f2fs: introduce f2fs_issue_flush to avoid redundant flush issue
[deliverable/linux.git] / fs / f2fs / segment.c
1 /*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/vmalloc.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include <trace/events/f2fs.h>
24
25 #define __reverse_ffz(x) __reverse_ffs(~(x))
26
27 static struct kmem_cache *discard_entry_slab;
28 static struct kmem_cache *flush_cmd_slab;
29
30 /*
31 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
32 * MSB and LSB are reversed in a byte by f2fs_set_bit.
33 */
34 static inline unsigned long __reverse_ffs(unsigned long word)
35 {
36 int num = 0;
37
38 #if BITS_PER_LONG == 64
39 if ((word & 0xffffffff) == 0) {
40 num += 32;
41 word >>= 32;
42 }
43 #endif
44 if ((word & 0xffff) == 0) {
45 num += 16;
46 word >>= 16;
47 }
48 if ((word & 0xff) == 0) {
49 num += 8;
50 word >>= 8;
51 }
52 if ((word & 0xf0) == 0)
53 num += 4;
54 else
55 word >>= 4;
56 if ((word & 0xc) == 0)
57 num += 2;
58 else
59 word >>= 2;
60 if ((word & 0x2) == 0)
61 num += 1;
62 return num;
63 }
64
65 /*
66 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c becasue
67 * f2fs_set_bit makes MSB and LSB reversed in a byte.
68 * Example:
69 * LSB <--> MSB
70 * f2fs_set_bit(0, bitmap) => 0000 0001
71 * f2fs_set_bit(7, bitmap) => 1000 0000
72 */
73 static unsigned long __find_rev_next_bit(const unsigned long *addr,
74 unsigned long size, unsigned long offset)
75 {
76 const unsigned long *p = addr + BIT_WORD(offset);
77 unsigned long result = offset & ~(BITS_PER_LONG - 1);
78 unsigned long tmp;
79 unsigned long mask, submask;
80 unsigned long quot, rest;
81
82 if (offset >= size)
83 return size;
84
85 size -= result;
86 offset %= BITS_PER_LONG;
87 if (!offset)
88 goto aligned;
89
90 tmp = *(p++);
91 quot = (offset >> 3) << 3;
92 rest = offset & 0x7;
93 mask = ~0UL << quot;
94 submask = (unsigned char)(0xff << rest) >> rest;
95 submask <<= quot;
96 mask &= submask;
97 tmp &= mask;
98 if (size < BITS_PER_LONG)
99 goto found_first;
100 if (tmp)
101 goto found_middle;
102
103 size -= BITS_PER_LONG;
104 result += BITS_PER_LONG;
105 aligned:
106 while (size & ~(BITS_PER_LONG-1)) {
107 tmp = *(p++);
108 if (tmp)
109 goto found_middle;
110 result += BITS_PER_LONG;
111 size -= BITS_PER_LONG;
112 }
113 if (!size)
114 return result;
115 tmp = *p;
116 found_first:
117 tmp &= (~0UL >> (BITS_PER_LONG - size));
118 if (tmp == 0UL) /* Are any bits set? */
119 return result + size; /* Nope. */
120 found_middle:
121 return result + __reverse_ffs(tmp);
122 }
123
124 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
125 unsigned long size, unsigned long offset)
126 {
127 const unsigned long *p = addr + BIT_WORD(offset);
128 unsigned long result = offset & ~(BITS_PER_LONG - 1);
129 unsigned long tmp;
130 unsigned long mask, submask;
131 unsigned long quot, rest;
132
133 if (offset >= size)
134 return size;
135
136 size -= result;
137 offset %= BITS_PER_LONG;
138 if (!offset)
139 goto aligned;
140
141 tmp = *(p++);
142 quot = (offset >> 3) << 3;
143 rest = offset & 0x7;
144 mask = ~(~0UL << quot);
145 submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
146 submask <<= quot;
147 mask += submask;
148 tmp |= mask;
149 if (size < BITS_PER_LONG)
150 goto found_first;
151 if (~tmp)
152 goto found_middle;
153
154 size -= BITS_PER_LONG;
155 result += BITS_PER_LONG;
156 aligned:
157 while (size & ~(BITS_PER_LONG - 1)) {
158 tmp = *(p++);
159 if (~tmp)
160 goto found_middle;
161 result += BITS_PER_LONG;
162 size -= BITS_PER_LONG;
163 }
164 if (!size)
165 return result;
166 tmp = *p;
167
168 found_first:
169 tmp |= ~0UL << size;
170 if (tmp == ~0UL) /* Are any bits zero? */
171 return result + size; /* Nope. */
172 found_middle:
173 return result + __reverse_ffz(tmp);
174 }
175
176 /*
177 * This function balances dirty node and dentry pages.
178 * In addition, it controls garbage collection.
179 */
180 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
181 {
182 /*
183 * We should do GC or end up with checkpoint, if there are so many dirty
184 * dir/node pages without enough free segments.
185 */
186 if (has_not_enough_free_secs(sbi, 0)) {
187 mutex_lock(&sbi->gc_mutex);
188 f2fs_gc(sbi);
189 }
190 }
191
192 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
193 {
194 /* check the # of cached NAT entries and prefree segments */
195 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
196 excess_prefree_segs(sbi))
197 f2fs_sync_fs(sbi->sb, true);
198 }
199
200 static int issue_flush_thread(void *data)
201 {
202 struct f2fs_sb_info *sbi = data;
203 struct f2fs_sm_info *sm_i = SM_I(sbi);
204 wait_queue_head_t *q = &sm_i->flush_wait_queue;
205 repeat:
206 if (kthread_should_stop())
207 return 0;
208
209 spin_lock(&sm_i->issue_lock);
210 if (sm_i->issue_list) {
211 sm_i->dispatch_list = sm_i->issue_list;
212 sm_i->issue_list = sm_i->issue_tail = NULL;
213 }
214 spin_unlock(&sm_i->issue_lock);
215
216 if (sm_i->dispatch_list) {
217 struct bio *bio = bio_alloc(GFP_NOIO, 0);
218 struct flush_cmd *cmd, *next;
219 int ret;
220
221 bio->bi_bdev = sbi->sb->s_bdev;
222 ret = submit_bio_wait(WRITE_FLUSH, bio);
223
224 for (cmd = sm_i->dispatch_list; cmd; cmd = next) {
225 cmd->ret = ret;
226 next = cmd->next;
227 complete(&cmd->wait);
228 }
229 sm_i->dispatch_list = NULL;
230 }
231
232 wait_event_interruptible(*q, kthread_should_stop() || sm_i->issue_list);
233 goto repeat;
234 }
235
236 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
237 {
238 struct f2fs_sm_info *sm_i = SM_I(sbi);
239 struct flush_cmd *cmd;
240 int ret;
241
242 if (!test_opt(sbi, FLUSH_MERGE))
243 return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL);
244
245 cmd = f2fs_kmem_cache_alloc(flush_cmd_slab, GFP_ATOMIC);
246 cmd->next = NULL;
247 cmd->ret = 0;
248 init_completion(&cmd->wait);
249
250 spin_lock(&sm_i->issue_lock);
251 if (sm_i->issue_list)
252 sm_i->issue_tail->next = cmd;
253 else
254 sm_i->issue_list = cmd;
255 sm_i->issue_tail = cmd;
256 spin_unlock(&sm_i->issue_lock);
257
258 if (!sm_i->dispatch_list)
259 wake_up(&sm_i->flush_wait_queue);
260
261 wait_for_completion(&cmd->wait);
262 ret = cmd->ret;
263 kmem_cache_free(flush_cmd_slab, cmd);
264 return ret;
265 }
266
267 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
268 enum dirty_type dirty_type)
269 {
270 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
271
272 /* need not be added */
273 if (IS_CURSEG(sbi, segno))
274 return;
275
276 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
277 dirty_i->nr_dirty[dirty_type]++;
278
279 if (dirty_type == DIRTY) {
280 struct seg_entry *sentry = get_seg_entry(sbi, segno);
281 enum dirty_type t = sentry->type;
282
283 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
284 dirty_i->nr_dirty[t]++;
285 }
286 }
287
288 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
289 enum dirty_type dirty_type)
290 {
291 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
292
293 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
294 dirty_i->nr_dirty[dirty_type]--;
295
296 if (dirty_type == DIRTY) {
297 struct seg_entry *sentry = get_seg_entry(sbi, segno);
298 enum dirty_type t = sentry->type;
299
300 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
301 dirty_i->nr_dirty[t]--;
302
303 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
304 clear_bit(GET_SECNO(sbi, segno),
305 dirty_i->victim_secmap);
306 }
307 }
308
309 /*
310 * Should not occur error such as -ENOMEM.
311 * Adding dirty entry into seglist is not critical operation.
312 * If a given segment is one of current working segments, it won't be added.
313 */
314 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
315 {
316 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
317 unsigned short valid_blocks;
318
319 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
320 return;
321
322 mutex_lock(&dirty_i->seglist_lock);
323
324 valid_blocks = get_valid_blocks(sbi, segno, 0);
325
326 if (valid_blocks == 0) {
327 __locate_dirty_segment(sbi, segno, PRE);
328 __remove_dirty_segment(sbi, segno, DIRTY);
329 } else if (valid_blocks < sbi->blocks_per_seg) {
330 __locate_dirty_segment(sbi, segno, DIRTY);
331 } else {
332 /* Recovery routine with SSR needs this */
333 __remove_dirty_segment(sbi, segno, DIRTY);
334 }
335
336 mutex_unlock(&dirty_i->seglist_lock);
337 }
338
339 static void f2fs_issue_discard(struct f2fs_sb_info *sbi,
340 block_t blkstart, block_t blklen)
341 {
342 sector_t start = SECTOR_FROM_BLOCK(sbi, blkstart);
343 sector_t len = SECTOR_FROM_BLOCK(sbi, blklen);
344 blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
345 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
346 }
347
348 static void add_discard_addrs(struct f2fs_sb_info *sbi,
349 unsigned int segno, struct seg_entry *se)
350 {
351 struct list_head *head = &SM_I(sbi)->discard_list;
352 struct discard_entry *new;
353 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
354 int max_blocks = sbi->blocks_per_seg;
355 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
356 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
357 unsigned long dmap[entries];
358 unsigned int start = 0, end = -1;
359 int i;
360
361 if (!test_opt(sbi, DISCARD))
362 return;
363
364 /* zero block will be discarded through the prefree list */
365 if (!se->valid_blocks || se->valid_blocks == max_blocks)
366 return;
367
368 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
369 for (i = 0; i < entries; i++)
370 dmap[i] = (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
371
372 while (SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
373 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
374 if (start >= max_blocks)
375 break;
376
377 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
378
379 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
380 INIT_LIST_HEAD(&new->list);
381 new->blkaddr = START_BLOCK(sbi, segno) + start;
382 new->len = end - start;
383
384 list_add_tail(&new->list, head);
385 SM_I(sbi)->nr_discards += end - start;
386 }
387 }
388
389 /*
390 * Should call clear_prefree_segments after checkpoint is done.
391 */
392 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
393 {
394 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
395 unsigned int segno = -1;
396 unsigned int total_segs = TOTAL_SEGS(sbi);
397
398 mutex_lock(&dirty_i->seglist_lock);
399 while (1) {
400 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
401 segno + 1);
402 if (segno >= total_segs)
403 break;
404 __set_test_and_free(sbi, segno);
405 }
406 mutex_unlock(&dirty_i->seglist_lock);
407 }
408
409 void clear_prefree_segments(struct f2fs_sb_info *sbi)
410 {
411 struct list_head *head = &(SM_I(sbi)->discard_list);
412 struct discard_entry *entry, *this;
413 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
414 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
415 unsigned int total_segs = TOTAL_SEGS(sbi);
416 unsigned int start = 0, end = -1;
417
418 mutex_lock(&dirty_i->seglist_lock);
419
420 while (1) {
421 int i;
422 start = find_next_bit(prefree_map, total_segs, end + 1);
423 if (start >= total_segs)
424 break;
425 end = find_next_zero_bit(prefree_map, total_segs, start + 1);
426
427 for (i = start; i < end; i++)
428 clear_bit(i, prefree_map);
429
430 dirty_i->nr_dirty[PRE] -= end - start;
431
432 if (!test_opt(sbi, DISCARD))
433 continue;
434
435 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
436 (end - start) << sbi->log_blocks_per_seg);
437 }
438 mutex_unlock(&dirty_i->seglist_lock);
439
440 /* send small discards */
441 list_for_each_entry_safe(entry, this, head, list) {
442 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
443 list_del(&entry->list);
444 SM_I(sbi)->nr_discards -= entry->len;
445 kmem_cache_free(discard_entry_slab, entry);
446 }
447 }
448
449 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
450 {
451 struct sit_info *sit_i = SIT_I(sbi);
452 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
453 sit_i->dirty_sentries++;
454 }
455
456 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
457 unsigned int segno, int modified)
458 {
459 struct seg_entry *se = get_seg_entry(sbi, segno);
460 se->type = type;
461 if (modified)
462 __mark_sit_entry_dirty(sbi, segno);
463 }
464
465 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
466 {
467 struct seg_entry *se;
468 unsigned int segno, offset;
469 long int new_vblocks;
470
471 segno = GET_SEGNO(sbi, blkaddr);
472
473 se = get_seg_entry(sbi, segno);
474 new_vblocks = se->valid_blocks + del;
475 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
476
477 f2fs_bug_on((new_vblocks >> (sizeof(unsigned short) << 3) ||
478 (new_vblocks > sbi->blocks_per_seg)));
479
480 se->valid_blocks = new_vblocks;
481 se->mtime = get_mtime(sbi);
482 SIT_I(sbi)->max_mtime = se->mtime;
483
484 /* Update valid block bitmap */
485 if (del > 0) {
486 if (f2fs_set_bit(offset, se->cur_valid_map))
487 BUG();
488 } else {
489 if (!f2fs_clear_bit(offset, se->cur_valid_map))
490 BUG();
491 }
492 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
493 se->ckpt_valid_blocks += del;
494
495 __mark_sit_entry_dirty(sbi, segno);
496
497 /* update total number of valid blocks to be written in ckpt area */
498 SIT_I(sbi)->written_valid_blocks += del;
499
500 if (sbi->segs_per_sec > 1)
501 get_sec_entry(sbi, segno)->valid_blocks += del;
502 }
503
504 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
505 {
506 update_sit_entry(sbi, new, 1);
507 if (GET_SEGNO(sbi, old) != NULL_SEGNO)
508 update_sit_entry(sbi, old, -1);
509
510 locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
511 locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
512 }
513
514 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
515 {
516 unsigned int segno = GET_SEGNO(sbi, addr);
517 struct sit_info *sit_i = SIT_I(sbi);
518
519 f2fs_bug_on(addr == NULL_ADDR);
520 if (addr == NEW_ADDR)
521 return;
522
523 /* add it into sit main buffer */
524 mutex_lock(&sit_i->sentry_lock);
525
526 update_sit_entry(sbi, addr, -1);
527
528 /* add it into dirty seglist */
529 locate_dirty_segment(sbi, segno);
530
531 mutex_unlock(&sit_i->sentry_lock);
532 }
533
534 /*
535 * This function should be resided under the curseg_mutex lock
536 */
537 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
538 struct f2fs_summary *sum)
539 {
540 struct curseg_info *curseg = CURSEG_I(sbi, type);
541 void *addr = curseg->sum_blk;
542 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
543 memcpy(addr, sum, sizeof(struct f2fs_summary));
544 }
545
546 /*
547 * Calculate the number of current summary pages for writing
548 */
549 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
550 {
551 int valid_sum_count = 0;
552 int i, sum_in_page;
553
554 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
555 if (sbi->ckpt->alloc_type[i] == SSR)
556 valid_sum_count += sbi->blocks_per_seg;
557 else
558 valid_sum_count += curseg_blkoff(sbi, i);
559 }
560
561 sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
562 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
563 if (valid_sum_count <= sum_in_page)
564 return 1;
565 else if ((valid_sum_count - sum_in_page) <=
566 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
567 return 2;
568 return 3;
569 }
570
571 /*
572 * Caller should put this summary page
573 */
574 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
575 {
576 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
577 }
578
579 static void write_sum_page(struct f2fs_sb_info *sbi,
580 struct f2fs_summary_block *sum_blk, block_t blk_addr)
581 {
582 struct page *page = grab_meta_page(sbi, blk_addr);
583 void *kaddr = page_address(page);
584 memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
585 set_page_dirty(page);
586 f2fs_put_page(page, 1);
587 }
588
589 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
590 {
591 struct curseg_info *curseg = CURSEG_I(sbi, type);
592 unsigned int segno = curseg->segno + 1;
593 struct free_segmap_info *free_i = FREE_I(sbi);
594
595 if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
596 return !test_bit(segno, free_i->free_segmap);
597 return 0;
598 }
599
600 /*
601 * Find a new segment from the free segments bitmap to right order
602 * This function should be returned with success, otherwise BUG
603 */
604 static void get_new_segment(struct f2fs_sb_info *sbi,
605 unsigned int *newseg, bool new_sec, int dir)
606 {
607 struct free_segmap_info *free_i = FREE_I(sbi);
608 unsigned int segno, secno, zoneno;
609 unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
610 unsigned int hint = *newseg / sbi->segs_per_sec;
611 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
612 unsigned int left_start = hint;
613 bool init = true;
614 int go_left = 0;
615 int i;
616
617 write_lock(&free_i->segmap_lock);
618
619 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
620 segno = find_next_zero_bit(free_i->free_segmap,
621 TOTAL_SEGS(sbi), *newseg + 1);
622 if (segno - *newseg < sbi->segs_per_sec -
623 (*newseg % sbi->segs_per_sec))
624 goto got_it;
625 }
626 find_other_zone:
627 secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
628 if (secno >= TOTAL_SECS(sbi)) {
629 if (dir == ALLOC_RIGHT) {
630 secno = find_next_zero_bit(free_i->free_secmap,
631 TOTAL_SECS(sbi), 0);
632 f2fs_bug_on(secno >= TOTAL_SECS(sbi));
633 } else {
634 go_left = 1;
635 left_start = hint - 1;
636 }
637 }
638 if (go_left == 0)
639 goto skip_left;
640
641 while (test_bit(left_start, free_i->free_secmap)) {
642 if (left_start > 0) {
643 left_start--;
644 continue;
645 }
646 left_start = find_next_zero_bit(free_i->free_secmap,
647 TOTAL_SECS(sbi), 0);
648 f2fs_bug_on(left_start >= TOTAL_SECS(sbi));
649 break;
650 }
651 secno = left_start;
652 skip_left:
653 hint = secno;
654 segno = secno * sbi->segs_per_sec;
655 zoneno = secno / sbi->secs_per_zone;
656
657 /* give up on finding another zone */
658 if (!init)
659 goto got_it;
660 if (sbi->secs_per_zone == 1)
661 goto got_it;
662 if (zoneno == old_zoneno)
663 goto got_it;
664 if (dir == ALLOC_LEFT) {
665 if (!go_left && zoneno + 1 >= total_zones)
666 goto got_it;
667 if (go_left && zoneno == 0)
668 goto got_it;
669 }
670 for (i = 0; i < NR_CURSEG_TYPE; i++)
671 if (CURSEG_I(sbi, i)->zone == zoneno)
672 break;
673
674 if (i < NR_CURSEG_TYPE) {
675 /* zone is in user, try another */
676 if (go_left)
677 hint = zoneno * sbi->secs_per_zone - 1;
678 else if (zoneno + 1 >= total_zones)
679 hint = 0;
680 else
681 hint = (zoneno + 1) * sbi->secs_per_zone;
682 init = false;
683 goto find_other_zone;
684 }
685 got_it:
686 /* set it as dirty segment in free segmap */
687 f2fs_bug_on(test_bit(segno, free_i->free_segmap));
688 __set_inuse(sbi, segno);
689 *newseg = segno;
690 write_unlock(&free_i->segmap_lock);
691 }
692
693 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
694 {
695 struct curseg_info *curseg = CURSEG_I(sbi, type);
696 struct summary_footer *sum_footer;
697
698 curseg->segno = curseg->next_segno;
699 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
700 curseg->next_blkoff = 0;
701 curseg->next_segno = NULL_SEGNO;
702
703 sum_footer = &(curseg->sum_blk->footer);
704 memset(sum_footer, 0, sizeof(struct summary_footer));
705 if (IS_DATASEG(type))
706 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
707 if (IS_NODESEG(type))
708 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
709 __set_sit_entry_type(sbi, type, curseg->segno, modified);
710 }
711
712 /*
713 * Allocate a current working segment.
714 * This function always allocates a free segment in LFS manner.
715 */
716 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
717 {
718 struct curseg_info *curseg = CURSEG_I(sbi, type);
719 unsigned int segno = curseg->segno;
720 int dir = ALLOC_LEFT;
721
722 write_sum_page(sbi, curseg->sum_blk,
723 GET_SUM_BLOCK(sbi, segno));
724 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
725 dir = ALLOC_RIGHT;
726
727 if (test_opt(sbi, NOHEAP))
728 dir = ALLOC_RIGHT;
729
730 get_new_segment(sbi, &segno, new_sec, dir);
731 curseg->next_segno = segno;
732 reset_curseg(sbi, type, 1);
733 curseg->alloc_type = LFS;
734 }
735
736 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
737 struct curseg_info *seg, block_t start)
738 {
739 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
740 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
741 unsigned long target_map[entries];
742 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
743 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
744 int i, pos;
745
746 for (i = 0; i < entries; i++)
747 target_map[i] = ckpt_map[i] | cur_map[i];
748
749 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
750
751 seg->next_blkoff = pos;
752 }
753
754 /*
755 * If a segment is written by LFS manner, next block offset is just obtained
756 * by increasing the current block offset. However, if a segment is written by
757 * SSR manner, next block offset obtained by calling __next_free_blkoff
758 */
759 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
760 struct curseg_info *seg)
761 {
762 if (seg->alloc_type == SSR)
763 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
764 else
765 seg->next_blkoff++;
766 }
767
768 /*
769 * This function always allocates a used segment (from dirty seglist) by SSR
770 * manner, so it should recover the existing segment information of valid blocks
771 */
772 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
773 {
774 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
775 struct curseg_info *curseg = CURSEG_I(sbi, type);
776 unsigned int new_segno = curseg->next_segno;
777 struct f2fs_summary_block *sum_node;
778 struct page *sum_page;
779
780 write_sum_page(sbi, curseg->sum_blk,
781 GET_SUM_BLOCK(sbi, curseg->segno));
782 __set_test_and_inuse(sbi, new_segno);
783
784 mutex_lock(&dirty_i->seglist_lock);
785 __remove_dirty_segment(sbi, new_segno, PRE);
786 __remove_dirty_segment(sbi, new_segno, DIRTY);
787 mutex_unlock(&dirty_i->seglist_lock);
788
789 reset_curseg(sbi, type, 1);
790 curseg->alloc_type = SSR;
791 __next_free_blkoff(sbi, curseg, 0);
792
793 if (reuse) {
794 sum_page = get_sum_page(sbi, new_segno);
795 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
796 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
797 f2fs_put_page(sum_page, 1);
798 }
799 }
800
801 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
802 {
803 struct curseg_info *curseg = CURSEG_I(sbi, type);
804 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
805
806 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
807 return v_ops->get_victim(sbi,
808 &(curseg)->next_segno, BG_GC, type, SSR);
809
810 /* For data segments, let's do SSR more intensively */
811 for (; type >= CURSEG_HOT_DATA; type--)
812 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
813 BG_GC, type, SSR))
814 return 1;
815 return 0;
816 }
817
818 /*
819 * flush out current segment and replace it with new segment
820 * This function should be returned with success, otherwise BUG
821 */
822 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
823 int type, bool force)
824 {
825 struct curseg_info *curseg = CURSEG_I(sbi, type);
826
827 if (force)
828 new_curseg(sbi, type, true);
829 else if (type == CURSEG_WARM_NODE)
830 new_curseg(sbi, type, false);
831 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
832 new_curseg(sbi, type, false);
833 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
834 change_curseg(sbi, type, true);
835 else
836 new_curseg(sbi, type, false);
837
838 stat_inc_seg_type(sbi, curseg);
839 }
840
841 void allocate_new_segments(struct f2fs_sb_info *sbi)
842 {
843 struct curseg_info *curseg;
844 unsigned int old_curseg;
845 int i;
846
847 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
848 curseg = CURSEG_I(sbi, i);
849 old_curseg = curseg->segno;
850 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
851 locate_dirty_segment(sbi, old_curseg);
852 }
853 }
854
855 static const struct segment_allocation default_salloc_ops = {
856 .allocate_segment = allocate_segment_by_default,
857 };
858
859 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
860 {
861 struct curseg_info *curseg = CURSEG_I(sbi, type);
862 if (curseg->next_blkoff < sbi->blocks_per_seg)
863 return true;
864 return false;
865 }
866
867 static int __get_segment_type_2(struct page *page, enum page_type p_type)
868 {
869 if (p_type == DATA)
870 return CURSEG_HOT_DATA;
871 else
872 return CURSEG_HOT_NODE;
873 }
874
875 static int __get_segment_type_4(struct page *page, enum page_type p_type)
876 {
877 if (p_type == DATA) {
878 struct inode *inode = page->mapping->host;
879
880 if (S_ISDIR(inode->i_mode))
881 return CURSEG_HOT_DATA;
882 else
883 return CURSEG_COLD_DATA;
884 } else {
885 if (IS_DNODE(page) && !is_cold_node(page))
886 return CURSEG_HOT_NODE;
887 else
888 return CURSEG_COLD_NODE;
889 }
890 }
891
892 static int __get_segment_type_6(struct page *page, enum page_type p_type)
893 {
894 if (p_type == DATA) {
895 struct inode *inode = page->mapping->host;
896
897 if (S_ISDIR(inode->i_mode))
898 return CURSEG_HOT_DATA;
899 else if (is_cold_data(page) || file_is_cold(inode))
900 return CURSEG_COLD_DATA;
901 else
902 return CURSEG_WARM_DATA;
903 } else {
904 if (IS_DNODE(page))
905 return is_cold_node(page) ? CURSEG_WARM_NODE :
906 CURSEG_HOT_NODE;
907 else
908 return CURSEG_COLD_NODE;
909 }
910 }
911
912 static int __get_segment_type(struct page *page, enum page_type p_type)
913 {
914 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
915 switch (sbi->active_logs) {
916 case 2:
917 return __get_segment_type_2(page, p_type);
918 case 4:
919 return __get_segment_type_4(page, p_type);
920 }
921 /* NR_CURSEG_TYPE(6) logs by default */
922 f2fs_bug_on(sbi->active_logs != NR_CURSEG_TYPE);
923 return __get_segment_type_6(page, p_type);
924 }
925
926 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
927 block_t old_blkaddr, block_t *new_blkaddr,
928 struct f2fs_summary *sum, int type)
929 {
930 struct sit_info *sit_i = SIT_I(sbi);
931 struct curseg_info *curseg;
932 unsigned int old_cursegno;
933
934 curseg = CURSEG_I(sbi, type);
935
936 mutex_lock(&curseg->curseg_mutex);
937
938 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
939 old_cursegno = curseg->segno;
940
941 /*
942 * __add_sum_entry should be resided under the curseg_mutex
943 * because, this function updates a summary entry in the
944 * current summary block.
945 */
946 __add_sum_entry(sbi, type, sum);
947
948 mutex_lock(&sit_i->sentry_lock);
949 __refresh_next_blkoff(sbi, curseg);
950
951 stat_inc_block_count(sbi, curseg);
952
953 if (!__has_curseg_space(sbi, type))
954 sit_i->s_ops->allocate_segment(sbi, type, false);
955 /*
956 * SIT information should be updated before segment allocation,
957 * since SSR needs latest valid block information.
958 */
959 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
960 locate_dirty_segment(sbi, old_cursegno);
961
962 mutex_unlock(&sit_i->sentry_lock);
963
964 if (page && IS_NODESEG(type))
965 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
966
967 mutex_unlock(&curseg->curseg_mutex);
968 }
969
970 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
971 block_t old_blkaddr, block_t *new_blkaddr,
972 struct f2fs_summary *sum, struct f2fs_io_info *fio)
973 {
974 int type = __get_segment_type(page, fio->type);
975
976 allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type);
977
978 /* writeout dirty page into bdev */
979 f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio);
980 }
981
982 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
983 {
984 struct f2fs_io_info fio = {
985 .type = META,
986 .rw = WRITE_SYNC | REQ_META | REQ_PRIO
987 };
988
989 set_page_writeback(page);
990 f2fs_submit_page_mbio(sbi, page, page->index, &fio);
991 }
992
993 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
994 struct f2fs_io_info *fio,
995 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
996 {
997 struct f2fs_summary sum;
998 set_summary(&sum, nid, 0, 0);
999 do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio);
1000 }
1001
1002 void write_data_page(struct page *page, struct dnode_of_data *dn,
1003 block_t *new_blkaddr, struct f2fs_io_info *fio)
1004 {
1005 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
1006 struct f2fs_summary sum;
1007 struct node_info ni;
1008
1009 f2fs_bug_on(dn->data_blkaddr == NULL_ADDR);
1010 get_node_info(sbi, dn->nid, &ni);
1011 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1012
1013 do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio);
1014 }
1015
1016 void rewrite_data_page(struct page *page, block_t old_blkaddr,
1017 struct f2fs_io_info *fio)
1018 {
1019 struct inode *inode = page->mapping->host;
1020 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1021 f2fs_submit_page_mbio(sbi, page, old_blkaddr, fio);
1022 }
1023
1024 void recover_data_page(struct f2fs_sb_info *sbi,
1025 struct page *page, struct f2fs_summary *sum,
1026 block_t old_blkaddr, block_t new_blkaddr)
1027 {
1028 struct sit_info *sit_i = SIT_I(sbi);
1029 struct curseg_info *curseg;
1030 unsigned int segno, old_cursegno;
1031 struct seg_entry *se;
1032 int type;
1033
1034 segno = GET_SEGNO(sbi, new_blkaddr);
1035 se = get_seg_entry(sbi, segno);
1036 type = se->type;
1037
1038 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1039 if (old_blkaddr == NULL_ADDR)
1040 type = CURSEG_COLD_DATA;
1041 else
1042 type = CURSEG_WARM_DATA;
1043 }
1044 curseg = CURSEG_I(sbi, type);
1045
1046 mutex_lock(&curseg->curseg_mutex);
1047 mutex_lock(&sit_i->sentry_lock);
1048
1049 old_cursegno = curseg->segno;
1050
1051 /* change the current segment */
1052 if (segno != curseg->segno) {
1053 curseg->next_segno = segno;
1054 change_curseg(sbi, type, true);
1055 }
1056
1057 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1058 __add_sum_entry(sbi, type, sum);
1059
1060 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1061 locate_dirty_segment(sbi, old_cursegno);
1062
1063 mutex_unlock(&sit_i->sentry_lock);
1064 mutex_unlock(&curseg->curseg_mutex);
1065 }
1066
1067 void rewrite_node_page(struct f2fs_sb_info *sbi,
1068 struct page *page, struct f2fs_summary *sum,
1069 block_t old_blkaddr, block_t new_blkaddr)
1070 {
1071 struct sit_info *sit_i = SIT_I(sbi);
1072 int type = CURSEG_WARM_NODE;
1073 struct curseg_info *curseg;
1074 unsigned int segno, old_cursegno;
1075 block_t next_blkaddr = next_blkaddr_of_node(page);
1076 unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
1077 struct f2fs_io_info fio = {
1078 .type = NODE,
1079 .rw = WRITE_SYNC,
1080 };
1081
1082 curseg = CURSEG_I(sbi, type);
1083
1084 mutex_lock(&curseg->curseg_mutex);
1085 mutex_lock(&sit_i->sentry_lock);
1086
1087 segno = GET_SEGNO(sbi, new_blkaddr);
1088 old_cursegno = curseg->segno;
1089
1090 /* change the current segment */
1091 if (segno != curseg->segno) {
1092 curseg->next_segno = segno;
1093 change_curseg(sbi, type, true);
1094 }
1095 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1096 __add_sum_entry(sbi, type, sum);
1097
1098 /* change the current log to the next block addr in advance */
1099 if (next_segno != segno) {
1100 curseg->next_segno = next_segno;
1101 change_curseg(sbi, type, true);
1102 }
1103 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, next_blkaddr);
1104
1105 /* rewrite node page */
1106 set_page_writeback(page);
1107 f2fs_submit_page_mbio(sbi, page, new_blkaddr, &fio);
1108 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1109 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1110 locate_dirty_segment(sbi, old_cursegno);
1111
1112 mutex_unlock(&sit_i->sentry_lock);
1113 mutex_unlock(&curseg->curseg_mutex);
1114 }
1115
1116 static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1117 struct page *page, enum page_type type)
1118 {
1119 enum page_type btype = PAGE_TYPE_OF_BIO(type);
1120 struct f2fs_bio_info *io = &sbi->write_io[btype];
1121 struct bio_vec *bvec;
1122 int i;
1123
1124 down_read(&io->io_rwsem);
1125 if (!io->bio)
1126 goto out;
1127
1128 bio_for_each_segment_all(bvec, io->bio, i) {
1129 if (page == bvec->bv_page) {
1130 up_read(&io->io_rwsem);
1131 return true;
1132 }
1133 }
1134
1135 out:
1136 up_read(&io->io_rwsem);
1137 return false;
1138 }
1139
1140 void f2fs_wait_on_page_writeback(struct page *page,
1141 enum page_type type)
1142 {
1143 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1144 if (PageWriteback(page)) {
1145 if (is_merged_page(sbi, page, type))
1146 f2fs_submit_merged_bio(sbi, type, WRITE);
1147 wait_on_page_writeback(page);
1148 }
1149 }
1150
1151 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1152 {
1153 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1154 struct curseg_info *seg_i;
1155 unsigned char *kaddr;
1156 struct page *page;
1157 block_t start;
1158 int i, j, offset;
1159
1160 start = start_sum_block(sbi);
1161
1162 page = get_meta_page(sbi, start++);
1163 kaddr = (unsigned char *)page_address(page);
1164
1165 /* Step 1: restore nat cache */
1166 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1167 memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1168
1169 /* Step 2: restore sit cache */
1170 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1171 memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1172 SUM_JOURNAL_SIZE);
1173 offset = 2 * SUM_JOURNAL_SIZE;
1174
1175 /* Step 3: restore summary entries */
1176 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1177 unsigned short blk_off;
1178 unsigned int segno;
1179
1180 seg_i = CURSEG_I(sbi, i);
1181 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1182 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1183 seg_i->next_segno = segno;
1184 reset_curseg(sbi, i, 0);
1185 seg_i->alloc_type = ckpt->alloc_type[i];
1186 seg_i->next_blkoff = blk_off;
1187
1188 if (seg_i->alloc_type == SSR)
1189 blk_off = sbi->blocks_per_seg;
1190
1191 for (j = 0; j < blk_off; j++) {
1192 struct f2fs_summary *s;
1193 s = (struct f2fs_summary *)(kaddr + offset);
1194 seg_i->sum_blk->entries[j] = *s;
1195 offset += SUMMARY_SIZE;
1196 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1197 SUM_FOOTER_SIZE)
1198 continue;
1199
1200 f2fs_put_page(page, 1);
1201 page = NULL;
1202
1203 page = get_meta_page(sbi, start++);
1204 kaddr = (unsigned char *)page_address(page);
1205 offset = 0;
1206 }
1207 }
1208 f2fs_put_page(page, 1);
1209 return 0;
1210 }
1211
1212 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1213 {
1214 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1215 struct f2fs_summary_block *sum;
1216 struct curseg_info *curseg;
1217 struct page *new;
1218 unsigned short blk_off;
1219 unsigned int segno = 0;
1220 block_t blk_addr = 0;
1221
1222 /* get segment number and block addr */
1223 if (IS_DATASEG(type)) {
1224 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1225 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1226 CURSEG_HOT_DATA]);
1227 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1228 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1229 else
1230 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1231 } else {
1232 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1233 CURSEG_HOT_NODE]);
1234 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1235 CURSEG_HOT_NODE]);
1236 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1237 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1238 type - CURSEG_HOT_NODE);
1239 else
1240 blk_addr = GET_SUM_BLOCK(sbi, segno);
1241 }
1242
1243 new = get_meta_page(sbi, blk_addr);
1244 sum = (struct f2fs_summary_block *)page_address(new);
1245
1246 if (IS_NODESEG(type)) {
1247 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1248 struct f2fs_summary *ns = &sum->entries[0];
1249 int i;
1250 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1251 ns->version = 0;
1252 ns->ofs_in_node = 0;
1253 }
1254 } else {
1255 int err;
1256
1257 err = restore_node_summary(sbi, segno, sum);
1258 if (err) {
1259 f2fs_put_page(new, 1);
1260 return err;
1261 }
1262 }
1263 }
1264
1265 /* set uncompleted segment to curseg */
1266 curseg = CURSEG_I(sbi, type);
1267 mutex_lock(&curseg->curseg_mutex);
1268 memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1269 curseg->next_segno = segno;
1270 reset_curseg(sbi, type, 0);
1271 curseg->alloc_type = ckpt->alloc_type[type];
1272 curseg->next_blkoff = blk_off;
1273 mutex_unlock(&curseg->curseg_mutex);
1274 f2fs_put_page(new, 1);
1275 return 0;
1276 }
1277
1278 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1279 {
1280 int type = CURSEG_HOT_DATA;
1281 int err;
1282
1283 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1284 /* restore for compacted data summary */
1285 if (read_compacted_summaries(sbi))
1286 return -EINVAL;
1287 type = CURSEG_HOT_NODE;
1288 }
1289
1290 for (; type <= CURSEG_COLD_NODE; type++) {
1291 err = read_normal_summaries(sbi, type);
1292 if (err)
1293 return err;
1294 }
1295
1296 return 0;
1297 }
1298
1299 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1300 {
1301 struct page *page;
1302 unsigned char *kaddr;
1303 struct f2fs_summary *summary;
1304 struct curseg_info *seg_i;
1305 int written_size = 0;
1306 int i, j;
1307
1308 page = grab_meta_page(sbi, blkaddr++);
1309 kaddr = (unsigned char *)page_address(page);
1310
1311 /* Step 1: write nat cache */
1312 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1313 memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1314 written_size += SUM_JOURNAL_SIZE;
1315
1316 /* Step 2: write sit cache */
1317 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1318 memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1319 SUM_JOURNAL_SIZE);
1320 written_size += SUM_JOURNAL_SIZE;
1321
1322 /* Step 3: write summary entries */
1323 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1324 unsigned short blkoff;
1325 seg_i = CURSEG_I(sbi, i);
1326 if (sbi->ckpt->alloc_type[i] == SSR)
1327 blkoff = sbi->blocks_per_seg;
1328 else
1329 blkoff = curseg_blkoff(sbi, i);
1330
1331 for (j = 0; j < blkoff; j++) {
1332 if (!page) {
1333 page = grab_meta_page(sbi, blkaddr++);
1334 kaddr = (unsigned char *)page_address(page);
1335 written_size = 0;
1336 }
1337 summary = (struct f2fs_summary *)(kaddr + written_size);
1338 *summary = seg_i->sum_blk->entries[j];
1339 written_size += SUMMARY_SIZE;
1340
1341 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1342 SUM_FOOTER_SIZE)
1343 continue;
1344
1345 set_page_dirty(page);
1346 f2fs_put_page(page, 1);
1347 page = NULL;
1348 }
1349 }
1350 if (page) {
1351 set_page_dirty(page);
1352 f2fs_put_page(page, 1);
1353 }
1354 }
1355
1356 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1357 block_t blkaddr, int type)
1358 {
1359 int i, end;
1360 if (IS_DATASEG(type))
1361 end = type + NR_CURSEG_DATA_TYPE;
1362 else
1363 end = type + NR_CURSEG_NODE_TYPE;
1364
1365 for (i = type; i < end; i++) {
1366 struct curseg_info *sum = CURSEG_I(sbi, i);
1367 mutex_lock(&sum->curseg_mutex);
1368 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1369 mutex_unlock(&sum->curseg_mutex);
1370 }
1371 }
1372
1373 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1374 {
1375 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1376 write_compacted_summaries(sbi, start_blk);
1377 else
1378 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1379 }
1380
1381 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1382 {
1383 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1384 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1385 }
1386
1387 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1388 unsigned int val, int alloc)
1389 {
1390 int i;
1391
1392 if (type == NAT_JOURNAL) {
1393 for (i = 0; i < nats_in_cursum(sum); i++) {
1394 if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1395 return i;
1396 }
1397 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1398 return update_nats_in_cursum(sum, 1);
1399 } else if (type == SIT_JOURNAL) {
1400 for (i = 0; i < sits_in_cursum(sum); i++)
1401 if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1402 return i;
1403 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1404 return update_sits_in_cursum(sum, 1);
1405 }
1406 return -1;
1407 }
1408
1409 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1410 unsigned int segno)
1411 {
1412 struct sit_info *sit_i = SIT_I(sbi);
1413 unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1414 block_t blk_addr = sit_i->sit_base_addr + offset;
1415
1416 check_seg_range(sbi, segno);
1417
1418 /* calculate sit block address */
1419 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1420 blk_addr += sit_i->sit_blocks;
1421
1422 return get_meta_page(sbi, blk_addr);
1423 }
1424
1425 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1426 unsigned int start)
1427 {
1428 struct sit_info *sit_i = SIT_I(sbi);
1429 struct page *src_page, *dst_page;
1430 pgoff_t src_off, dst_off;
1431 void *src_addr, *dst_addr;
1432
1433 src_off = current_sit_addr(sbi, start);
1434 dst_off = next_sit_addr(sbi, src_off);
1435
1436 /* get current sit block page without lock */
1437 src_page = get_meta_page(sbi, src_off);
1438 dst_page = grab_meta_page(sbi, dst_off);
1439 f2fs_bug_on(PageDirty(src_page));
1440
1441 src_addr = page_address(src_page);
1442 dst_addr = page_address(dst_page);
1443 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1444
1445 set_page_dirty(dst_page);
1446 f2fs_put_page(src_page, 1);
1447
1448 set_to_next_sit(sit_i, start);
1449
1450 return dst_page;
1451 }
1452
1453 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1454 {
1455 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1456 struct f2fs_summary_block *sum = curseg->sum_blk;
1457 int i;
1458
1459 /*
1460 * If the journal area in the current summary is full of sit entries,
1461 * all the sit entries will be flushed. Otherwise the sit entries
1462 * are not able to replace with newly hot sit entries.
1463 */
1464 if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1465 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1466 unsigned int segno;
1467 segno = le32_to_cpu(segno_in_journal(sum, i));
1468 __mark_sit_entry_dirty(sbi, segno);
1469 }
1470 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1471 return true;
1472 }
1473 return false;
1474 }
1475
1476 /*
1477 * CP calls this function, which flushes SIT entries including sit_journal,
1478 * and moves prefree segs to free segs.
1479 */
1480 void flush_sit_entries(struct f2fs_sb_info *sbi)
1481 {
1482 struct sit_info *sit_i = SIT_I(sbi);
1483 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1484 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1485 struct f2fs_summary_block *sum = curseg->sum_blk;
1486 unsigned long nsegs = TOTAL_SEGS(sbi);
1487 struct page *page = NULL;
1488 struct f2fs_sit_block *raw_sit = NULL;
1489 unsigned int start = 0, end = 0;
1490 unsigned int segno = -1;
1491 bool flushed;
1492
1493 mutex_lock(&curseg->curseg_mutex);
1494 mutex_lock(&sit_i->sentry_lock);
1495
1496 /*
1497 * "flushed" indicates whether sit entries in journal are flushed
1498 * to the SIT area or not.
1499 */
1500 flushed = flush_sits_in_journal(sbi);
1501
1502 while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1503 struct seg_entry *se = get_seg_entry(sbi, segno);
1504 int sit_offset, offset;
1505
1506 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1507
1508 /* add discard candidates */
1509 if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards)
1510 add_discard_addrs(sbi, segno, se);
1511
1512 if (flushed)
1513 goto to_sit_page;
1514
1515 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1516 if (offset >= 0) {
1517 segno_in_journal(sum, offset) = cpu_to_le32(segno);
1518 seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1519 goto flush_done;
1520 }
1521 to_sit_page:
1522 if (!page || (start > segno) || (segno > end)) {
1523 if (page) {
1524 f2fs_put_page(page, 1);
1525 page = NULL;
1526 }
1527
1528 start = START_SEGNO(sit_i, segno);
1529 end = start + SIT_ENTRY_PER_BLOCK - 1;
1530
1531 /* read sit block that will be updated */
1532 page = get_next_sit_page(sbi, start);
1533 raw_sit = page_address(page);
1534 }
1535
1536 /* udpate entry in SIT block */
1537 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1538 flush_done:
1539 __clear_bit(segno, bitmap);
1540 sit_i->dirty_sentries--;
1541 }
1542 mutex_unlock(&sit_i->sentry_lock);
1543 mutex_unlock(&curseg->curseg_mutex);
1544
1545 /* writeout last modified SIT block */
1546 f2fs_put_page(page, 1);
1547
1548 set_prefree_as_free_segments(sbi);
1549 }
1550
1551 static int build_sit_info(struct f2fs_sb_info *sbi)
1552 {
1553 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1554 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1555 struct sit_info *sit_i;
1556 unsigned int sit_segs, start;
1557 char *src_bitmap, *dst_bitmap;
1558 unsigned int bitmap_size;
1559
1560 /* allocate memory for SIT information */
1561 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1562 if (!sit_i)
1563 return -ENOMEM;
1564
1565 SM_I(sbi)->sit_info = sit_i;
1566
1567 sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1568 if (!sit_i->sentries)
1569 return -ENOMEM;
1570
1571 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1572 sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1573 if (!sit_i->dirty_sentries_bitmap)
1574 return -ENOMEM;
1575
1576 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1577 sit_i->sentries[start].cur_valid_map
1578 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1579 sit_i->sentries[start].ckpt_valid_map
1580 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1581 if (!sit_i->sentries[start].cur_valid_map
1582 || !sit_i->sentries[start].ckpt_valid_map)
1583 return -ENOMEM;
1584 }
1585
1586 if (sbi->segs_per_sec > 1) {
1587 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1588 sizeof(struct sec_entry));
1589 if (!sit_i->sec_entries)
1590 return -ENOMEM;
1591 }
1592
1593 /* get information related with SIT */
1594 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1595
1596 /* setup SIT bitmap from ckeckpoint pack */
1597 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1598 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1599
1600 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1601 if (!dst_bitmap)
1602 return -ENOMEM;
1603
1604 /* init SIT information */
1605 sit_i->s_ops = &default_salloc_ops;
1606
1607 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1608 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1609 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1610 sit_i->sit_bitmap = dst_bitmap;
1611 sit_i->bitmap_size = bitmap_size;
1612 sit_i->dirty_sentries = 0;
1613 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1614 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1615 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1616 mutex_init(&sit_i->sentry_lock);
1617 return 0;
1618 }
1619
1620 static int build_free_segmap(struct f2fs_sb_info *sbi)
1621 {
1622 struct f2fs_sm_info *sm_info = SM_I(sbi);
1623 struct free_segmap_info *free_i;
1624 unsigned int bitmap_size, sec_bitmap_size;
1625
1626 /* allocate memory for free segmap information */
1627 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1628 if (!free_i)
1629 return -ENOMEM;
1630
1631 SM_I(sbi)->free_info = free_i;
1632
1633 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1634 free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1635 if (!free_i->free_segmap)
1636 return -ENOMEM;
1637
1638 sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1639 free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1640 if (!free_i->free_secmap)
1641 return -ENOMEM;
1642
1643 /* set all segments as dirty temporarily */
1644 memset(free_i->free_segmap, 0xff, bitmap_size);
1645 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1646
1647 /* init free segmap information */
1648 free_i->start_segno =
1649 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1650 free_i->free_segments = 0;
1651 free_i->free_sections = 0;
1652 rwlock_init(&free_i->segmap_lock);
1653 return 0;
1654 }
1655
1656 static int build_curseg(struct f2fs_sb_info *sbi)
1657 {
1658 struct curseg_info *array;
1659 int i;
1660
1661 array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1662 if (!array)
1663 return -ENOMEM;
1664
1665 SM_I(sbi)->curseg_array = array;
1666
1667 for (i = 0; i < NR_CURSEG_TYPE; i++) {
1668 mutex_init(&array[i].curseg_mutex);
1669 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1670 if (!array[i].sum_blk)
1671 return -ENOMEM;
1672 array[i].segno = NULL_SEGNO;
1673 array[i].next_blkoff = 0;
1674 }
1675 return restore_curseg_summaries(sbi);
1676 }
1677
1678 static void build_sit_entries(struct f2fs_sb_info *sbi)
1679 {
1680 struct sit_info *sit_i = SIT_I(sbi);
1681 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1682 struct f2fs_summary_block *sum = curseg->sum_blk;
1683 int sit_blk_cnt = SIT_BLK_CNT(sbi);
1684 unsigned int i, start, end;
1685 unsigned int readed, start_blk = 0;
1686 int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1687
1688 do {
1689 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT);
1690
1691 start = start_blk * sit_i->sents_per_block;
1692 end = (start_blk + readed) * sit_i->sents_per_block;
1693
1694 for (; start < end && start < TOTAL_SEGS(sbi); start++) {
1695 struct seg_entry *se = &sit_i->sentries[start];
1696 struct f2fs_sit_block *sit_blk;
1697 struct f2fs_sit_entry sit;
1698 struct page *page;
1699
1700 mutex_lock(&curseg->curseg_mutex);
1701 for (i = 0; i < sits_in_cursum(sum); i++) {
1702 if (le32_to_cpu(segno_in_journal(sum, i))
1703 == start) {
1704 sit = sit_in_journal(sum, i);
1705 mutex_unlock(&curseg->curseg_mutex);
1706 goto got_it;
1707 }
1708 }
1709 mutex_unlock(&curseg->curseg_mutex);
1710
1711 page = get_current_sit_page(sbi, start);
1712 sit_blk = (struct f2fs_sit_block *)page_address(page);
1713 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1714 f2fs_put_page(page, 1);
1715 got_it:
1716 check_block_count(sbi, start, &sit);
1717 seg_info_from_raw_sit(se, &sit);
1718 if (sbi->segs_per_sec > 1) {
1719 struct sec_entry *e = get_sec_entry(sbi, start);
1720 e->valid_blocks += se->valid_blocks;
1721 }
1722 }
1723 start_blk += readed;
1724 } while (start_blk < sit_blk_cnt);
1725 }
1726
1727 static void init_free_segmap(struct f2fs_sb_info *sbi)
1728 {
1729 unsigned int start;
1730 int type;
1731
1732 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1733 struct seg_entry *sentry = get_seg_entry(sbi, start);
1734 if (!sentry->valid_blocks)
1735 __set_free(sbi, start);
1736 }
1737
1738 /* set use the current segments */
1739 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1740 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1741 __set_test_and_inuse(sbi, curseg_t->segno);
1742 }
1743 }
1744
1745 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1746 {
1747 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1748 struct free_segmap_info *free_i = FREE_I(sbi);
1749 unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1750 unsigned short valid_blocks;
1751
1752 while (1) {
1753 /* find dirty segment based on free segmap */
1754 segno = find_next_inuse(free_i, total_segs, offset);
1755 if (segno >= total_segs)
1756 break;
1757 offset = segno + 1;
1758 valid_blocks = get_valid_blocks(sbi, segno, 0);
1759 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1760 continue;
1761 mutex_lock(&dirty_i->seglist_lock);
1762 __locate_dirty_segment(sbi, segno, DIRTY);
1763 mutex_unlock(&dirty_i->seglist_lock);
1764 }
1765 }
1766
1767 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1768 {
1769 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1770 unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1771
1772 dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1773 if (!dirty_i->victim_secmap)
1774 return -ENOMEM;
1775 return 0;
1776 }
1777
1778 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1779 {
1780 struct dirty_seglist_info *dirty_i;
1781 unsigned int bitmap_size, i;
1782
1783 /* allocate memory for dirty segments list information */
1784 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1785 if (!dirty_i)
1786 return -ENOMEM;
1787
1788 SM_I(sbi)->dirty_info = dirty_i;
1789 mutex_init(&dirty_i->seglist_lock);
1790
1791 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1792
1793 for (i = 0; i < NR_DIRTY_TYPE; i++) {
1794 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1795 if (!dirty_i->dirty_segmap[i])
1796 return -ENOMEM;
1797 }
1798
1799 init_dirty_segmap(sbi);
1800 return init_victim_secmap(sbi);
1801 }
1802
1803 /*
1804 * Update min, max modified time for cost-benefit GC algorithm
1805 */
1806 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1807 {
1808 struct sit_info *sit_i = SIT_I(sbi);
1809 unsigned int segno;
1810
1811 mutex_lock(&sit_i->sentry_lock);
1812
1813 sit_i->min_mtime = LLONG_MAX;
1814
1815 for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1816 unsigned int i;
1817 unsigned long long mtime = 0;
1818
1819 for (i = 0; i < sbi->segs_per_sec; i++)
1820 mtime += get_seg_entry(sbi, segno + i)->mtime;
1821
1822 mtime = div_u64(mtime, sbi->segs_per_sec);
1823
1824 if (sit_i->min_mtime > mtime)
1825 sit_i->min_mtime = mtime;
1826 }
1827 sit_i->max_mtime = get_mtime(sbi);
1828 mutex_unlock(&sit_i->sentry_lock);
1829 }
1830
1831 int build_segment_manager(struct f2fs_sb_info *sbi)
1832 {
1833 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1834 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1835 dev_t dev = sbi->sb->s_bdev->bd_dev;
1836 struct f2fs_sm_info *sm_info;
1837 int err;
1838
1839 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1840 if (!sm_info)
1841 return -ENOMEM;
1842
1843 /* init sm info */
1844 sbi->sm_info = sm_info;
1845 INIT_LIST_HEAD(&sm_info->wblist_head);
1846 spin_lock_init(&sm_info->wblist_lock);
1847 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1848 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1849 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1850 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1851 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1852 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1853 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1854 sm_info->rec_prefree_segments = sm_info->main_segments *
1855 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
1856 sm_info->ipu_policy = F2FS_IPU_DISABLE;
1857 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
1858
1859 INIT_LIST_HEAD(&sm_info->discard_list);
1860 sm_info->nr_discards = 0;
1861 sm_info->max_discards = 0;
1862
1863 if (test_opt(sbi, FLUSH_MERGE)) {
1864 spin_lock_init(&sm_info->issue_lock);
1865 init_waitqueue_head(&sm_info->flush_wait_queue);
1866
1867 sm_info->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
1868 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
1869 if (IS_ERR(sm_info->f2fs_issue_flush))
1870 return PTR_ERR(sm_info->f2fs_issue_flush);
1871 }
1872
1873 err = build_sit_info(sbi);
1874 if (err)
1875 return err;
1876 err = build_free_segmap(sbi);
1877 if (err)
1878 return err;
1879 err = build_curseg(sbi);
1880 if (err)
1881 return err;
1882
1883 /* reinit free segmap based on SIT */
1884 build_sit_entries(sbi);
1885
1886 init_free_segmap(sbi);
1887 err = build_dirty_segmap(sbi);
1888 if (err)
1889 return err;
1890
1891 init_min_max_mtime(sbi);
1892 return 0;
1893 }
1894
1895 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1896 enum dirty_type dirty_type)
1897 {
1898 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1899
1900 mutex_lock(&dirty_i->seglist_lock);
1901 kfree(dirty_i->dirty_segmap[dirty_type]);
1902 dirty_i->nr_dirty[dirty_type] = 0;
1903 mutex_unlock(&dirty_i->seglist_lock);
1904 }
1905
1906 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1907 {
1908 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1909 kfree(dirty_i->victim_secmap);
1910 }
1911
1912 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1913 {
1914 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1915 int i;
1916
1917 if (!dirty_i)
1918 return;
1919
1920 /* discard pre-free/dirty segments list */
1921 for (i = 0; i < NR_DIRTY_TYPE; i++)
1922 discard_dirty_segmap(sbi, i);
1923
1924 destroy_victim_secmap(sbi);
1925 SM_I(sbi)->dirty_info = NULL;
1926 kfree(dirty_i);
1927 }
1928
1929 static void destroy_curseg(struct f2fs_sb_info *sbi)
1930 {
1931 struct curseg_info *array = SM_I(sbi)->curseg_array;
1932 int i;
1933
1934 if (!array)
1935 return;
1936 SM_I(sbi)->curseg_array = NULL;
1937 for (i = 0; i < NR_CURSEG_TYPE; i++)
1938 kfree(array[i].sum_blk);
1939 kfree(array);
1940 }
1941
1942 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1943 {
1944 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1945 if (!free_i)
1946 return;
1947 SM_I(sbi)->free_info = NULL;
1948 kfree(free_i->free_segmap);
1949 kfree(free_i->free_secmap);
1950 kfree(free_i);
1951 }
1952
1953 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1954 {
1955 struct sit_info *sit_i = SIT_I(sbi);
1956 unsigned int start;
1957
1958 if (!sit_i)
1959 return;
1960
1961 if (sit_i->sentries) {
1962 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1963 kfree(sit_i->sentries[start].cur_valid_map);
1964 kfree(sit_i->sentries[start].ckpt_valid_map);
1965 }
1966 }
1967 vfree(sit_i->sentries);
1968 vfree(sit_i->sec_entries);
1969 kfree(sit_i->dirty_sentries_bitmap);
1970
1971 SM_I(sbi)->sit_info = NULL;
1972 kfree(sit_i->sit_bitmap);
1973 kfree(sit_i);
1974 }
1975
1976 void destroy_segment_manager(struct f2fs_sb_info *sbi)
1977 {
1978 struct f2fs_sm_info *sm_info = SM_I(sbi);
1979 if (!sm_info)
1980 return;
1981 if (sm_info->f2fs_issue_flush)
1982 kthread_stop(sm_info->f2fs_issue_flush);
1983 destroy_dirty_segmap(sbi);
1984 destroy_curseg(sbi);
1985 destroy_free_segmap(sbi);
1986 destroy_sit_info(sbi);
1987 sbi->sm_info = NULL;
1988 kfree(sm_info);
1989 }
1990
1991 int __init create_segment_manager_caches(void)
1992 {
1993 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
1994 sizeof(struct discard_entry));
1995 if (!discard_entry_slab)
1996 return -ENOMEM;
1997 flush_cmd_slab = f2fs_kmem_cache_create("flush_command",
1998 sizeof(struct flush_cmd));
1999 if (!flush_cmd_slab) {
2000 kmem_cache_destroy(discard_entry_slab);
2001 return -ENOMEM;
2002 }
2003 return 0;
2004 }
2005
2006 void destroy_segment_manager_caches(void)
2007 {
2008 kmem_cache_destroy(discard_entry_slab);
2009 kmem_cache_destroy(flush_cmd_slab);
2010 }
This page took 0.068295 seconds and 6 git commands to generate.