f2fs: read contiguous sit entry pages by merging for mount performance
[deliverable/linux.git] / fs / f2fs / segment.h
1 /*
2 * fs/f2fs/segment.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/blkdev.h>
12
13 /* constant macro */
14 #define NULL_SEGNO ((unsigned int)(~0))
15 #define NULL_SECNO ((unsigned int)(~0))
16
17 #define DEF_RECLAIM_PREFREE_SEGMENTS 100 /* 200MB of prefree segments */
18
19 /* L: Logical segment # in volume, R: Relative segment # in main area */
20 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
21 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
22
23 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
24 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
25
26 #define IS_CURSEG(sbi, seg) \
27 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
28 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
29 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
30 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
31 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
33
34 #define IS_CURSEC(sbi, secno) \
35 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
36 sbi->segs_per_sec) || \
37 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
38 sbi->segs_per_sec) || \
39 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
40 sbi->segs_per_sec) || \
41 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
42 sbi->segs_per_sec) || \
43 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
44 sbi->segs_per_sec) || \
45 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
46 sbi->segs_per_sec)) \
47
48 #define START_BLOCK(sbi, segno) \
49 (SM_I(sbi)->seg0_blkaddr + \
50 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
51 #define NEXT_FREE_BLKADDR(sbi, curseg) \
52 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
53
54 #define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr)
55
56 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \
57 ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
58 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
59 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
60 #define GET_SEGNO(sbi, blk_addr) \
61 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
62 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
63 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
64 #define GET_SECNO(sbi, segno) \
65 ((segno) / sbi->segs_per_sec)
66 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
67 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
68
69 #define GET_SUM_BLOCK(sbi, segno) \
70 ((sbi->sm_info->ssa_blkaddr) + segno)
71
72 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
73 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
74
75 #define SIT_ENTRY_OFFSET(sit_i, segno) \
76 (segno % sit_i->sents_per_block)
77 #define SIT_BLOCK_OFFSET(sit_i, segno) \
78 (segno / SIT_ENTRY_PER_BLOCK)
79 #define START_SEGNO(sit_i, segno) \
80 (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
81 #define SIT_BLK_CNT(sbi) \
82 ((TOTAL_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
83 #define f2fs_bitmap_size(nr) \
84 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
85 #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
86 #define TOTAL_SECS(sbi) (sbi->total_sections)
87
88 #define SECTOR_FROM_BLOCK(sbi, blk_addr) \
89 (blk_addr << ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
90 #define SECTOR_TO_BLOCK(sbi, sectors) \
91 (sectors >> ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
92 #define MAX_BIO_BLOCKS(max_hw_blocks) \
93 (min((int)max_hw_blocks, BIO_MAX_PAGES))
94
95 /* during checkpoint, bio_private is used to synchronize the last bio */
96 struct bio_private {
97 struct f2fs_sb_info *sbi;
98 bool is_sync;
99 void *wait;
100 };
101
102 /*
103 * indicate a block allocation direction: RIGHT and LEFT.
104 * RIGHT means allocating new sections towards the end of volume.
105 * LEFT means the opposite direction.
106 */
107 enum {
108 ALLOC_RIGHT = 0,
109 ALLOC_LEFT
110 };
111
112 /*
113 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
114 * LFS writes data sequentially with cleaning operations.
115 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
116 */
117 enum {
118 LFS = 0,
119 SSR
120 };
121
122 /*
123 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
124 * GC_CB is based on cost-benefit algorithm.
125 * GC_GREEDY is based on greedy algorithm.
126 */
127 enum {
128 GC_CB = 0,
129 GC_GREEDY
130 };
131
132 /*
133 * BG_GC means the background cleaning job.
134 * FG_GC means the on-demand cleaning job.
135 */
136 enum {
137 BG_GC = 0,
138 FG_GC
139 };
140
141 /* for a function parameter to select a victim segment */
142 struct victim_sel_policy {
143 int alloc_mode; /* LFS or SSR */
144 int gc_mode; /* GC_CB or GC_GREEDY */
145 unsigned long *dirty_segmap; /* dirty segment bitmap */
146 unsigned int max_search; /* maximum # of segments to search */
147 unsigned int offset; /* last scanned bitmap offset */
148 unsigned int ofs_unit; /* bitmap search unit */
149 unsigned int min_cost; /* minimum cost */
150 unsigned int min_segno; /* segment # having min. cost */
151 };
152
153 struct seg_entry {
154 unsigned short valid_blocks; /* # of valid blocks */
155 unsigned char *cur_valid_map; /* validity bitmap of blocks */
156 /*
157 * # of valid blocks and the validity bitmap stored in the the last
158 * checkpoint pack. This information is used by the SSR mode.
159 */
160 unsigned short ckpt_valid_blocks;
161 unsigned char *ckpt_valid_map;
162 unsigned char type; /* segment type like CURSEG_XXX_TYPE */
163 unsigned long long mtime; /* modification time of the segment */
164 };
165
166 struct sec_entry {
167 unsigned int valid_blocks; /* # of valid blocks in a section */
168 };
169
170 struct segment_allocation {
171 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
172 };
173
174 struct sit_info {
175 const struct segment_allocation *s_ops;
176
177 block_t sit_base_addr; /* start block address of SIT area */
178 block_t sit_blocks; /* # of blocks used by SIT area */
179 block_t written_valid_blocks; /* # of valid blocks in main area */
180 char *sit_bitmap; /* SIT bitmap pointer */
181 unsigned int bitmap_size; /* SIT bitmap size */
182
183 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
184 unsigned int dirty_sentries; /* # of dirty sentries */
185 unsigned int sents_per_block; /* # of SIT entries per block */
186 struct mutex sentry_lock; /* to protect SIT cache */
187 struct seg_entry *sentries; /* SIT segment-level cache */
188 struct sec_entry *sec_entries; /* SIT section-level cache */
189
190 /* for cost-benefit algorithm in cleaning procedure */
191 unsigned long long elapsed_time; /* elapsed time after mount */
192 unsigned long long mounted_time; /* mount time */
193 unsigned long long min_mtime; /* min. modification time */
194 unsigned long long max_mtime; /* max. modification time */
195 };
196
197 struct free_segmap_info {
198 unsigned int start_segno; /* start segment number logically */
199 unsigned int free_segments; /* # of free segments */
200 unsigned int free_sections; /* # of free sections */
201 rwlock_t segmap_lock; /* free segmap lock */
202 unsigned long *free_segmap; /* free segment bitmap */
203 unsigned long *free_secmap; /* free section bitmap */
204 };
205
206 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
207 enum dirty_type {
208 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
209 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
210 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
211 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
212 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
213 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
214 DIRTY, /* to count # of dirty segments */
215 PRE, /* to count # of entirely obsolete segments */
216 NR_DIRTY_TYPE
217 };
218
219 struct dirty_seglist_info {
220 const struct victim_selection *v_ops; /* victim selction operation */
221 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
222 struct mutex seglist_lock; /* lock for segment bitmaps */
223 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
224 unsigned long *victim_secmap; /* background GC victims */
225 };
226
227 /* victim selection function for cleaning and SSR */
228 struct victim_selection {
229 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
230 int, int, char);
231 };
232
233 /* for active log information */
234 struct curseg_info {
235 struct mutex curseg_mutex; /* lock for consistency */
236 struct f2fs_summary_block *sum_blk; /* cached summary block */
237 unsigned char alloc_type; /* current allocation type */
238 unsigned int segno; /* current segment number */
239 unsigned short next_blkoff; /* next block offset to write */
240 unsigned int zone; /* current zone number */
241 unsigned int next_segno; /* preallocated segment */
242 };
243
244 /*
245 * inline functions
246 */
247 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
248 {
249 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
250 }
251
252 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
253 unsigned int segno)
254 {
255 struct sit_info *sit_i = SIT_I(sbi);
256 return &sit_i->sentries[segno];
257 }
258
259 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
260 unsigned int segno)
261 {
262 struct sit_info *sit_i = SIT_I(sbi);
263 return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
264 }
265
266 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
267 unsigned int segno, int section)
268 {
269 /*
270 * In order to get # of valid blocks in a section instantly from many
271 * segments, f2fs manages two counting structures separately.
272 */
273 if (section > 1)
274 return get_sec_entry(sbi, segno)->valid_blocks;
275 else
276 return get_seg_entry(sbi, segno)->valid_blocks;
277 }
278
279 static inline void seg_info_from_raw_sit(struct seg_entry *se,
280 struct f2fs_sit_entry *rs)
281 {
282 se->valid_blocks = GET_SIT_VBLOCKS(rs);
283 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
284 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
285 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
286 se->type = GET_SIT_TYPE(rs);
287 se->mtime = le64_to_cpu(rs->mtime);
288 }
289
290 static inline void seg_info_to_raw_sit(struct seg_entry *se,
291 struct f2fs_sit_entry *rs)
292 {
293 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
294 se->valid_blocks;
295 rs->vblocks = cpu_to_le16(raw_vblocks);
296 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
297 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
298 se->ckpt_valid_blocks = se->valid_blocks;
299 rs->mtime = cpu_to_le64(se->mtime);
300 }
301
302 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
303 unsigned int max, unsigned int segno)
304 {
305 unsigned int ret;
306 read_lock(&free_i->segmap_lock);
307 ret = find_next_bit(free_i->free_segmap, max, segno);
308 read_unlock(&free_i->segmap_lock);
309 return ret;
310 }
311
312 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
313 {
314 struct free_segmap_info *free_i = FREE_I(sbi);
315 unsigned int secno = segno / sbi->segs_per_sec;
316 unsigned int start_segno = secno * sbi->segs_per_sec;
317 unsigned int next;
318
319 write_lock(&free_i->segmap_lock);
320 clear_bit(segno, free_i->free_segmap);
321 free_i->free_segments++;
322
323 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
324 if (next >= start_segno + sbi->segs_per_sec) {
325 clear_bit(secno, free_i->free_secmap);
326 free_i->free_sections++;
327 }
328 write_unlock(&free_i->segmap_lock);
329 }
330
331 static inline void __set_inuse(struct f2fs_sb_info *sbi,
332 unsigned int segno)
333 {
334 struct free_segmap_info *free_i = FREE_I(sbi);
335 unsigned int secno = segno / sbi->segs_per_sec;
336 set_bit(segno, free_i->free_segmap);
337 free_i->free_segments--;
338 if (!test_and_set_bit(secno, free_i->free_secmap))
339 free_i->free_sections--;
340 }
341
342 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
343 unsigned int segno)
344 {
345 struct free_segmap_info *free_i = FREE_I(sbi);
346 unsigned int secno = segno / sbi->segs_per_sec;
347 unsigned int start_segno = secno * sbi->segs_per_sec;
348 unsigned int next;
349
350 write_lock(&free_i->segmap_lock);
351 if (test_and_clear_bit(segno, free_i->free_segmap)) {
352 free_i->free_segments++;
353
354 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
355 start_segno);
356 if (next >= start_segno + sbi->segs_per_sec) {
357 if (test_and_clear_bit(secno, free_i->free_secmap))
358 free_i->free_sections++;
359 }
360 }
361 write_unlock(&free_i->segmap_lock);
362 }
363
364 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
365 unsigned int segno)
366 {
367 struct free_segmap_info *free_i = FREE_I(sbi);
368 unsigned int secno = segno / sbi->segs_per_sec;
369 write_lock(&free_i->segmap_lock);
370 if (!test_and_set_bit(segno, free_i->free_segmap)) {
371 free_i->free_segments--;
372 if (!test_and_set_bit(secno, free_i->free_secmap))
373 free_i->free_sections--;
374 }
375 write_unlock(&free_i->segmap_lock);
376 }
377
378 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
379 void *dst_addr)
380 {
381 struct sit_info *sit_i = SIT_I(sbi);
382 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
383 }
384
385 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
386 {
387 struct sit_info *sit_i = SIT_I(sbi);
388 block_t vblocks;
389
390 mutex_lock(&sit_i->sentry_lock);
391 vblocks = sit_i->written_valid_blocks;
392 mutex_unlock(&sit_i->sentry_lock);
393
394 return vblocks;
395 }
396
397 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
398 {
399 struct free_segmap_info *free_i = FREE_I(sbi);
400 unsigned int free_segs;
401
402 read_lock(&free_i->segmap_lock);
403 free_segs = free_i->free_segments;
404 read_unlock(&free_i->segmap_lock);
405
406 return free_segs;
407 }
408
409 static inline int reserved_segments(struct f2fs_sb_info *sbi)
410 {
411 return SM_I(sbi)->reserved_segments;
412 }
413
414 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
415 {
416 struct free_segmap_info *free_i = FREE_I(sbi);
417 unsigned int free_secs;
418
419 read_lock(&free_i->segmap_lock);
420 free_secs = free_i->free_sections;
421 read_unlock(&free_i->segmap_lock);
422
423 return free_secs;
424 }
425
426 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
427 {
428 return DIRTY_I(sbi)->nr_dirty[PRE];
429 }
430
431 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
432 {
433 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
434 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
435 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
436 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
437 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
438 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
439 }
440
441 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
442 {
443 return SM_I(sbi)->ovp_segments;
444 }
445
446 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
447 {
448 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
449 }
450
451 static inline int reserved_sections(struct f2fs_sb_info *sbi)
452 {
453 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
454 }
455
456 static inline bool need_SSR(struct f2fs_sb_info *sbi)
457 {
458 return ((prefree_segments(sbi) / sbi->segs_per_sec)
459 + free_sections(sbi) < overprovision_sections(sbi));
460 }
461
462 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
463 {
464 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
465 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
466
467 if (sbi->por_doing)
468 return false;
469
470 return ((free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
471 reserved_sections(sbi)));
472 }
473
474 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
475 {
476 return (prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments);
477 }
478
479 static inline int utilization(struct f2fs_sb_info *sbi)
480 {
481 return div_u64((u64)valid_user_blocks(sbi) * 100, sbi->user_block_count);
482 }
483
484 /*
485 * Sometimes f2fs may be better to drop out-of-place update policy.
486 * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write
487 * data in the original place likewise other traditional file systems.
488 * But, currently set 100 in percentage, which means it is disabled.
489 * See below need_inplace_update().
490 */
491 #define MIN_IPU_UTIL 100
492 static inline bool need_inplace_update(struct inode *inode)
493 {
494 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
495 if (S_ISDIR(inode->i_mode))
496 return false;
497 if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL)
498 return true;
499 return false;
500 }
501
502 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
503 int type)
504 {
505 struct curseg_info *curseg = CURSEG_I(sbi, type);
506 return curseg->segno;
507 }
508
509 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
510 int type)
511 {
512 struct curseg_info *curseg = CURSEG_I(sbi, type);
513 return curseg->alloc_type;
514 }
515
516 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
517 {
518 struct curseg_info *curseg = CURSEG_I(sbi, type);
519 return curseg->next_blkoff;
520 }
521
522 #ifdef CONFIG_F2FS_CHECK_FS
523 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
524 {
525 unsigned int end_segno = SM_I(sbi)->segment_count - 1;
526 BUG_ON(segno > end_segno);
527 }
528
529 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
530 {
531 struct f2fs_sm_info *sm_info = SM_I(sbi);
532 block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
533 block_t start_addr = sm_info->seg0_blkaddr;
534 block_t end_addr = start_addr + total_blks - 1;
535 BUG_ON(blk_addr < start_addr);
536 BUG_ON(blk_addr > end_addr);
537 }
538
539 /*
540 * Summary block is always treated as invalid block
541 */
542 static inline void check_block_count(struct f2fs_sb_info *sbi,
543 int segno, struct f2fs_sit_entry *raw_sit)
544 {
545 struct f2fs_sm_info *sm_info = SM_I(sbi);
546 unsigned int end_segno = sm_info->segment_count - 1;
547 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
548 int valid_blocks = 0;
549 int cur_pos = 0, next_pos;
550
551 /* check segment usage */
552 BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
553
554 /* check boundary of a given segment number */
555 BUG_ON(segno > end_segno);
556
557 /* check bitmap with valid block count */
558 do {
559 if (is_valid) {
560 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
561 sbi->blocks_per_seg,
562 cur_pos);
563 valid_blocks += next_pos - cur_pos;
564 } else
565 next_pos = find_next_bit_le(&raw_sit->valid_map,
566 sbi->blocks_per_seg,
567 cur_pos);
568 cur_pos = next_pos;
569 is_valid = !is_valid;
570 } while (cur_pos < sbi->blocks_per_seg);
571 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
572 }
573 #else
574 #define check_seg_range(sbi, segno)
575 #define verify_block_addr(sbi, blk_addr)
576 #define check_block_count(sbi, segno, raw_sit)
577 #endif
578
579 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
580 unsigned int start)
581 {
582 struct sit_info *sit_i = SIT_I(sbi);
583 unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
584 block_t blk_addr = sit_i->sit_base_addr + offset;
585
586 check_seg_range(sbi, start);
587
588 /* calculate sit block address */
589 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
590 blk_addr += sit_i->sit_blocks;
591
592 return blk_addr;
593 }
594
595 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
596 pgoff_t block_addr)
597 {
598 struct sit_info *sit_i = SIT_I(sbi);
599 block_addr -= sit_i->sit_base_addr;
600 if (block_addr < sit_i->sit_blocks)
601 block_addr += sit_i->sit_blocks;
602 else
603 block_addr -= sit_i->sit_blocks;
604
605 return block_addr + sit_i->sit_base_addr;
606 }
607
608 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
609 {
610 unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
611
612 if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
613 f2fs_clear_bit(block_off, sit_i->sit_bitmap);
614 else
615 f2fs_set_bit(block_off, sit_i->sit_bitmap);
616 }
617
618 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
619 {
620 struct sit_info *sit_i = SIT_I(sbi);
621 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
622 sit_i->mounted_time;
623 }
624
625 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
626 unsigned int ofs_in_node, unsigned char version)
627 {
628 sum->nid = cpu_to_le32(nid);
629 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
630 sum->version = version;
631 }
632
633 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
634 {
635 return __start_cp_addr(sbi) +
636 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
637 }
638
639 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
640 {
641 return __start_cp_addr(sbi) +
642 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
643 - (base + 1) + type;
644 }
645
646 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
647 {
648 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
649 return true;
650 return false;
651 }
652
653 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
654 {
655 struct block_device *bdev = sbi->sb->s_bdev;
656 struct request_queue *q = bdev_get_queue(bdev);
657 return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q));
658 }
This page took 0.044283 seconds and 5 git commands to generate.