inode);
171 struct inmem_pages *new;
172
173 f2fs_trace_pid(page);
174
175 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
176 SetPagePrivate(page);
177
178 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
179
180 /* add atomic page indices to the list */
181 new->page = page;
182 INIT_LIST_HEAD(&new->list);
183
184 /* increase reference count with clean state */
185 mutex_lock(&fi->inmem_lock);
186 get_page(page);
187 list_add_tail(&new->list, &fi->inmem_pages);
188 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
189 mutex_unlock(&fi->inmem_lock);
190
191 trace_f2fs_register_inmem_page(page, INMEM);
192 }
193
194 static int __revoke_inmem_pages(struct inode *inode,
195 struct list_head *head, bool drop, bool recover)
196 {
197 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
198 struct inmem_pages *cur, *tmp;
199 int err = 0;
200
201 list_for_each_entry_safe(cur, tmp, head, list) {
202 struct page *page = cur->page;
203
204 if (drop)
205 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
206
207 lock_page(page);
208
209 if (recover) {
210 struct dnode_of_data dn;
211 struct node_info ni;
212
213 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
214
215 set_new_dnode(&dn, inode, NULL, NULL, 0);
216 if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
217 err = -EAGAIN;
218 goto next;
219 }
220 get_node_info(sbi, dn.nid, &ni);
221 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
222 cur->old_addr, ni.version, true, true);
223 f2fs_put_dnode(&dn);
224 }
225 next:
226 /* we don't need to invalidate this in the sccessful status */
227 if (drop || recover)
228 ClearPageUptodate(page);
229 set_page_private(page, 0);
230 ClearPagePrivate(page);
231 f2fs_put_page(page, 1);
232
233 list_del(&cur->list);
234 kmem_cache_free(inmem_entry_slab, cur);
235 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
236 }
237 return err;
238 }
239
240 void drop_inmem_pages(struct inode *inode)
241 {
242 struct f2fs_inode_info *fi = F2FS_I(inode);
243
244 clear_inode_flag(inode, FI_ATOMIC_FILE);
245
246 mutex_lock(&fi->inmem_lock);
247 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
248 mutex_unlock(&fi->inmem_lock);
249 }
250
251 static int __commit_inmem_pages(struct inode *inode,
252 struct list_head *revoke_list)
253 {
254 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
255 struct f2fs_inode_info *fi = F2FS_I(inode);
256 struct inmem_pages *cur, *tmp;
257 struct f2fs_io_info fio = {
258 .sbi = sbi,
259 .type = DATA,
260 .rw = WRITE_SYNC | REQ_PRIO,
261 .encrypted_page = NULL,
262 };
263 bool submit_bio = false;
264 int err = 0;
265
266 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
267 struct page *page = cur->page;
268
269 lock_page(page);
270 if (page->mapping == inode->i_mapping) {
271 trace_f2fs_commit_inmem_page(page, INMEM);
272
273 set_page_dirty(page);
274 f2fs_wait_on_page_writeback(page, DATA, true);
275 if (clear_page_dirty_for_io(page))
276 inode_dec_dirty_pages(inode);
277
278 fio.page = page;
279 err = do_write_data_page(&fio);
280 if (err) {
281 unlock_page(page);
282 break;
283 }
284
285 /* record old blkaddr for revoking */
286 cur->old_addr = fio.old_blkaddr;
287
288 clear_cold_data(page);
289 submit_bio = true;
290 }
291 unlock_page(page);
292 list_move_tail(&cur->list, revoke_list);
293 }
294
295 if (submit_bio)
296 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
297
298 if (!err)
299 __revoke_inmem_pages(inode, revoke_list, false, false);
300
301 return err;
302 }
303
304 int commit_inmem_pages(struct inode *inode)
305 {
306 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
307 struct f2fs_inode_info *fi = F2FS_I(inode);
308 struct list_head revoke_list;
309 int err;
310
311 INIT_LIST_HEAD(&revoke_list);
312 f2fs_balance_fs(sbi, true);
313 f2fs_lock_op(sbi);
314
315 mutex_lock(&fi->inmem_lock);
316 err = __commit_inmem_pages(inode, &revoke_list);
317 if (err) {
318 int ret;
319 /*
320 * try to revoke all committed pages, but still we could fail
321 * due to no memory or other reason, if that happened, EAGAIN
322 * will be returned, which means in such case, transaction is
323 * already not integrity, caller should use journal to do the
324 * recovery or rewrite & commit last transaction. For other
325 * error number, revoking was done by filesystem itself.
326 */
327 ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
328 if (ret)
329 err = ret;
330
331 /* drop all uncommitted pages */
332 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
333 }
334 mutex_unlock(&fi->inmem_lock);
335
336 f2fs_unlock_op(sbi);
337 return err;
338 }
339
340 /*
341 * This function balances dirty node and dentry pages.
342 * In addition, it controls garbage collection.
343 */
344 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
345 {
346 if (!need)
347 return;
348 /*
349 * We should do GC or end up with checkpoint, if there are so many dirty
350 * dir/node pages without enough free segments.
351 */
352 if (has_not_enough_free_secs(sbi, 0)) {
353 mutex_lock(&sbi->gc_mutex);
354 f2fs_gc(sbi, false);
355 }
356 }
357
358 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
359 {
360 /* try to shrink extent cache when there is no enough memory */
361 if (!available_free_memory(sbi, EXTENT_CACHE))
362 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
363
364 /* check the # of cached NAT entries */
365 if (!available_free_memory(sbi, NAT_ENTRIES))
366 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
367
368 if (!available_free_memory(sbi, FREE_NIDS))
369 try_to_free_nids(sbi, NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES);
370
371 /* checkpoint is the only way to shrink partial cached entries */
372 if (!available_free_memory(sbi, NAT_ENTRIES) ||
373 !available_free_memory(sbi, INO_ENTRIES) ||
374 excess_prefree_segs(sbi) ||
375 excess_dirty_nats(sbi) ||
376 (is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) {
377 if (test_opt(sbi, DATA_FLUSH)) {
378 struct blk_plug plug;
379
380 blk_start_plug(&plug);
381 sync_dirty_inodes(sbi, FILE_INODE);
382 blk_finish_plug(&plug);
383 }
384 f2fs_sync_fs(sbi->sb, true);
385 stat_inc_bg_cp_count(sbi->stat_info);
386 }
387 }
388
389 static int issue_flush_thread(void *data)
390 {
391 struct f2fs_sb_info *sbi = data;
392 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
393 wait_queue_head_t *q = &fcc->flush_wait_queue;
394 repeat:
395 if (kthread_should_stop())
396 return 0;
397
398 if (!llist_empty(&fcc->issue_list)) {
399 struct bio *bio;
400 struct flush_cmd *cmd, *next;
401 int ret;
402
403 bio = f2fs_bio_alloc(0);
404
405 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
406 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
407
408 bio->bi_bdev = sbi->sb->s_bdev;
409 ret = submit_bio_wait(WRITE_FLUSH, bio);
410
411 llist_for_each_entry_safe(cmd, next,
412 fcc->dispatch_list, llnode) {
413 cmd->ret = ret;
414 complete(&cmd->wait);
415 }
416 bio_put(bio);
417 fcc->dispatch_list = NULL;
418 }
419
420 wait_event_interruptible(*q,
421 kthread_should_stop() || !llist_empty(&fcc->issue_list));
422 goto repeat;
423 }
424
425 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
426 {
427 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
428 struct flush_cmd cmd;
429
430 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
431 test_opt(sbi, FLUSH_MERGE));
432
433 if (test_opt(sbi, NOBARRIER))
434 return 0;
435
436 if (!test_opt(sbi, FLUSH_MERGE) || !atomic_read(&fcc->submit_flush)) {
437 struct bio *bio = f2fs_bio_alloc(0);
438 int ret;
439
440 atomic_inc(&fcc->submit_flush);
441 bio->bi_bdev = sbi->sb->s_bdev;
442 ret = submit_bio_wait(WRITE_FLUSH, bio);
443 atomic_dec(&fcc->submit_flush);
444 bio_put(bio);
445 return ret;
446 }
447
448 init_completion(&cmd.wait);
449
450 atomic_inc(&fcc->submit_flush);
451 llist_add(&cmd.llnode, &fcc->issue_list);
452
453 if (!fcc->dispatch_list)
454 wake_up(&fcc->flush_wait_queue);
455
456 wait_for_completion(&cmd.wait);
457 atomic_dec(&fcc->submit_flush);
458
459 return cmd.ret;
460 }
461
462 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
463 {
464 dev_t dev = sbi->sb->s_bdev->bd_dev;
465 struct flush_cmd_control *fcc;
466 int err = 0;
467
468 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
469 if (!fcc)
470 return -ENOMEM;
471 atomic_set(&fcc->submit_flush, 0);
472 init_waitqueue_head(&fcc->flush_wait_queue);
473 init_llist_head(&fcc->issue_list);
474 SM_I(sbi)->cmd_control_info = fcc;
475 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
476 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
477 if (IS_ERR(fcc->f2fs_issue_flush)) {
478 err = PTR_ERR(fcc->f2fs_issue_flush);
479 kfree(fcc);
480 SM_I(sbi)->cmd_control_info = NULL;
481 return err;
482 }
483
484 return err;
485 }
486
487 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
488 {
489 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
490
491 if (fcc && fcc->f2fs_issue_flush)
492 kthread_stop(fcc->f2fs_issue_flush);
493 kfree(fcc);
494 SM_I(sbi)->cmd_control_info = NULL;
495 }
496
497 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
498 enum dirty_type dirty_type)
499 {
500 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
501
502 /* need not be added */
503 if (IS_CURSEG(sbi, segno))
504 return;
505
506 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
507 dirty_i->nr_dirty[dirty_type]++;
508
509 if (dirty_type == DIRTY) {
510 struct seg_entry *sentry = get_seg_entry(sbi, segno);
511 enum dirty_type t = sentry->type;
512
513 if (unlikely(t >= DIRTY)) {
514 f2fs_bug_on(sbi, 1);
515 return;
516 }
517 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
518 dirty_i->nr_dirty[t]++;
519 }
520 }
521
522 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
523 enum dirty_type dirty_type)
524 {
525 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
526
527 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
528 dirty_i->nr_dirty[dirty_type]--;
529
530 if (dirty_type == DIRTY) {
531 struct seg_entry *sentry = get_seg_entry(sbi, segno);
532 enum dirty_type t = sentry->type;
533
534 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
535 dirty_i->nr_dirty[t]--;
536
537 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
538 clear_bit(GET_SECNO(sbi, segno),
539 dirty_i->victim_secmap);
540 }
541 }
542
543 /*
544 * Should not occur error such as -ENOMEM.
545 * Adding dirty entry into seglist is not critical operation.
546 * If a given segment is one of current working segments, it won't be added.
547 */
548 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
549 {
550 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
551 unsigned short valid_blocks;
552
553 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
554 return;
555
556 mutex_lock(&dirty_i->seglist_lock);
557
558 valid_blocks = get_valid_blocks(sbi, segno, 0);
559
560 if (valid_blocks == 0) {
561 __locate_dirty_segment(sbi, segno, PRE);
562 __remove_dirty_segment(sbi, segno, DIRTY);
563 } else if (valid_blocks < sbi->blocks_per_seg) {
564 __locate_dirty_segment(sbi, segno, DIRTY);
565 } else {
566 /* Recovery routine with SSR needs this */
567 __remove_dirty_segment(sbi, segno, DIRTY);
568 }
569
570 mutex_unlock(&dirty_i->seglist_lock);
571 }
572
573 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
574 block_t blkstart, block_t blklen)
575 {
576 sector_t start = SECTOR_FROM_BLOCK(blkstart);
577 sector_t len = SECTOR_FROM_BLOCK(blklen);
578 struct seg_entry *se;
579 unsigned int offset;
580 block_t i;
581
582 for (i = blkstart; i < blkstart + blklen; i++) {
583 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
584 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
585
586 if (!f2fs_test_and_set_bit(offset, se->discard_map))
587 sbi->discard_blks--;
588 }
589 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
590 return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
591 }
592
593 bool discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
594 {
595 int err = -EOPNOTSUPP;
596
597 if (test_opt(sbi, DISCARD)) {
598 struct seg_entry *se = get_seg_entry(sbi,
599 GET_SEGNO(sbi, blkaddr));
600 unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
601
602 if (f2fs_test_bit(offset, se->discard_map))
603 return false;
604
605 err = f2fs_issue_discard(sbi, blkaddr, 1);
606 }
607
608 if (err) {
609 update_meta_page(sbi, NULL, blkaddr);
610 return true;
611 }
612 return false;
613 }
614
615 static void __add_discard_entry(struct f2fs_sb_info *sbi,
616 struct cp_control *cpc, struct seg_entry *se,
617 unsigned int start, unsigned int end)
618 {
619 struct list_head *head = &SM_I(sbi)->discard_list;
620 struct discard_entry *new, *last;
621
622 if (!list_empty(head)) {
623 last = list_last_entry(head, struct discard_entry, list);
624 if (START_BLOCK(sbi, cpc->trim_start) + start ==
625 last->blkaddr + last->len) {
626 last->len += end - start;
627 goto done;
628 }
629 }
630
631 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
632 INIT_LIST_HEAD(&new->list);
633 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
634 new->len = end - start;
635 list_add_tail(&new->list, head);
636 done:
637 SM_I(sbi)->nr_discards += end - start;
638 }
639
640 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
641 {
642 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
643 int max_blocks = sbi->blocks_per_seg;
644 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
645 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
646 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
647 unsigned long *discard_map = (unsigned long *)se->discard_map;
648 unsigned long *dmap = SIT_I(sbi)->tmp_map;
649 unsigned int start = 0, end = -1;
650 bool force = (cpc->reason == CP_DISCARD);
651 int i;
652
653 if (se->valid_blocks == max_blocks)
654 return;
655
656 if (!force) {
657 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
658 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
659 return;
660 }
661
662 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
663 for (i = 0; i < entries; i++)
664 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
665 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
666
667 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
668 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
669 if (start >= max_blocks)
670 break;
671
672 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
673 __add_discard_entry(sbi, cpc, se, start, end);
674 }
675 }
676
677 void release_discard_addrs(struct f2fs_sb_info *sbi)
678 {
679 struct list_head *head = &(SM_I(sbi)->discard_list);
680 struct discard_entry *entry, *this;
681
682 /* drop caches */
683 list_for_each_entry_safe(entry, this, head, list) {
684 list_del(&entry->list);
685 kmem_cache_free(discard_entry_slab, entry);
686 }
687 }
688
689 /*
690 * Should call clear_prefree_segments after checkpoint is done.
691 */
692 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
693 {
694 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
695 unsigned int segno;
696
697 mutex_lock(&dirty_i->seglist_lock);
698 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
699 __set_test_and_free(sbi, segno);
700 mutex_unlock(&dirty_i->seglist_lock);
701 }
702
703 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
704 {
705 struct list_head *head = &(SM_I(sbi)->discard_list);
706 struct discard_entry *entry, *this;
707 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
708 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
709 unsigned int start = 0, end = -1;
710
711 mutex_lock(&dirty_i->seglist_lock);
712
713 while (1) {
714 int i;
715 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
716 if (start >= MAIN_SEGS(sbi))
717 break;
718 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
719 start + 1);
720
721 for (i = start; i < end; i++)
722 clear_bit(i, prefree_map);
723
724 dirty_i->nr_dirty[PRE] -= end - start;
725
726 if (!test_opt(sbi, DISCARD))
727 continue;
728
729 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
730 (end - start) << sbi->log_blocks_per_seg);
731 }
732 mutex_unlock(&dirty_i->seglist_lock);
733
734 /* send small discards */
735 list_for_each_entry_safe(entry, this, head, list) {
736 if (cpc->reason == CP_DISCARD && entry->len < cpc->trim_minlen)
737 goto skip;
738 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
739 cpc->trimmed += entry->len;
740 skip:
741 list_del(&entry->list);
742 SM_I(sbi)->nr_discards -= entry->len;
743 kmem_cache_free(discard_entry_slab, entry);
744 }
745 }
746
747 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
748 {
749 struct sit_info *sit_i = SIT_I(sbi);
750
751 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
752 sit_i->dirty_sentries++;
753 return false;
754 }
755
756 return true;
757 }
758
759 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
760 unsigned int segno, int modified)
761 {
762 struct seg_entry *se = get_seg_entry(sbi, segno);
763 se->type = type;
764 if (modified)
765 __mark_sit_entry_dirty(sbi, segno);
766 }
767
768 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
769 {
770 struct seg_entry *se;
771 unsigned int segno, offset;
772 long int new_vblocks;
773
774 segno = GET_SEGNO(sbi, blkaddr);
775
776 se = get_seg_entry(sbi, segno);
777 new_vblocks = se->valid_blocks + del;
778 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
779
780 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
781 (new_vblocks > sbi->blocks_per_seg)));
782
783 se->valid_blocks = new_vblocks;
784 se->mtime = get_mtime(sbi);
785 SIT_I(sbi)->max_mtime = se->mtime;
786
787 /* Update valid block bitmap */
788 if (del > 0) {
789 if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
790 f2fs_bug_on(sbi, 1);
791 if (!f2fs_test_and_set_bit(offset, se->discard_map))
792 sbi->discard_blks--;
793 } else {
794 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
795 f2fs_bug_on(sbi, 1);
796 if (f2fs_test_and_clear_bit(offset, se->discard_map))
797 sbi->discard_blks++;
798 }
799 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
800 se->ckpt_valid_blocks += del;
801
802 __mark_sit_entry_dirty(sbi, segno);
803
804 /* update total number of valid blocks to be written in ckpt area */
805 SIT_I(sbi)->written_valid_blocks += del;
806
807 if (sbi->segs_per_sec > 1)
808 get_sec_entry(sbi, segno)->valid_blocks += del;
809 }
810
811 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
812 {
813 update_sit_entry(sbi, new, 1);
814 if (GET_SEGNO(sbi, old) != NULL_SEGNO)
815 update_sit_entry(sbi, old, -1);
816
817 locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
818 locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
819 }
820
821 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
822 {
823 unsigned int segno = GET_SEGNO(sbi, addr);
824 struct sit_info *sit_i = SIT_I(sbi);
825
826 f2fs_bug_on(sbi, addr == NULL_ADDR);
827 if (addr == NEW_ADDR)
828 return;
829
830 /* add it into sit main buffer */
831 mutex_lock(&sit_i->sentry_lock);
832
833 update_sit_entry(sbi, addr, -1);
834
835 /* add it into dirty seglist */
836 locate_dirty_segment(sbi, segno);
837
838 mutex_unlock(&sit_i->sentry_lock);
839 }
840
841 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
842 {
843 struct sit_info *sit_i = SIT_I(sbi);
844 unsigned int segno, offset;
845 struct seg_entry *se;
846 bool is_cp = false;
847
848 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
849 return true;
850
851 mutex_lock(&sit_i->sentry_lock);
852
853 segno = GET_SEGNO(sbi, blkaddr);
854 se = get_seg_entry(sbi, segno);
855 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
856
857 if (f2fs_test_bit(offset, se->ckpt_valid_map))
858 is_cp = true;
859
860 mutex_unlock(&sit_i->sentry_lock);
861
862 return is_cp;
863 }
864
865 /*
866 * This function should be resided under the curseg_mutex lock
867 */
868 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
869 struct f2fs_summary *sum)
870 {
871 struct curseg_info *curseg = CURSEG_I(sbi, type);
872 void *addr = curseg->sum_blk;
873 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
874 memcpy(addr, sum, sizeof(struct f2fs_summary));
875 }
876
877 /*
878 * Calculate the number of current summary pages for writing
879 */
880 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
881 {
882 int valid_sum_count = 0;
883 int i, sum_in_page;
884
885 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
886 if (sbi->ckpt->alloc_type[i] == SSR)
887 valid_sum_count += sbi->blocks_per_seg;
888 else {
889 if (for_ra)
890 valid_sum_count += le16_to_cpu(
891 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
892 else
893 valid_sum_count += curseg_blkoff(sbi, i);
894 }
895 }
896
897 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
898 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
899 if (valid_sum_count <= sum_in_page)
900 return 1;
901 else if ((valid_sum_count - sum_in_page) <=
902 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
903 return 2;
904 return 3;
905 }
906
907 /*
908 * Caller should put this summary page
909 */
910 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
911 {
912 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
913 }
914
915 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
916 {
917 struct page *page = grab_meta_page(sbi, blk_addr);
918 void *dst = page_address(page);
919
920 if (src)
921 memcpy(dst, src, PAGE_SIZE);
922 else
923 memset(dst, 0, PAGE_SIZE);
924 set_page_dirty(page);
925 f2fs_put_page(page, 1);
926 }
927
928 static void write_sum_page(struct f2fs_sb_info *sbi,
929 struct f2fs_summary_block *sum_blk, block_t blk_addr)
930 {
931 update_meta_page(sbi, (void *)sum_blk, blk_addr);
932 }
933
934 static void write_current_sum_page(struct f2fs_sb_info *sbi,
935 int type, block_t blk_addr)
936 {
937 struct curseg_info *curseg = CURSEG_I(sbi, type);
938 struct page *page = grab_meta_page(sbi, blk_addr);
939 struct f2fs_summary_block *src = curseg->sum_blk;
940 struct f2fs_summary_block *dst;
941
942 dst = (struct f2fs_summary_block *)page_address(page);
943
944 mutex_lock(&curseg->curseg_mutex);
945
946 down_read(&curseg->journal_rwsem);
947 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
948 up_read(&curseg->journal_rwsem);
949
950 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
951 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
952
953 mutex_unlock(&curseg->curseg_mutex);
954
955 set_page_dirty(page);
956 f2fs_put_page(page, 1);
957 }
958
959 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
960 {
961 struct curseg_info *curseg = CURSEG_I(sbi, type);
962 unsigned int segno = curseg->segno + 1;
963 struct free_segmap_info *free_i = FREE_I(sbi);
964
965 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
966 return !test_bit(segno, free_i->free_segmap);
967 return 0;
968 }
969
970 /*
971 * Find a new segment from the free segments bitmap to right order
972 * This function should be returned with success, otherwise BUG
973 */
974 static void get_new_segment(struct f2fs_sb_info *sbi,
975 unsigned int *newseg, bool new_sec, int dir)
976 {
977 struct free_segmap_info *free_i = FREE_I(sbi);
978 unsigned int segno, secno, zoneno;
979 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
980 unsigned int hint = *newseg / sbi->segs_per_sec;
981 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
982 unsigned int left_start = hint;
983 bool init = true;
984 int go_left = 0;
985 int i;
986
987 spin_lock(&free_i->segmap_lock);
988
989 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
990 segno = find_next_zero_bit(free_i->free_segmap,
991 (hint + 1) * sbi->segs_per_sec, *newseg + 1);
992 if (segno < (hint + 1) * sbi->segs_per_sec)
993 goto got_it;
994 }
995 find_other_zone:
996 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
997 if (secno >= MAIN_SECS(sbi)) {
998 if (dir == ALLOC_RIGHT) {
999 secno = find_next_zero_bit(free_i->free_secmap,
1000 MAIN_SECS(sbi), 0);
1001 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
1002 } else {
1003 go_left = 1;
1004 left_start = hint - 1;
1005 }
1006 }
1007 if (go_left == 0)
1008 goto skip_left;
1009
1010 while (test_bit(left_start, free_i->free_secmap)) {
1011 if (left_start > 0) {
1012 left_start--;
1013 continue;
1014 }
1015 left_start = find_next_zero_bit(free_i->free_secmap,
1016 MAIN_SECS(sbi), 0);
1017 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1018 break;
1019 }
1020 secno = left_start;
1021 skip_left:
1022 hint = secno;
1023 segno = secno * sbi->segs_per_sec;
1024 zoneno = secno / sbi->secs_per_zone;
1025
1026 /* give up on finding another zone */
1027 if (!init)
1028 goto got_it;
1029 if (sbi->secs_per_zone == 1)
1030 goto got_it;
1031 if (zoneno == old_zoneno)
1032 goto got_it;
1033 if (dir == ALLOC_LEFT) {
1034 if (!go_left && zoneno + 1 >= total_zones)
1035 goto got_it;
1036 if (go_left && zoneno == 0)
1037 goto got_it;
1038 }
1039 for (i = 0; i < NR_CURSEG_TYPE; i++)
1040 if (CURSEG_I(sbi, i)->zone == zoneno)
1041 break;
1042
1043 if (i < NR_CURSEG_TYPE) {
1044 /* zone is in user, try another */
1045 if (go_left)
1046 hint = zoneno * sbi->secs_per_zone - 1;
1047 else if (zoneno + 1 >= total_zones)
1048 hint = 0;
1049 else
1050 hint = (zoneno + 1) * sbi->secs_per_zone;
1051 init = false;
1052 goto find_other_zone;
1053 }
1054 got_it:
1055 /* set it as dirty segment in free segmap */
1056 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1057 __set_inuse(sbi, segno);
1058 *newseg = segno;
1059 spin_unlock(&free_i->segmap_lock);
1060 }
1061
1062 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1063 {
1064 struct curseg_info *curseg = CURSEG_I(sbi, type);
1065 struct summary_footer *sum_footer;
1066
1067 curseg->segno = curseg->next_segno;
1068 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
1069 curseg->next_blkoff = 0;
1070 curseg->next_segno = NULL_SEGNO;
1071
1072 sum_footer = &(curseg->sum_blk->footer);
1073 memset(sum_footer, 0, sizeof(struct summary_footer));
1074 if (IS_DATASEG(type))
1075 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1076 if (IS_NODESEG(type))
1077 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1078 __set_sit_entry_type(sbi, type, curseg->segno, modified);
1079 }
1080
1081 /*
1082 * Allocate a current working segment.
1083 * This function always allocates a free segment in LFS manner.
1084 */
1085 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1086 {
1087 struct curseg_info *curseg = CURSEG_I(sbi, type);
1088 unsigned int segno = curseg->segno;
1089 int dir = ALLOC_LEFT;
1090
1091 write_sum_page(sbi, curseg->sum_blk,
1092 GET_SUM_BLOCK(sbi, segno));
1093 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1094 dir = ALLOC_RIGHT;
1095
1096 if (test_opt(sbi, NOHEAP))
1097 dir = ALLOC_RIGHT;
1098
1099 get_new_segment(sbi, &segno, new_sec, dir);
1100 curseg->next_segno = segno;
1101 reset_curseg(sbi, type, 1);
1102 curseg->alloc_type = LFS;
1103 }
1104
1105 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1106 struct curseg_info *seg, block_t start)
1107 {
1108 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1109 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1110 unsigned long *target_map = SIT_I(sbi)->tmp_map;
1111 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1112 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1113 int i, pos;
1114
1115 for (i = 0; i < entries; i++)
1116 target_map[i] = ckpt_map[i] | cur_map[i];
1117
1118 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1119
1120 seg->next_blkoff = pos;
1121 }
1122
1123 /*
1124 * If a segment is written by LFS manner, next block offset is just obtained
1125 * by increasing the current block offset. However, if a segment is written by
1126 * SSR manner, next block offset obtained by calling __next_free_blkoff
1127 */
1128 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1129 struct curseg_info *seg)
1130 {
1131 if (seg->alloc_type == SSR)
1132 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1133 else
1134 seg->next_blkoff++;
1135 }
1136
1137 /*
1138 * This function always allocates a used segment(from dirty seglist) by SSR
1139 * manner, so it should recover the existing segment information of valid blocks
1140 */
1141 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1142 {
1143 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1144 struct curseg_info *curseg = CURSEG_I(sbi, type);
1145 unsigned int new_segno = curseg->next_segno;
1146 struct f2fs_summary_block *sum_node;
1147 struct page *sum_page;
1148
1149 write_sum_page(sbi, curseg->sum_blk,
1150 GET_SUM_BLOCK(sbi, curseg->segno));
1151 __set_test_and_inuse(sbi, new_segno);
1152
1153 mutex_lock(&dirty_i->seglist_lock);
1154 __remove_dirty_segment(sbi, new_segno, PRE);
1155 __remove_dirty_segment(sbi, new_segno, DIRTY);
1156 mutex_unlock(&dirty_i->seglist_lock);
1157
1158 reset_curseg(sbi, type, 1);
1159 curseg->alloc_type = SSR;
1160 __next_free_blkoff(sbi, curseg, 0);
1161
1162 if (reuse) {
1163 sum_page = get_sum_page(sbi, new_segno);
1164 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1165 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1166 f2fs_put_page(sum_page, 1);
1167 }
1168 }
1169
1170 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1171 {
1172 struct curseg_info *curseg = CURSEG_I(sbi, type);
1173 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1174
1175 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
1176 return v_ops->get_victim(sbi,
1177 &(curseg)->next_segno, BG_GC, type, SSR);
1178
1179 /* For data segments, let's do SSR more intensively */
1180 for (; type >= CURSEG_HOT_DATA; type--)
1181 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1182 BG_GC, type, SSR))
1183 return 1;
1184 return 0;
1185 }
1186
1187 /*
1188 * flush out current segment and replace it with new segment
1189 * This function should be returned with success, otherwise BUG
1190 */
1191 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1192 int type, bool force)
1193 {
1194 struct curseg_info *curseg = CURSEG_I(sbi, type);
1195
1196 if (force)
1197 new_curseg(sbi, type, true);
1198 else if (type == CURSEG_WARM_NODE)
1199 new_curseg(sbi, type, false);
1200 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1201 new_curseg(sbi, type, false);
1202 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1203 change_curseg(sbi, type, true);
1204 else
1205 new_curseg(sbi, type, false);
1206
1207 stat_inc_seg_type(sbi, curseg);
1208 }
1209
1210 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
1211 {
1212 struct curseg_info *curseg = CURSEG_I(sbi, type);
1213 unsigned int old_segno;
1214
1215 old_segno = curseg->segno;
1216 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
1217 locate_dirty_segment(sbi, old_segno);
1218 }
1219
1220 void allocate_new_segments(struct f2fs_sb_info *sbi)
1221 {
1222 int i;
1223
1224 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1225 __allocate_new_segments(sbi, i);
1226 }
1227
1228 static const struct segment_allocation default_salloc_ops = {
1229 .allocate_segment = allocate_segment_by_default,
1230 };
1231
1232 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1233 {
1234 __u64 start = F2FS_BYTES_TO_BLK(range->start);
1235 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1236 unsigned int start_segno, end_segno;
1237 struct cp_control cpc;
1238 int err = 0;
1239
1240 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1241 return -EINVAL;
1242
1243 cpc.trimmed = 0;
1244 if (end <= MAIN_BLKADDR(sbi))
1245 goto out;
1246
1247 /* start/end segment number in main_area */
1248 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1249 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1250 GET_SEGNO(sbi, end);
1251 cpc.reason = CP_DISCARD;
1252 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1253
1254 /* do checkpoint to issue discard commands safely */
1255 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1256 cpc.trim_start = start_segno;
1257
1258 if (sbi->discard_blks == 0)
1259 break;
1260 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1261 cpc.trim_end = end_segno;
1262 else
1263 cpc.trim_end = min_t(unsigned int,
1264 rounddown(start_segno +
1265 BATCHED_TRIM_SEGMENTS(sbi),
1266 sbi->segs_per_sec) - 1, end_segno);
1267
1268 mutex_lock(&sbi->gc_mutex);
1269 err = write_checkpoint(sbi, &cpc);
1270 mutex_unlock(&sbi->gc_mutex);
1271 }
1272 out:
1273 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1274 return err;
1275 }
1276
1277 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1278 {
1279 struct curseg_info *curseg = CURSEG_I(sbi, type);
1280 if (curseg->next_blkoff < sbi->blocks_per_seg)
1281 return true;
1282 return false;
1283 }
1284
1285 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1286 {
1287 if (p_type == DATA)
1288 return CURSEG_HOT_DATA;
1289 else
1290 return CURSEG_HOT_NODE;
1291 }
1292
1293 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1294 {
1295 if (p_type == DATA) {
1296 struct inode *inode = page->mapping->host;
1297
1298 if (S_ISDIR(inode->i_mode))
1299 return CURSEG_HOT_DATA;
1300 else
1301 return CURSEG_COLD_DATA;
1302 } else {
1303 if (IS_DNODE(page) && is_cold_node(page))
1304 return CURSEG_WARM_NODE;
1305 else
1306 return CURSEG_COLD_NODE;
1307 }
1308 }
1309
1310 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1311 {
1312 if (p_type == DATA) {
1313 struct inode *inode = page->mapping->host;
1314
1315 if (S_ISDIR(inode->i_mode))
1316 return CURSEG_HOT_DATA;
1317 else if (is_cold_data(page) || file_is_cold(inode))
1318 return CURSEG_COLD_DATA;
1319 else
1320 return CURSEG_WARM_DATA;
1321 } else {
1322 if (IS_DNODE(page))
1323 return is_cold_node(page) ? CURSEG_WARM_NODE :
1324 CURSEG_HOT_NODE;
1325 else
1326 return CURSEG_COLD_NODE;
1327 }
1328 }
1329
1330 static int __get_segment_type(struct page *page, enum page_type p_type)
1331 {
1332 switch (F2FS_P_SB(page)->active_logs) {
1333 case 2:
1334 return __get_segment_type_2(page, p_type);
1335 case 4:
1336 return __get_segment_type_4(page, p_type);
1337 }
1338 /* NR_CURSEG_TYPE(6) logs by default */
1339 f2fs_bug_on(F2FS_P_SB(page),
1340 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1341 return __get_segment_type_6(page, p_type);
1342 }
1343
1344 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1345 block_t old_blkaddr, block_t *new_blkaddr,
1346 struct f2fs_summary *sum, int type)
1347 {
1348 struct sit_info *sit_i = SIT_I(sbi);
1349 struct curseg_info *curseg;
1350 bool direct_io = (type == CURSEG_DIRECT_IO);
1351
1352 type = direct_io ? CURSEG_WARM_DATA : type;
1353
1354 curseg = CURSEG_I(sbi, type);
1355
1356 mutex_lock(&curseg->curseg_mutex);
1357 mutex_lock(&sit_i->sentry_lock);
1358
1359 /* direct_io'ed data is aligned to the segment for better performance */
1360 if (direct_io && curseg->next_blkoff &&
1361 !has_not_enough_free_secs(sbi, 0))
1362 __allocate_new_segments(sbi, type);
1363
1364 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1365
1366 /*
1367 * __add_sum_entry should be resided under the curseg_mutex
1368 * because, this function updates a summary entry in the
1369 * current summary block.
1370 */
1371 __add_sum_entry(sbi, type, sum);
1372
1373 __refresh_next_blkoff(sbi, curseg);
1374
1375 stat_inc_block_count(sbi, curseg);
1376
1377 if (!__has_curseg_space(sbi, type))
1378 sit_i->s_ops->allocate_segment(sbi, type, false);
1379 /*
1380 * SIT information should be updated before segment allocation,
1381 * since SSR needs latest valid block information.
1382 */
1383 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1384
1385 mutex_unlock(&sit_i->sentry_lock);
1386
1387 if (page && IS_NODESEG(type))
1388 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1389
1390 mutex_unlock(&curseg->curseg_mutex);
1391 }
1392
1393 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1394 {
1395 int type = __get_segment_type(fio->page, fio->type);
1396
1397 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
1398 &fio->new_blkaddr, sum, type);
1399
1400 /* writeout dirty page into bdev */
1401 f2fs_submit_page_mbio(fio);
1402 }
1403
1404 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1405 {
1406 struct f2fs_io_info fio = {
1407 .sbi = sbi,
1408 .type = META,
1409 .rw = WRITE_SYNC | REQ_META | REQ_PRIO,
1410 .old_blkaddr = page->index,
1411 .new_blkaddr = page->index,
1412 .page = page,
1413 .encrypted_page = NULL,
1414 };
1415
1416 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1417 fio.rw &= ~REQ_META;
1418
1419 set_page_writeback(page);
1420 f2fs_submit_page_mbio(&fio);
1421 }
1422
1423 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1424 {
1425 struct f2fs_summary sum;
1426
1427 set_summary(&sum, nid, 0, 0);
1428 do_write_page(&sum, fio);
1429 }
1430
1431 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1432 {
1433 struct f2fs_sb_info *sbi = fio->sbi;
1434 struct f2fs_summary sum;
1435 struct node_info ni;
1436
1437 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1438 get_node_info(sbi, dn->nid, &ni);
1439 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1440 do_write_page(&sum, fio);
1441 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
1442 }
1443
1444 void rewrite_data_page(struct f2fs_io_info *fio)
1445 {
1446 fio->new_blkaddr = fio->old_blkaddr;
1447 stat_inc_inplace_blocks(fio->sbi);
1448 f2fs_submit_page_mbio(fio);
1449 }
1450
1451 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1452 block_t old_blkaddr, block_t new_blkaddr,
1453 bool recover_curseg, bool recover_newaddr)
1454 {
1455 struct sit_info *sit_i = SIT_I(sbi);
1456 struct curseg_info *curseg;
1457 unsigned int segno, old_cursegno;
1458 struct seg_entry *se;
1459 int type;
1460 unsigned short old_blkoff;
1461
1462 segno = GET_SEGNO(sbi, new_blkaddr);
1463 se = get_seg_entry(sbi, segno);
1464 type = se->type;
1465
1466 if (!recover_curseg) {
1467 /* for recovery flow */
1468 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1469 if (old_blkaddr == NULL_ADDR)
1470 type = CURSEG_COLD_DATA;
1471 else
1472 type = CURSEG_WARM_DATA;
1473 }
1474 } else {
1475 if (!IS_CURSEG(sbi, segno))
1476 type = CURSEG_WARM_DATA;
1477 }
1478
1479 curseg = CURSEG_I(sbi, type);
1480
1481 mutex_lock(&curseg->curseg_mutex);
1482 mutex_lock(&sit_i->sentry_lock);
1483
1484 old_cursegno = curseg->segno;
1485 old_blkoff = curseg->next_blkoff;
1486
1487 /* change the current segment */
1488 if (segno != curseg->segno) {
1489 curseg->next_segno = segno;
1490 change_curseg(sbi, type, true);
1491 }
1492
1493 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1494 __add_sum_entry(sbi, type, sum);
1495
1496 if (!recover_curseg || recover_newaddr)
1497 update_sit_entry(sbi, new_blkaddr, 1);
1498 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1499 update_sit_entry(sbi, old_blkaddr, -1);
1500
1501 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1502 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1503
1504 locate_dirty_segment(sbi, old_cursegno);
1505
1506 if (recover_curseg) {
1507 if (old_cursegno != curseg->segno) {
1508 curseg->next_segno = old_cursegno;
1509 change_curseg(sbi, type, true);
1510 }
1511 curseg->next_blkoff = old_blkoff;
1512 }
1513
1514 mutex_unlock(&sit_i->sentry_lock);
1515 mutex_unlock(&curseg->curseg_mutex);
1516 }
1517
1518 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1519 block_t old_addr, block_t new_addr,
1520 unsigned char version, bool recover_curseg,
1521 bool recover_newaddr)
1522 {
1523 struct f2fs_summary sum;
1524
1525 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1526
1527 __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
1528 recover_curseg, recover_newaddr);
1529
1530 f2fs_update_data_blkaddr(dn, new_addr);
1531 }
1532
1533 void f2fs_wait_on_page_writeback(struct page *page,
1534 enum page_type type, bool ordered)
1535 {
1536 if (PageWriteback(page)) {
1537 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1538
1539 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE);
1540 if (ordered)
1541 wait_on_page_writeback(page);
1542 else
1543 wait_for_stable_page(page);
1544 }
1545 }
1546
1547 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1548 block_t blkaddr)
1549 {
1550 struct page *cpage;
1551
1552 if (blkaddr == NEW_ADDR)
1553 return;
1554
1555 f2fs_bug_on(sbi, blkaddr == NULL_ADDR);
1556
1557 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1558 if (cpage) {
1559 f2fs_wait_on_page_writeback(cpage, DATA, true);
1560 f2fs_put_page(cpage, 1);
1561 }
1562 }
1563
1564 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1565 {
1566 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1567 struct curseg_info *seg_i;
1568 unsigned char *kaddr;
1569 struct page *page;
1570 block_t start;
1571 int i, j, offset;
1572
1573 start = start_sum_block(sbi);
1574
1575 page = get_meta_page(sbi, start++);
1576 kaddr = (unsigned char *)page_address(page);
1577
1578 /* Step 1: restore nat cache */
1579 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1580 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
1581
1582 /* Step 2: restore sit cache */
1583 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1584 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
1585 offset = 2 * SUM_JOURNAL_SIZE;
1586
1587 /* Step 3: restore summary entries */
1588 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1589 unsigned short blk_off;
1590 unsigned int segno;
1591
1592 seg_i = CURSEG_I(sbi, i);
1593 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1594 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1595 seg_i->next_segno = segno;
1596 reset_curseg(sbi, i, 0);
1597 seg_i->alloc_type = ckpt->alloc_type[i];
1598 seg_i->next_blkoff = blk_off;
1599
1600 if (seg_i->alloc_type == SSR)
1601 blk_off = sbi->blocks_per_seg;
1602
1603 for (j = 0; j < blk_off; j++) {
1604 struct f2fs_summary *s;
1605 s = (struct f2fs_summary *)(kaddr + offset);
1606 seg_i->sum_blk->entries[j] = *s;
1607 offset += SUMMARY_SIZE;
1608 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
1609 SUM_FOOTER_SIZE)
1610 continue;
1611
1612 f2fs_put_page(page, 1);
1613 page = NULL;
1614
1615 page = get_meta_page(sbi, start++);
1616 kaddr = (unsigned char *)page_address(page);
1617 offset = 0;
1618 }
1619 }
1620 f2fs_put_page(page, 1);
1621 return 0;
1622 }
1623
1624 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1625 {
1626 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1627 struct f2fs_summary_block *sum;
1628 struct curseg_info *curseg;
1629 struct page *new;
1630 unsigned short blk_off;
1631 unsigned int segno = 0;
1632 block_t blk_addr = 0;
1633
1634 /* get segment number and block addr */
1635 if (IS_DATASEG(type)) {
1636 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1637 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1638 CURSEG_HOT_DATA]);
1639 if (__exist_node_summaries(sbi))
1640 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1641 else
1642 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1643 } else {
1644 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1645 CURSEG_HOT_NODE]);
1646 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1647 CURSEG_HOT_NODE]);
1648 if (__exist_node_summaries(sbi))
1649 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1650 type - CURSEG_HOT_NODE);
1651 else
1652 blk_addr = GET_SUM_BLOCK(sbi, segno);
1653 }
1654
1655 new = get_meta_page(sbi, blk_addr);
1656 sum = (struct f2fs_summary_block *)page_address(new);
1657
1658 if (IS_NODESEG(type)) {
1659 if (__exist_node_summaries(sbi)) {
1660 struct f2fs_summary *ns = &sum->entries[0];
1661 int i;
1662 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1663 ns->version = 0;
1664 ns->ofs_in_node = 0;
1665 }
1666 } else {
1667 int err;
1668
1669 err = restore_node_summary(sbi, segno, sum);
1670 if (err) {
1671 f2fs_put_page(new, 1);
1672 return err;
1673 }
1674 }
1675 }
1676
1677 /* set uncompleted segment to curseg */
1678 curseg = CURSEG_I(sbi, type);
1679 mutex_lock(&curseg->curseg_mutex);
1680
1681 /* update journal info */
1682 down_write(&curseg->journal_rwsem);
1683 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
1684 up_write(&curseg->journal_rwsem);
1685
1686 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
1687 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
1688 curseg->next_segno = segno;
1689 reset_curseg(sbi, type, 0);
1690 curseg->alloc_type = ckpt->alloc_type[type];
1691 curseg->next_blkoff = blk_off;
1692 mutex_unlock(&curseg->curseg_mutex);
1693 f2fs_put_page(new, 1);
1694 return 0;
1695 }
1696
1697 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1698 {
1699 int type = CURSEG_HOT_DATA;
1700 int err;
1701
1702 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1703 int npages = npages_for_summary_flush(sbi, true);
1704
1705 if (npages >= 2)
1706 ra_meta_pages(sbi, start_sum_block(sbi), npages,
1707 META_CP, true);
1708
1709 /* restore for compacted data summary */
1710 if (read_compacted_summaries(sbi))
1711 return -EINVAL;
1712 type = CURSEG_HOT_NODE;
1713 }
1714
1715 if (__exist_node_summaries(sbi))
1716 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1717 NR_CURSEG_TYPE - type, META_CP, true);
1718
1719 for (; type <= CURSEG_COLD_NODE; type++) {
1720 err = read_normal_summaries(sbi, type);
1721 if (err)
1722 return err;
1723 }
1724
1725 return 0;
1726 }
1727
1728 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1729 {
1730 struct page *page;
1731 unsigned char *kaddr;
1732 struct f2fs_summary *summary;
1733 struct curseg_info *seg_i;
1734 int written_size = 0;
1735 int i, j;
1736
1737 page = grab_meta_page(sbi, blkaddr++);
1738 kaddr = (unsigned char *)page_address(page);
1739
1740 /* Step 1: write nat cache */
1741 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1742 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
1743 written_size += SUM_JOURNAL_SIZE;
1744
1745 /* Step 2: write sit cache */
1746 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1747 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
1748 written_size += SUM_JOURNAL_SIZE;
1749
1750 /* Step 3: write summary entries */
1751 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1752 unsigned short blkoff;
1753 seg_i = CURSEG_I(sbi, i);
1754 if (sbi->ckpt->alloc_type[i] == SSR)
1755 blkoff = sbi->blocks_per_seg;
1756 else
1757 blkoff = curseg_blkoff(sbi, i);
1758
1759 for (j = 0; j < blkoff; j++) {
1760 if (!page) {
1761 page = grab_meta_page(sbi, blkaddr++);
1762 kaddr = (unsigned char *)page_address(page);
1763 written_size = 0;
1764 }
1765 summary = (struct f2fs_summary *)(kaddr + written_size);
1766 *summary = seg_i->sum_blk->entries[j];
1767 written_size += SUMMARY_SIZE;
1768
1769 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
1770 SUM_FOOTER_SIZE)
1771 continue;
1772
1773 set_page_dirty(page);
1774 f2fs_put_page(page, 1);
1775 page = NULL;
1776 }
1777 }
1778 if (page) {
1779 set_page_dirty(page);
1780 f2fs_put_page(page, 1);
1781 }
1782 }
1783
1784 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1785 block_t blkaddr, int type)
1786 {
1787 int i, end;
1788 if (IS_DATASEG(type))
1789 end = type + NR_CURSEG_DATA_TYPE;
1790 else
1791 end = type + NR_CURSEG_NODE_TYPE;
1792
1793 for (i = type; i < end; i++)
1794 write_current_sum_page(sbi, i, blkaddr + (i - type));
1795 }
1796
1797 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1798 {
1799 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1800 write_compacted_summaries(sbi, start_blk);
1801 else
1802 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1803 }
1804
1805 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1806 {
1807 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1808 }
1809
1810 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
1811 unsigned int val, int alloc)
1812 {
1813 int i;
1814
1815 if (type == NAT_JOURNAL) {
1816 for (i = 0; i < nats_in_cursum(journal); i++) {
1817 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
1818 return i;
1819 }
1820 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
1821 return update_nats_in_cursum(journal, 1);
1822 } else if (type == SIT_JOURNAL) {
1823 for (i = 0; i < sits_in_cursum(journal); i++)
1824 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
1825 return i;
1826 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
1827 return update_sits_in_cursum(journal, 1);
1828 }
1829 return -1;
1830 }
1831
1832 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1833 unsigned int segno)
1834 {
1835 return get_meta_page(sbi, current_sit_addr(sbi, segno));
1836 }
1837
1838 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1839 unsigned int start)
1840 {
1841 struct sit_info *sit_i = SIT_I(sbi);
1842 struct page *src_page, *dst_page;
1843 pgoff_t src_off, dst_off;
1844 void *src_addr, *dst_addr;
1845
1846 src_off = current_sit_addr(sbi, start);
1847 dst_off = next_sit_addr(sbi, src_off);
1848
1849 /* get current sit block page without lock */
1850 src_page = get_meta_page(sbi, src_off);
1851 dst_page = grab_meta_page(sbi, dst_off);
1852 f2fs_bug_on(sbi, PageDirty(src_page));
1853
1854 src_addr = page_address(src_page);
1855 dst_addr = page_address(dst_page);
1856 memcpy(dst_addr, src_addr, PAGE_SIZE);
1857
1858 set_page_dirty(dst_page);
1859 f2fs_put_page(src_page, 1);
1860
1861 set_to_next_sit(sit_i, start);
1862
1863 return dst_page;
1864 }
1865
1866 static struct sit_entry_set *grab_sit_entry_set(void)
1867 {
1868 struct sit_entry_set *ses =
1869 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
1870
1871 ses->entry_cnt = 0;
1872 INIT_LIST_HEAD(&ses->set_list);
1873 return ses;
1874 }
1875
1876 static void release_sit_entry_set(struct sit_entry_set *ses)
1877 {
1878 list_del(&ses->set_list);
1879 kmem_cache_free(sit_entry_set_slab, ses);
1880 }
1881
1882 static void adjust_sit_entry_set(struct sit_entry_set *ses,
1883 struct list_head *head)
1884 {
1885 struct sit_entry_set *next = ses;
1886
1887 if (list_is_last(&ses->set_list, head))
1888 return;
1889
1890 list_for_each_entry_continue(next, head, set_list)
1891 if (ses->entry_cnt <= next->entry_cnt)
1892 break;
1893
1894 list_move_tail(&ses->set_list, &next->set_list);
1895 }
1896
1897 static void add_sit_entry(unsigned int segno, struct list_head *head)
1898 {
1899 struct sit_entry_set *ses;
1900 unsigned int start_segno = START_SEGNO(segno);
1901
1902 list_for_each_entry(ses, head, set_list) {
1903 if (ses->start_segno == start_segno) {
1904 ses->entry_cnt++;
1905 adjust_sit_entry_set(ses, head);
1906 return;
1907 }
1908 }
1909
1910 ses = grab_sit_entry_set();
1911
1912 ses->start_segno = start_segno;
1913 ses->entry_cnt++;
1914 list_add(&ses->set_list, head);
1915 }
1916
1917 static void add_sits_in_set(struct f2fs_sb_info *sbi)
1918 {
1919 struct f2fs_sm_info *sm_info = SM_I(sbi);
1920 struct list_head *set_list = &sm_info->sit_entry_set;
1921 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1922 unsigned int segno;
1923
1924 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
1925 add_sit_entry(segno, set_list);
1926 }
1927
1928 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1929 {
1930 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1931 struct f2fs_journal *journal = curseg->journal;
1932 int i;
1933
1934 down_write(&curseg->journal_rwsem);
1935 for (i = 0; i < sits_in_cursum(journal); i++) {
1936 unsigned int segno;
1937 bool dirtied;
1938
1939 segno = le32_to_cpu(segno_in_journal(journal, i));
1940 dirtied = __mark_sit_entry_dirty(sbi, segno);
1941
1942 if (!dirtied)
1943 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1944 }
1945 update_sits_in_cursum(journal, -i);
1946 up_write(&curseg->journal_rwsem);
1947 }
1948
1949 /*
1950 * CP calls this function, which flushes SIT entries including sit_journal,
1951 * and moves prefree segs to free segs.
1952 */
1953 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1954 {
1955 struct sit_info *sit_i = SIT_I(sbi);
1956 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1957 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1958 struct f2fs_journal *journal = curseg->journal;
1959 struct sit_entry_set *ses, *tmp;
1960 struct list_head *head = &SM_I(sbi)->sit_entry_set;
1961 bool to_journal = true;
1962 struct seg_entry *se;
1963
1964 mutex_lock(&sit_i->sentry_lock);
1965
1966 if (!sit_i->dirty_sentries)
1967 goto out;
1968
1969 /*
1970 * add and account sit entries of dirty bitmap in sit entry
1971 * set temporarily
1972 */
1973 add_sits_in_set(sbi);
1974
1975 /*
1976 * if there are no enough space in journal to store dirty sit
1977 * entries, remove all entries from journal and add and account
1978 * them in sit entry set.
1979 */
1980 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
1981 remove_sits_in_journal(sbi);
1982
1983 /*
1984 * there are two steps to flush sit entries:
1985 * #1, flush sit entries to journal in current cold data summary block.
1986 * #2, flush sit entries to sit page.
1987 */
1988 list_for_each_entry_safe(ses, tmp, head, set_list) {
1989 struct page *page = NULL;
1990 struct f2fs_sit_block *raw_sit = NULL;
1991 unsigned int start_segno = ses->start_segno;
1992 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
1993 (unsigned long)MAIN_SEGS(sbi));
1994 unsigned int segno = start_segno;
1995
1996 if (to_journal &&
1997 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
1998 to_journal = false;
1999
2000 if (to_journal) {
2001 down_write(&curseg->journal_rwsem);
2002 } else {
2003 page = get_next_sit_page(sbi, start_segno);
2004 raw_sit = page_address(page);
2005 }
2006
2007 /* flush dirty sit entries in region of current sit set */
2008 for_each_set_bit_from(segno, bitmap, end) {
2009 int offset, sit_offset;
2010
2011 se = get_seg_entry(sbi, segno);
2012
2013 /* add discard candidates */
2014 if (cpc->reason != CP_DISCARD) {
2015 cpc->trim_start = segno;
2016 add_discard_addrs(sbi, cpc);
2017 }
2018
2019 if (to_journal) {
2020 offset = lookup_journal_in_cursum(journal,
2021 SIT_JOURNAL, segno, 1);
2022 f2fs_bug_on(sbi, offset < 0);
2023 segno_in_journal(journal, offset) =
2024 cpu_to_le32(segno);
2025 seg_info_to_raw_sit(se,
2026 &sit_in_journal(journal, offset));
2027 } else {
2028 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2029 seg_info_to_raw_sit(se,
2030 &raw_sit->entries[sit_offset]);
2031 }
2032
2033 __clear_bit(segno, bitmap);
2034 sit_i->dirty_sentries--;
2035 ses->entry_cnt--;
2036 }
2037
2038 if (to_journal)
2039 up_write(&curseg->journal_rwsem);
2040 else
2041 f2fs_put_page(page, 1);
2042
2043 f2fs_bug_on(sbi, ses->entry_cnt);
2044 release_sit_entry_set(ses);
2045 }
2046
2047 f2fs_bug_on(sbi, !list_empty(head));
2048 f2fs_bug_on(sbi, sit_i->dirty_sentries);
2049 out:
2050 if (cpc->reason == CP_DISCARD) {
2051 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2052 add_discard_addrs(sbi, cpc);
2053 }
2054 mutex_unlock(&sit_i->sentry_lock);
2055
2056 set_prefree_as_free_segments(sbi);
2057 }
2058
2059 static int build_sit_info(struct f2fs_sb_info *sbi)
2060 {
2061 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2062 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2063 struct sit_info *sit_i;
2064 unsigned int sit_segs, start;
2065 char *src_bitmap, *dst_bitmap;
2066 unsigned int bitmap_size;
2067
2068 /* allocate memory for SIT information */
2069 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2070 if (!sit_i)
2071 return -ENOMEM;
2072
2073 SM_I(sbi)->sit_info = sit_i;
2074
2075 sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2076 sizeof(struct seg_entry), GFP_KERNEL);
2077 if (!sit_i->sentries)
2078 return -ENOMEM;
2079
2080 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2081 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2082 if (!sit_i->dirty_sentries_bitmap)
2083 return -ENOMEM;
2084
2085 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2086 sit_i->sentries[start].cur_valid_map
2087 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2088 sit_i->sentries[start].ckpt_valid_map
2089 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2090 sit_i->sentries[start].discard_map
2091 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2092 if (!sit_i->sentries[start].cur_valid_map ||
2093 !sit_i->sentries[start].ckpt_valid_map ||
2094 !sit_i->sentries[start].discard_map)
2095 return -ENOMEM;
2096 }
2097
2098 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2099 if (!sit_i->tmp_map)
2100 return -ENOMEM;
2101
2102 if (sbi->segs_per_sec > 1) {
2103 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2104 sizeof(struct sec_entry), GFP_KERNEL);
2105 if (!sit_i->sec_entries)
2106 return -ENOMEM;
2107 }
2108
2109 /* get information related with SIT */
2110 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2111
2112 /* setup SIT bitmap from ckeckpoint pack */
2113 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2114 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2115
2116 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2117 if (!dst_bitmap)
2118 return -ENOMEM;
2119
2120 /* init SIT information */
2121 sit_i->s_ops = &default_salloc_ops;
2122
2123 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2124 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2125 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
2126 sit_i->sit_bitmap = dst_bitmap;
2127 sit_i->bitmap_size = bitmap_size;
2128 sit_i->dirty_sentries = 0;
2129 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2130 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2131 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2132 mutex_init(&sit_i->sentry_lock);
2133 return 0;
2134 }
2135
2136 static int build_free_segmap(struct f2fs_sb_info *sbi)
2137 {
2138 struct free_segmap_info *free_i;
2139 unsigned int bitmap_size, sec_bitmap_size;
2140
2141 /* allocate memory for free segmap information */
2142 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2143 if (!free_i)
2144 return -ENOMEM;
2145
2146 SM_I(sbi)->free_info = free_i;
2147
2148 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2149 free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2150 if (!free_i->free_segmap)
2151 return -ENOMEM;
2152
2153 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2154 free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2155 if (!free_i->free_secmap)
2156 return -ENOMEM;
2157
2158 /* set all segments as dirty temporarily */
2159 memset(free_i->free_segmap, 0xff, bitmap_size);
2160 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2161
2162 /* init free segmap information */
2163 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2164 free_i->free_segments = 0;
2165 free_i->free_sections = 0;
2166 spin_lock_init(&free_i->segmap_lock);
2167 return 0;
2168 }
2169
2170 static int build_curseg(struct f2fs_sb_info *sbi)
2171 {
2172 struct curseg_info *array;
2173 int i;
2174
2175 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2176 if (!array)
2177 return -ENOMEM;
2178
2179 SM_I(sbi)->curseg_array = array;
2180
2181 for (i = 0; i < NR_CURSEG_TYPE; i++) {
2182 mutex_init(&array[i].curseg_mutex);
2183 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2184 if (!array[i].sum_blk)
2185 return -ENOMEM;
2186 init_rwsem(&array[i].journal_rwsem);
2187 array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2188 GFP_KERNEL);
2189 if (!array[i].journal)
2190 return -ENOMEM;
2191 array[i].segno = NULL_SEGNO;
2192 array[i].next_blkoff = 0;
2193 }
2194 return restore_curseg_summaries(sbi);
2195 }
2196
2197 static void build_sit_entries(struct f2fs_sb_info *sbi)
2198 {
2199 struct sit_info *sit_i = SIT_I(sbi);
2200 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2201 struct f2fs_journal *journal = curseg->journal;
2202 int sit_blk_cnt = SIT_BLK_CNT(sbi);
2203 unsigned int i, start, end;
2204 unsigned int readed, start_blk = 0;
2205 int nrpages = MAX_BIO_BLOCKS(sbi) * 8;
2206
2207 do {
2208 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true);
2209
2210 start = start_blk * sit_i->sents_per_block;
2211 end = (start_blk + readed) * sit_i->sents_per_block;
2212
2213 for (; start < end && start < MAIN_SEGS(sbi); start++) {
2214 struct seg_entry *se = &sit_i->sentries[start];
2215 struct f2fs_sit_block *sit_blk;
2216 struct f2fs_sit_entry sit;
2217 struct page *page;
2218
2219 down_read(&curseg->journal_rwsem);
2220 for (i = 0; i < sits_in_cursum(journal); i++) {
2221 if (le32_to_cpu(segno_in_journal(journal, i))
2222 == start) {
2223 sit = sit_in_journal(journal, i);
2224 up_read(&curseg->journal_rwsem);
2225 goto got_it;
2226 }
2227 }
2228 up_read(&curseg->journal_rwsem);
2229
2230 page = get_current_sit_page(sbi, start);
2231 sit_blk = (struct f2fs_sit_block *)page_address(page);
2232 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2233 f2fs_put_page(page, 1);
2234 got_it:
2235 check_block_count(sbi, start, &sit);
2236 seg_info_from_raw_sit(se, &sit);
2237
2238 /* build discard map only one time */
2239 memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
2240 sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks;
2241
2242 if (sbi->segs_per_sec > 1) {
2243 struct sec_entry *e = get_sec_entry(sbi, start);
2244 e->valid_blocks += se->valid_blocks;
2245 }
2246 }
2247 start_blk += readed;
2248 } while (start_blk < sit_blk_cnt);
2249 }
2250
2251 static void init_free_segmap(struct f2fs_sb_info *sbi)
2252 {
2253 unsigned int start;
2254 int type;
2255
2256 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2257 struct seg_entry *sentry = get_seg_entry(sbi, start);
2258 if (!sentry->valid_blocks)
2259 __set_free(sbi, start);
2260 }
2261
2262 /* set use the current segments */
2263 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2264 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2265 __set_test_and_inuse(sbi, curseg_t->segno);
2266 }
2267 }
2268
2269 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2270 {
2271 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2272 struct free_segmap_info *free_i = FREE_I(sbi);
2273 unsigned int segno = 0, offset = 0;
2274 unsigned short valid_blocks;
2275
2276 while (1) {
2277 /* find dirty segment based on free segmap */
2278 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2279 if (segno >= MAIN_SEGS(sbi))
2280 break;
2281 offset = segno + 1;
2282 valid_blocks = get_valid_blocks(sbi, segno, 0);
2283 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2284 continue;
2285 if (valid_blocks > sbi->blocks_per_seg) {
2286 f2fs_bug_on(sbi, 1);
2287 continue;
2288 }
2289 mutex_lock(&dirty_i->seglist_lock);
2290 __locate_dirty_segment(sbi, segno, DIRTY);
2291 mutex_unlock(&dirty_i->seglist_lock);
2292 }
2293 }
2294
2295 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2296 {
2297 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2298 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2299
2300 dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2301 if (!dirty_i->victim_secmap)
2302 return -ENOMEM;
2303 return 0;
2304 }
2305
2306 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2307 {
2308 struct dirty_seglist_info *dirty_i;
2309 unsigned int bitmap_size, i;
2310
2311 /* allocate memory for dirty segments list information */
2312 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2313 if (!dirty_i)
2314 return -ENOMEM;
2315
2316 SM_I(sbi)->dirty_info = dirty_i;
2317 mutex_init(&dirty_i->seglist_lock);
2318
2319 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2320
2321 for (i = 0; i < NR_DIRTY_TYPE; i++) {
2322 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2323 if (!dirty_i->dirty_segmap[i])
2324 return -ENOMEM;
2325 }
2326
2327 init_dirty_segmap(sbi);
2328 return init_victim_secmap(sbi);
2329 }
2330
2331 /*
2332 * Update min, max modified time for cost-benefit GC algorithm
2333 */
2334 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2335 {
2336 struct sit_info *sit_i = SIT_I(sbi);
2337 unsigned int segno;
2338
2339 mutex_lock(&sit_i->sentry_lock);
2340
2341 sit_i->min_mtime = LLONG_MAX;
2342
2343 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2344 unsigned int i;
2345 unsigned long long mtime = 0;
2346
2347 for (i = 0; i < sbi->segs_per_sec; i++)
2348 mtime += get_seg_entry(sbi, segno + i)->mtime;
2349
2350 mtime = div_u64(mtime, sbi->segs_per_sec);
2351
2352 if (sit_i->min_mtime > mtime)
2353 sit_i->min_mtime = mtime;
2354 }
2355 sit_i->max_mtime = get_mtime(sbi);
2356 mutex_unlock(&sit_i->sentry_lock);
2357 }
2358
2359 int build_segment_manager(struct f2fs_sb_info *sbi)
2360 {
2361 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2362 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2363 struct f2fs_sm_info *sm_info;
2364 int err;
2365
2366 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2367 if (!sm_info)
2368 return -ENOMEM;
2369
2370 /* init sm info */
2371 sbi->sm_info = sm_info;
2372 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2373 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2374 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2375 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2376 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2377 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2378 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2379 sm_info->rec_prefree_segments = sm_info->main_segments *
2380 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2381 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2382 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2383 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2384
2385 INIT_LIST_HEAD(&sm_info->discard_list);
2386 sm_info->nr_discards = 0;
2387 sm_info->max_discards = 0;
2388
2389 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2390
2391 INIT_LIST_HEAD(&sm_info->sit_entry_set);
2392
2393 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2394 err = create_flush_cmd_control(sbi);
2395 if (err)
2396 return err;
2397 }
2398
2399 err = build_sit_info(sbi);
2400 if (err)
2401 return err;
2402 err = build_free_segmap(sbi);
2403 if (err)
2404 return err;
2405 err = build_curseg(sbi);
2406 if (err)
2407 return err;
2408
2409 /* reinit free segmap based on SIT */
2410 build_sit_entries(sbi);
2411
2412 init_free_segmap(sbi);
2413 err = build_dirty_segmap(sbi);
2414 if (err)
2415 return err;
2416
2417 init_min_max_mtime(sbi);
2418 return 0;
2419 }
2420
2421 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2422 enum dirty_type dirty_type)
2423 {
2424 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2425
2426 mutex_lock(&dirty_i->seglist_lock);
2427 kvfree(dirty_i->dirty_segmap[dirty_type]);
2428 dirty_i->nr_dirty[dirty_type] = 0;
2429 mutex_unlock(&dirty_i->seglist_lock);
2430 }
2431
2432 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2433 {
2434 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2435 kvfree(dirty_i->victim_secmap);
2436 }
2437
2438 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2439 {
2440 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2441 int i;
2442
2443 if (!dirty_i)
2444 return;
2445
2446 /* discard pre-free/dirty segments list */
2447 for (i = 0; i < NR_DIRTY_TYPE; i++)
2448 discard_dirty_segmap(sbi, i);
2449
2450 destroy_victim_secmap(sbi);
2451 SM_I(sbi)->dirty_info = NULL;
2452 kfree(dirty_i);
2453 }
2454
2455 static void destroy_curseg(struct f2fs_sb_info *sbi)
2456 {
2457 struct curseg_info *array = SM_I(sbi)->curseg_array;
2458 int i;
2459
2460 if (!array)
2461 return;
2462 SM_I(sbi)->curseg_array = NULL;
2463 for (i = 0; i < NR_CURSEG_TYPE; i++) {
2464 kfree(array[i].sum_blk);
2465 kfree(array[i].journal);
2466 }
2467 kfree(array);
2468 }
2469
2470 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2471 {
2472 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2473 if (!free_i)
2474 return;
2475 SM_I(sbi)->free_info = NULL;
2476 kvfree(free_i->free_segmap);
2477 kvfree(free_i->free_secmap);
2478 kfree(free_i);
2479 }
2480
2481 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2482 {
2483 struct sit_info *sit_i = SIT_I(sbi);
2484 unsigned int start;
2485
2486 if (!sit_i)
2487 return;
2488
2489 if (sit_i->sentries) {
2490 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2491 kfree(sit_i->sentries[start].cur_valid_map);
2492 kfree(sit_i->sentries[start].ckpt_valid_map);
2493 kfree(sit_i->sentries[start].discard_map);
2494 }
2495 }
2496 kfree(sit_i->tmp_map);
2497
2498 kvfree(sit_i->sentries);
2499 kvfree(sit_i->sec_entries);
2500 kvfree(sit_i->dirty_sentries_bitmap);
2501
2502 SM_I(sbi)->sit_info = NULL;
2503 kfree(sit_i->sit_bitmap);
2504 kfree(sit_i);
2505 }
2506
2507 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2508 {
2509 struct f2fs_sm_info *sm_info = SM_I(sbi);
2510
2511 if (!sm_info)
2512 return;
2513 destroy_flush_cmd_control(sbi);
2514 destroy_dirty_segmap(sbi);
2515 destroy_curseg(sbi);
2516 destroy_free_segmap(sbi);
2517 destroy_sit_info(sbi);
2518 sbi->sm_info = NULL;
2519 kfree(sm_info);
2520 }
2521
2522 int __init create_segment_manager_caches(void)
2523 {
2524 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2525 sizeof(struct discard_entry));
2526 if (!discard_entry_slab)
2527 goto fail;
2528
2529 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2530 sizeof(struct sit_entry_set));
2531 if (!sit_entry_set_slab)
2532 goto destory_discard_entry;
2533
2534 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2535 sizeof(struct inmem_pages));
2536 if (!inmem_entry_slab)
2537 goto destroy_sit_entry_set;
2538 return 0;
2539
2540 destroy_sit_entry_set:
2541 kmem_cache_destroy(sit_entry_set_slab);
2542 destory_discard_entry:
2543 kmem_cache_destroy(discard_entry_slab);
2544 fail:
2545 return -ENOMEM;
2546 }
2547
2548 void destroy_segment_manager_caches(void)
2549 {
2550 kmem_cache_destroy(sit_entry_set_slab);
2551 kmem_cache_destroy(discard_entry_slab);
2552 kmem_cache_destroy(inmem_entry_slab);
2553 }
This page took 0.082083 seconds and 6 git commands to generate.