i2c: rcar: init new messages in irq
[deliverable/linux.git] / fs / f2fs / segment.h
1 /*
2 * fs/f2fs/segment.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
13
14 /* constant macro */
15 #define NULL_SEGNO ((unsigned int)(~0))
16 #define NULL_SECNO ((unsigned int)(~0))
17
18 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
19
20 /* L: Logical segment # in volume, R: Relative segment # in main area */
21 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
22 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
23
24 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
25 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
26
27 #define IS_CURSEG(sbi, seg) \
28 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
29 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
30 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
31 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
33 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
34
35 #define IS_CURSEC(sbi, secno) \
36 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
37 sbi->segs_per_sec) || \
38 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
39 sbi->segs_per_sec) || \
40 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
41 sbi->segs_per_sec) || \
42 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
43 sbi->segs_per_sec) || \
44 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
45 sbi->segs_per_sec) || \
46 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
47 sbi->segs_per_sec)) \
48
49 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr)
50 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr)
51
52 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
53 #define MAIN_SECS(sbi) (sbi->total_sections)
54
55 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
56 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
57
58 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
59 #define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \
60 sbi->log_blocks_per_seg))
61
62 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
63 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
64
65 #define NEXT_FREE_BLKADDR(sbi, curseg) \
66 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
67
68 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
69 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
70 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
71 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
72 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
73
74 #define GET_SEGNO(sbi, blk_addr) \
75 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
76 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
77 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
78 #define GET_SECNO(sbi, segno) \
79 ((segno) / sbi->segs_per_sec)
80 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
81 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
82
83 #define GET_SUM_BLOCK(sbi, segno) \
84 ((sbi->sm_info->ssa_blkaddr) + segno)
85
86 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
87 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
88
89 #define SIT_ENTRY_OFFSET(sit_i, segno) \
90 (segno % sit_i->sents_per_block)
91 #define SIT_BLOCK_OFFSET(segno) \
92 (segno / SIT_ENTRY_PER_BLOCK)
93 #define START_SEGNO(segno) \
94 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
95 #define SIT_BLK_CNT(sbi) \
96 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
97 #define f2fs_bitmap_size(nr) \
98 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
99
100 #define SECTOR_FROM_BLOCK(blk_addr) \
101 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
102 #define SECTOR_TO_BLOCK(sectors) \
103 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
104 #define MAX_BIO_BLOCKS(sbi) \
105 ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
106
107 /*
108 * indicate a block allocation direction: RIGHT and LEFT.
109 * RIGHT means allocating new sections towards the end of volume.
110 * LEFT means the opposite direction.
111 */
112 enum {
113 ALLOC_RIGHT = 0,
114 ALLOC_LEFT
115 };
116
117 /*
118 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
119 * LFS writes data sequentially with cleaning operations.
120 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
121 */
122 enum {
123 LFS = 0,
124 SSR
125 };
126
127 /*
128 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
129 * GC_CB is based on cost-benefit algorithm.
130 * GC_GREEDY is based on greedy algorithm.
131 */
132 enum {
133 GC_CB = 0,
134 GC_GREEDY
135 };
136
137 /*
138 * BG_GC means the background cleaning job.
139 * FG_GC means the on-demand cleaning job.
140 */
141 enum {
142 BG_GC = 0,
143 FG_GC
144 };
145
146 /* for a function parameter to select a victim segment */
147 struct victim_sel_policy {
148 int alloc_mode; /* LFS or SSR */
149 int gc_mode; /* GC_CB or GC_GREEDY */
150 unsigned long *dirty_segmap; /* dirty segment bitmap */
151 unsigned int max_search; /* maximum # of segments to search */
152 unsigned int offset; /* last scanned bitmap offset */
153 unsigned int ofs_unit; /* bitmap search unit */
154 unsigned int min_cost; /* minimum cost */
155 unsigned int min_segno; /* segment # having min. cost */
156 };
157
158 struct seg_entry {
159 unsigned short valid_blocks; /* # of valid blocks */
160 unsigned char *cur_valid_map; /* validity bitmap of blocks */
161 /*
162 * # of valid blocks and the validity bitmap stored in the the last
163 * checkpoint pack. This information is used by the SSR mode.
164 */
165 unsigned short ckpt_valid_blocks;
166 unsigned char *ckpt_valid_map;
167 unsigned char *discard_map;
168 unsigned char type; /* segment type like CURSEG_XXX_TYPE */
169 unsigned long long mtime; /* modification time of the segment */
170 };
171
172 struct sec_entry {
173 unsigned int valid_blocks; /* # of valid blocks in a section */
174 };
175
176 struct segment_allocation {
177 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
178 };
179
180 /*
181 * this value is set in page as a private data which indicate that
182 * the page is atomically written, and it is in inmem_pages list.
183 */
184 #define ATOMIC_WRITTEN_PAGE 0x0000ffff
185
186 #define IS_ATOMIC_WRITTEN_PAGE(page) \
187 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
188
189 struct inmem_pages {
190 struct list_head list;
191 struct page *page;
192 };
193
194 struct sit_info {
195 const struct segment_allocation *s_ops;
196
197 block_t sit_base_addr; /* start block address of SIT area */
198 block_t sit_blocks; /* # of blocks used by SIT area */
199 block_t written_valid_blocks; /* # of valid blocks in main area */
200 char *sit_bitmap; /* SIT bitmap pointer */
201 unsigned int bitmap_size; /* SIT bitmap size */
202
203 unsigned long *tmp_map; /* bitmap for temporal use */
204 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
205 unsigned int dirty_sentries; /* # of dirty sentries */
206 unsigned int sents_per_block; /* # of SIT entries per block */
207 struct mutex sentry_lock; /* to protect SIT cache */
208 struct seg_entry *sentries; /* SIT segment-level cache */
209 struct sec_entry *sec_entries; /* SIT section-level cache */
210
211 /* for cost-benefit algorithm in cleaning procedure */
212 unsigned long long elapsed_time; /* elapsed time after mount */
213 unsigned long long mounted_time; /* mount time */
214 unsigned long long min_mtime; /* min. modification time */
215 unsigned long long max_mtime; /* max. modification time */
216 };
217
218 struct free_segmap_info {
219 unsigned int start_segno; /* start segment number logically */
220 unsigned int free_segments; /* # of free segments */
221 unsigned int free_sections; /* # of free sections */
222 spinlock_t segmap_lock; /* free segmap lock */
223 unsigned long *free_segmap; /* free segment bitmap */
224 unsigned long *free_secmap; /* free section bitmap */
225 };
226
227 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
228 enum dirty_type {
229 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
230 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
231 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
232 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
233 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
234 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
235 DIRTY, /* to count # of dirty segments */
236 PRE, /* to count # of entirely obsolete segments */
237 NR_DIRTY_TYPE
238 };
239
240 struct dirty_seglist_info {
241 const struct victim_selection *v_ops; /* victim selction operation */
242 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
243 struct mutex seglist_lock; /* lock for segment bitmaps */
244 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
245 unsigned long *victim_secmap; /* background GC victims */
246 };
247
248 /* victim selection function for cleaning and SSR */
249 struct victim_selection {
250 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
251 int, int, char);
252 };
253
254 /* for active log information */
255 struct curseg_info {
256 struct mutex curseg_mutex; /* lock for consistency */
257 struct f2fs_summary_block *sum_blk; /* cached summary block */
258 unsigned char alloc_type; /* current allocation type */
259 unsigned int segno; /* current segment number */
260 unsigned short next_blkoff; /* next block offset to write */
261 unsigned int zone; /* current zone number */
262 unsigned int next_segno; /* preallocated segment */
263 };
264
265 struct sit_entry_set {
266 struct list_head set_list; /* link with all sit sets */
267 unsigned int start_segno; /* start segno of sits in set */
268 unsigned int entry_cnt; /* the # of sit entries in set */
269 };
270
271 /*
272 * inline functions
273 */
274 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
275 {
276 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
277 }
278
279 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
280 unsigned int segno)
281 {
282 struct sit_info *sit_i = SIT_I(sbi);
283 return &sit_i->sentries[segno];
284 }
285
286 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
287 unsigned int segno)
288 {
289 struct sit_info *sit_i = SIT_I(sbi);
290 return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
291 }
292
293 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
294 unsigned int segno, int section)
295 {
296 /*
297 * In order to get # of valid blocks in a section instantly from many
298 * segments, f2fs manages two counting structures separately.
299 */
300 if (section > 1)
301 return get_sec_entry(sbi, segno)->valid_blocks;
302 else
303 return get_seg_entry(sbi, segno)->valid_blocks;
304 }
305
306 static inline void seg_info_from_raw_sit(struct seg_entry *se,
307 struct f2fs_sit_entry *rs)
308 {
309 se->valid_blocks = GET_SIT_VBLOCKS(rs);
310 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
311 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
312 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
313 se->type = GET_SIT_TYPE(rs);
314 se->mtime = le64_to_cpu(rs->mtime);
315 }
316
317 static inline void seg_info_to_raw_sit(struct seg_entry *se,
318 struct f2fs_sit_entry *rs)
319 {
320 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
321 se->valid_blocks;
322 rs->vblocks = cpu_to_le16(raw_vblocks);
323 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
324 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
325 se->ckpt_valid_blocks = se->valid_blocks;
326 rs->mtime = cpu_to_le64(se->mtime);
327 }
328
329 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
330 unsigned int max, unsigned int segno)
331 {
332 unsigned int ret;
333 spin_lock(&free_i->segmap_lock);
334 ret = find_next_bit(free_i->free_segmap, max, segno);
335 spin_unlock(&free_i->segmap_lock);
336 return ret;
337 }
338
339 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
340 {
341 struct free_segmap_info *free_i = FREE_I(sbi);
342 unsigned int secno = segno / sbi->segs_per_sec;
343 unsigned int start_segno = secno * sbi->segs_per_sec;
344 unsigned int next;
345
346 spin_lock(&free_i->segmap_lock);
347 clear_bit(segno, free_i->free_segmap);
348 free_i->free_segments++;
349
350 next = find_next_bit(free_i->free_segmap,
351 start_segno + sbi->segs_per_sec, start_segno);
352 if (next >= start_segno + sbi->segs_per_sec) {
353 clear_bit(secno, free_i->free_secmap);
354 free_i->free_sections++;
355 }
356 spin_unlock(&free_i->segmap_lock);
357 }
358
359 static inline void __set_inuse(struct f2fs_sb_info *sbi,
360 unsigned int segno)
361 {
362 struct free_segmap_info *free_i = FREE_I(sbi);
363 unsigned int secno = segno / sbi->segs_per_sec;
364 set_bit(segno, free_i->free_segmap);
365 free_i->free_segments--;
366 if (!test_and_set_bit(secno, free_i->free_secmap))
367 free_i->free_sections--;
368 }
369
370 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
371 unsigned int segno)
372 {
373 struct free_segmap_info *free_i = FREE_I(sbi);
374 unsigned int secno = segno / sbi->segs_per_sec;
375 unsigned int start_segno = secno * sbi->segs_per_sec;
376 unsigned int next;
377
378 spin_lock(&free_i->segmap_lock);
379 if (test_and_clear_bit(segno, free_i->free_segmap)) {
380 free_i->free_segments++;
381
382 next = find_next_bit(free_i->free_segmap,
383 start_segno + sbi->segs_per_sec, start_segno);
384 if (next >= start_segno + sbi->segs_per_sec) {
385 if (test_and_clear_bit(secno, free_i->free_secmap))
386 free_i->free_sections++;
387 }
388 }
389 spin_unlock(&free_i->segmap_lock);
390 }
391
392 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
393 unsigned int segno)
394 {
395 struct free_segmap_info *free_i = FREE_I(sbi);
396 unsigned int secno = segno / sbi->segs_per_sec;
397 spin_lock(&free_i->segmap_lock);
398 if (!test_and_set_bit(segno, free_i->free_segmap)) {
399 free_i->free_segments--;
400 if (!test_and_set_bit(secno, free_i->free_secmap))
401 free_i->free_sections--;
402 }
403 spin_unlock(&free_i->segmap_lock);
404 }
405
406 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
407 void *dst_addr)
408 {
409 struct sit_info *sit_i = SIT_I(sbi);
410 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
411 }
412
413 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
414 {
415 return SIT_I(sbi)->written_valid_blocks;
416 }
417
418 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
419 {
420 return FREE_I(sbi)->free_segments;
421 }
422
423 static inline int reserved_segments(struct f2fs_sb_info *sbi)
424 {
425 return SM_I(sbi)->reserved_segments;
426 }
427
428 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
429 {
430 return FREE_I(sbi)->free_sections;
431 }
432
433 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
434 {
435 return DIRTY_I(sbi)->nr_dirty[PRE];
436 }
437
438 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
439 {
440 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
441 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
442 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
443 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
444 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
445 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
446 }
447
448 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
449 {
450 return SM_I(sbi)->ovp_segments;
451 }
452
453 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
454 {
455 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
456 }
457
458 static inline int reserved_sections(struct f2fs_sb_info *sbi)
459 {
460 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
461 }
462
463 static inline bool need_SSR(struct f2fs_sb_info *sbi)
464 {
465 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
466 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
467 return free_sections(sbi) <= (node_secs + 2 * dent_secs +
468 reserved_sections(sbi) + 1);
469 }
470
471 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
472 {
473 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
474 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
475
476 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
477 return false;
478
479 return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
480 reserved_sections(sbi));
481 }
482
483 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
484 {
485 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
486 }
487
488 static inline int utilization(struct f2fs_sb_info *sbi)
489 {
490 return div_u64((u64)valid_user_blocks(sbi) * 100,
491 sbi->user_block_count);
492 }
493
494 /*
495 * Sometimes f2fs may be better to drop out-of-place update policy.
496 * And, users can control the policy through sysfs entries.
497 * There are five policies with triggering conditions as follows.
498 * F2FS_IPU_FORCE - all the time,
499 * F2FS_IPU_SSR - if SSR mode is activated,
500 * F2FS_IPU_UTIL - if FS utilization is over threashold,
501 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
502 * threashold,
503 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
504 * storages. IPU will be triggered only if the # of dirty
505 * pages over min_fsync_blocks.
506 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
507 */
508 #define DEF_MIN_IPU_UTIL 70
509 #define DEF_MIN_FSYNC_BLOCKS 8
510
511 enum {
512 F2FS_IPU_FORCE,
513 F2FS_IPU_SSR,
514 F2FS_IPU_UTIL,
515 F2FS_IPU_SSR_UTIL,
516 F2FS_IPU_FSYNC,
517 };
518
519 static inline bool need_inplace_update(struct inode *inode)
520 {
521 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
522 unsigned int policy = SM_I(sbi)->ipu_policy;
523
524 /* IPU can be done only for the user data */
525 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
526 return false;
527
528 if (policy & (0x1 << F2FS_IPU_FORCE))
529 return true;
530 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
531 return true;
532 if (policy & (0x1 << F2FS_IPU_UTIL) &&
533 utilization(sbi) > SM_I(sbi)->min_ipu_util)
534 return true;
535 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
536 utilization(sbi) > SM_I(sbi)->min_ipu_util)
537 return true;
538
539 /* this is only set during fdatasync */
540 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
541 is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
542 return true;
543
544 return false;
545 }
546
547 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
548 int type)
549 {
550 struct curseg_info *curseg = CURSEG_I(sbi, type);
551 return curseg->segno;
552 }
553
554 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
555 int type)
556 {
557 struct curseg_info *curseg = CURSEG_I(sbi, type);
558 return curseg->alloc_type;
559 }
560
561 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
562 {
563 struct curseg_info *curseg = CURSEG_I(sbi, type);
564 return curseg->next_blkoff;
565 }
566
567 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
568 {
569 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
570 }
571
572 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
573 {
574 f2fs_bug_on(sbi, blk_addr < SEG0_BLKADDR(sbi)
575 || blk_addr >= MAX_BLKADDR(sbi));
576 }
577
578 /*
579 * Summary block is always treated as an invalid block
580 */
581 static inline void check_block_count(struct f2fs_sb_info *sbi,
582 int segno, struct f2fs_sit_entry *raw_sit)
583 {
584 #ifdef CONFIG_F2FS_CHECK_FS
585 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
586 int valid_blocks = 0;
587 int cur_pos = 0, next_pos;
588
589 /* check bitmap with valid block count */
590 do {
591 if (is_valid) {
592 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
593 sbi->blocks_per_seg,
594 cur_pos);
595 valid_blocks += next_pos - cur_pos;
596 } else
597 next_pos = find_next_bit_le(&raw_sit->valid_map,
598 sbi->blocks_per_seg,
599 cur_pos);
600 cur_pos = next_pos;
601 is_valid = !is_valid;
602 } while (cur_pos < sbi->blocks_per_seg);
603 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
604 #endif
605 /* check segment usage, and check boundary of a given segment number */
606 f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
607 || segno > TOTAL_SEGS(sbi) - 1);
608 }
609
610 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
611 unsigned int start)
612 {
613 struct sit_info *sit_i = SIT_I(sbi);
614 unsigned int offset = SIT_BLOCK_OFFSET(start);
615 block_t blk_addr = sit_i->sit_base_addr + offset;
616
617 check_seg_range(sbi, start);
618
619 /* calculate sit block address */
620 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
621 blk_addr += sit_i->sit_blocks;
622
623 return blk_addr;
624 }
625
626 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
627 pgoff_t block_addr)
628 {
629 struct sit_info *sit_i = SIT_I(sbi);
630 block_addr -= sit_i->sit_base_addr;
631 if (block_addr < sit_i->sit_blocks)
632 block_addr += sit_i->sit_blocks;
633 else
634 block_addr -= sit_i->sit_blocks;
635
636 return block_addr + sit_i->sit_base_addr;
637 }
638
639 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
640 {
641 unsigned int block_off = SIT_BLOCK_OFFSET(start);
642
643 f2fs_change_bit(block_off, sit_i->sit_bitmap);
644 }
645
646 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
647 {
648 struct sit_info *sit_i = SIT_I(sbi);
649 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
650 sit_i->mounted_time;
651 }
652
653 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
654 unsigned int ofs_in_node, unsigned char version)
655 {
656 sum->nid = cpu_to_le32(nid);
657 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
658 sum->version = version;
659 }
660
661 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
662 {
663 return __start_cp_addr(sbi) +
664 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
665 }
666
667 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
668 {
669 return __start_cp_addr(sbi) +
670 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
671 - (base + 1) + type;
672 }
673
674 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
675 {
676 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
677 return true;
678 return false;
679 }
680
681 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
682 {
683 struct block_device *bdev = sbi->sb->s_bdev;
684 struct request_queue *q = bdev_get_queue(bdev);
685 return SECTOR_TO_BLOCK(queue_max_sectors(q));
686 }
687
688 /*
689 * It is very important to gather dirty pages and write at once, so that we can
690 * submit a big bio without interfering other data writes.
691 * By default, 512 pages for directory data,
692 * 512 pages (2MB) * 3 for three types of nodes, and
693 * max_bio_blocks for meta are set.
694 */
695 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
696 {
697 if (sbi->sb->s_bdi->wb.dirty_exceeded)
698 return 0;
699
700 if (type == DATA)
701 return sbi->blocks_per_seg;
702 else if (type == NODE)
703 return 3 * sbi->blocks_per_seg;
704 else if (type == META)
705 return MAX_BIO_BLOCKS(sbi);
706 else
707 return 0;
708 }
709
710 /*
711 * When writing pages, it'd better align nr_to_write for segment size.
712 */
713 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
714 struct writeback_control *wbc)
715 {
716 long nr_to_write, desired;
717
718 if (wbc->sync_mode != WB_SYNC_NONE)
719 return 0;
720
721 nr_to_write = wbc->nr_to_write;
722
723 if (type == DATA)
724 desired = 4096;
725 else if (type == NODE)
726 desired = 3 * max_hw_blocks(sbi);
727 else
728 desired = MAX_BIO_BLOCKS(sbi);
729
730 wbc->nr_to_write = desired;
731 return desired - nr_to_write;
732 }
This page took 0.045874 seconds and 5 git commands to generate.