f2fs: use percpu_rw_semaphore
[deliverable/linux.git] / fs / f2fs / super.c
1 /*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 struct f2fs_fault_info f2fs_fault;
44
45 char *fault_name[FAULT_MAX] = {
46 [FAULT_KMALLOC] = "kmalloc",
47 [FAULT_PAGE_ALLOC] = "page alloc",
48 [FAULT_ALLOC_NID] = "alloc nid",
49 [FAULT_ORPHAN] = "orphan",
50 [FAULT_BLOCK] = "no more block",
51 [FAULT_DIR_DEPTH] = "too big dir depth",
52 [FAULT_EVICT_INODE] = "evict_inode fail",
53 };
54
55 static void f2fs_build_fault_attr(unsigned int rate)
56 {
57 if (rate) {
58 atomic_set(&f2fs_fault.inject_ops, 0);
59 f2fs_fault.inject_rate = rate;
60 f2fs_fault.inject_type = (1 << FAULT_MAX) - 1;
61 } else {
62 memset(&f2fs_fault, 0, sizeof(struct f2fs_fault_info));
63 }
64 }
65 #endif
66
67 /* f2fs-wide shrinker description */
68 static struct shrinker f2fs_shrinker_info = {
69 .scan_objects = f2fs_shrink_scan,
70 .count_objects = f2fs_shrink_count,
71 .seeks = DEFAULT_SEEKS,
72 };
73
74 enum {
75 Opt_gc_background,
76 Opt_disable_roll_forward,
77 Opt_norecovery,
78 Opt_discard,
79 Opt_nodiscard,
80 Opt_noheap,
81 Opt_user_xattr,
82 Opt_nouser_xattr,
83 Opt_acl,
84 Opt_noacl,
85 Opt_active_logs,
86 Opt_disable_ext_identify,
87 Opt_inline_xattr,
88 Opt_inline_data,
89 Opt_inline_dentry,
90 Opt_flush_merge,
91 Opt_noflush_merge,
92 Opt_nobarrier,
93 Opt_fastboot,
94 Opt_extent_cache,
95 Opt_noextent_cache,
96 Opt_noinline_data,
97 Opt_data_flush,
98 Opt_mode,
99 Opt_fault_injection,
100 Opt_lazytime,
101 Opt_nolazytime,
102 Opt_err,
103 };
104
105 static match_table_t f2fs_tokens = {
106 {Opt_gc_background, "background_gc=%s"},
107 {Opt_disable_roll_forward, "disable_roll_forward"},
108 {Opt_norecovery, "norecovery"},
109 {Opt_discard, "discard"},
110 {Opt_nodiscard, "nodiscard"},
111 {Opt_noheap, "no_heap"},
112 {Opt_user_xattr, "user_xattr"},
113 {Opt_nouser_xattr, "nouser_xattr"},
114 {Opt_acl, "acl"},
115 {Opt_noacl, "noacl"},
116 {Opt_active_logs, "active_logs=%u"},
117 {Opt_disable_ext_identify, "disable_ext_identify"},
118 {Opt_inline_xattr, "inline_xattr"},
119 {Opt_inline_data, "inline_data"},
120 {Opt_inline_dentry, "inline_dentry"},
121 {Opt_flush_merge, "flush_merge"},
122 {Opt_noflush_merge, "noflush_merge"},
123 {Opt_nobarrier, "nobarrier"},
124 {Opt_fastboot, "fastboot"},
125 {Opt_extent_cache, "extent_cache"},
126 {Opt_noextent_cache, "noextent_cache"},
127 {Opt_noinline_data, "noinline_data"},
128 {Opt_data_flush, "data_flush"},
129 {Opt_mode, "mode=%s"},
130 {Opt_fault_injection, "fault_injection=%u"},
131 {Opt_lazytime, "lazytime"},
132 {Opt_nolazytime, "nolazytime"},
133 {Opt_err, NULL},
134 };
135
136 /* Sysfs support for f2fs */
137 enum {
138 GC_THREAD, /* struct f2fs_gc_thread */
139 SM_INFO, /* struct f2fs_sm_info */
140 NM_INFO, /* struct f2fs_nm_info */
141 F2FS_SBI, /* struct f2fs_sb_info */
142 #ifdef CONFIG_F2FS_FAULT_INJECTION
143 FAULT_INFO_RATE, /* struct f2fs_fault_info */
144 FAULT_INFO_TYPE, /* struct f2fs_fault_info */
145 #endif
146 };
147
148 struct f2fs_attr {
149 struct attribute attr;
150 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
151 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
152 const char *, size_t);
153 int struct_type;
154 int offset;
155 };
156
157 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
158 {
159 if (struct_type == GC_THREAD)
160 return (unsigned char *)sbi->gc_thread;
161 else if (struct_type == SM_INFO)
162 return (unsigned char *)SM_I(sbi);
163 else if (struct_type == NM_INFO)
164 return (unsigned char *)NM_I(sbi);
165 else if (struct_type == F2FS_SBI)
166 return (unsigned char *)sbi;
167 #ifdef CONFIG_F2FS_FAULT_INJECTION
168 else if (struct_type == FAULT_INFO_RATE ||
169 struct_type == FAULT_INFO_TYPE)
170 return (unsigned char *)&f2fs_fault;
171 #endif
172 return NULL;
173 }
174
175 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
176 struct f2fs_sb_info *sbi, char *buf)
177 {
178 struct super_block *sb = sbi->sb;
179
180 if (!sb->s_bdev->bd_part)
181 return snprintf(buf, PAGE_SIZE, "0\n");
182
183 return snprintf(buf, PAGE_SIZE, "%llu\n",
184 (unsigned long long)(sbi->kbytes_written +
185 BD_PART_WRITTEN(sbi)));
186 }
187
188 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
189 struct f2fs_sb_info *sbi, char *buf)
190 {
191 unsigned char *ptr = NULL;
192 unsigned int *ui;
193
194 ptr = __struct_ptr(sbi, a->struct_type);
195 if (!ptr)
196 return -EINVAL;
197
198 ui = (unsigned int *)(ptr + a->offset);
199
200 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
201 }
202
203 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
204 struct f2fs_sb_info *sbi,
205 const char *buf, size_t count)
206 {
207 unsigned char *ptr;
208 unsigned long t;
209 unsigned int *ui;
210 ssize_t ret;
211
212 ptr = __struct_ptr(sbi, a->struct_type);
213 if (!ptr)
214 return -EINVAL;
215
216 ui = (unsigned int *)(ptr + a->offset);
217
218 ret = kstrtoul(skip_spaces(buf), 0, &t);
219 if (ret < 0)
220 return ret;
221 #ifdef CONFIG_F2FS_FAULT_INJECTION
222 if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
223 return -EINVAL;
224 #endif
225 *ui = t;
226 return count;
227 }
228
229 static ssize_t f2fs_attr_show(struct kobject *kobj,
230 struct attribute *attr, char *buf)
231 {
232 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
233 s_kobj);
234 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
235
236 return a->show ? a->show(a, sbi, buf) : 0;
237 }
238
239 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
240 const char *buf, size_t len)
241 {
242 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
243 s_kobj);
244 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
245
246 return a->store ? a->store(a, sbi, buf, len) : 0;
247 }
248
249 static void f2fs_sb_release(struct kobject *kobj)
250 {
251 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
252 s_kobj);
253 complete(&sbi->s_kobj_unregister);
254 }
255
256 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
257 static struct f2fs_attr f2fs_attr_##_name = { \
258 .attr = {.name = __stringify(_name), .mode = _mode }, \
259 .show = _show, \
260 .store = _store, \
261 .struct_type = _struct_type, \
262 .offset = _offset \
263 }
264
265 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
266 F2FS_ATTR_OFFSET(struct_type, name, 0644, \
267 f2fs_sbi_show, f2fs_sbi_store, \
268 offsetof(struct struct_name, elname))
269
270 #define F2FS_GENERAL_RO_ATTR(name) \
271 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
272
273 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
274 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
275 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
276 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
277 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
278 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
279 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
280 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
281 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
282 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
283 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
284 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
285 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
286 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
287 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
288 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
289 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
290 #ifdef CONFIG_F2FS_FAULT_INJECTION
291 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
292 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
293 #endif
294 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
295
296 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
297 static struct attribute *f2fs_attrs[] = {
298 ATTR_LIST(gc_min_sleep_time),
299 ATTR_LIST(gc_max_sleep_time),
300 ATTR_LIST(gc_no_gc_sleep_time),
301 ATTR_LIST(gc_idle),
302 ATTR_LIST(reclaim_segments),
303 ATTR_LIST(max_small_discards),
304 ATTR_LIST(batched_trim_sections),
305 ATTR_LIST(ipu_policy),
306 ATTR_LIST(min_ipu_util),
307 ATTR_LIST(min_fsync_blocks),
308 ATTR_LIST(max_victim_search),
309 ATTR_LIST(dir_level),
310 ATTR_LIST(ram_thresh),
311 ATTR_LIST(ra_nid_pages),
312 ATTR_LIST(dirty_nats_ratio),
313 ATTR_LIST(cp_interval),
314 ATTR_LIST(idle_interval),
315 ATTR_LIST(lifetime_write_kbytes),
316 NULL,
317 };
318
319 static const struct sysfs_ops f2fs_attr_ops = {
320 .show = f2fs_attr_show,
321 .store = f2fs_attr_store,
322 };
323
324 static struct kobj_type f2fs_ktype = {
325 .default_attrs = f2fs_attrs,
326 .sysfs_ops = &f2fs_attr_ops,
327 .release = f2fs_sb_release,
328 };
329
330 #ifdef CONFIG_F2FS_FAULT_INJECTION
331 /* sysfs for f2fs fault injection */
332 static struct kobject f2fs_fault_inject;
333
334 static struct attribute *f2fs_fault_attrs[] = {
335 ATTR_LIST(inject_rate),
336 ATTR_LIST(inject_type),
337 NULL
338 };
339
340 static struct kobj_type f2fs_fault_ktype = {
341 .default_attrs = f2fs_fault_attrs,
342 .sysfs_ops = &f2fs_attr_ops,
343 };
344 #endif
345
346 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
347 {
348 struct va_format vaf;
349 va_list args;
350
351 va_start(args, fmt);
352 vaf.fmt = fmt;
353 vaf.va = &args;
354 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
355 va_end(args);
356 }
357
358 static void init_once(void *foo)
359 {
360 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
361
362 inode_init_once(&fi->vfs_inode);
363 }
364
365 static int parse_options(struct super_block *sb, char *options)
366 {
367 struct f2fs_sb_info *sbi = F2FS_SB(sb);
368 struct request_queue *q;
369 substring_t args[MAX_OPT_ARGS];
370 char *p, *name;
371 int arg = 0;
372
373 #ifdef CONFIG_F2FS_FAULT_INJECTION
374 f2fs_build_fault_attr(0);
375 #endif
376
377 if (!options)
378 return 0;
379
380 while ((p = strsep(&options, ",")) != NULL) {
381 int token;
382 if (!*p)
383 continue;
384 /*
385 * Initialize args struct so we know whether arg was
386 * found; some options take optional arguments.
387 */
388 args[0].to = args[0].from = NULL;
389 token = match_token(p, f2fs_tokens, args);
390
391 switch (token) {
392 case Opt_gc_background:
393 name = match_strdup(&args[0]);
394
395 if (!name)
396 return -ENOMEM;
397 if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
398 set_opt(sbi, BG_GC);
399 clear_opt(sbi, FORCE_FG_GC);
400 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
401 clear_opt(sbi, BG_GC);
402 clear_opt(sbi, FORCE_FG_GC);
403 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
404 set_opt(sbi, BG_GC);
405 set_opt(sbi, FORCE_FG_GC);
406 } else {
407 kfree(name);
408 return -EINVAL;
409 }
410 kfree(name);
411 break;
412 case Opt_disable_roll_forward:
413 set_opt(sbi, DISABLE_ROLL_FORWARD);
414 break;
415 case Opt_norecovery:
416 /* this option mounts f2fs with ro */
417 set_opt(sbi, DISABLE_ROLL_FORWARD);
418 if (!f2fs_readonly(sb))
419 return -EINVAL;
420 break;
421 case Opt_discard:
422 q = bdev_get_queue(sb->s_bdev);
423 if (blk_queue_discard(q)) {
424 set_opt(sbi, DISCARD);
425 } else {
426 f2fs_msg(sb, KERN_WARNING,
427 "mounting with \"discard\" option, but "
428 "the device does not support discard");
429 }
430 break;
431 case Opt_nodiscard:
432 clear_opt(sbi, DISCARD);
433 case Opt_noheap:
434 set_opt(sbi, NOHEAP);
435 break;
436 #ifdef CONFIG_F2FS_FS_XATTR
437 case Opt_user_xattr:
438 set_opt(sbi, XATTR_USER);
439 break;
440 case Opt_nouser_xattr:
441 clear_opt(sbi, XATTR_USER);
442 break;
443 case Opt_inline_xattr:
444 set_opt(sbi, INLINE_XATTR);
445 break;
446 #else
447 case Opt_user_xattr:
448 f2fs_msg(sb, KERN_INFO,
449 "user_xattr options not supported");
450 break;
451 case Opt_nouser_xattr:
452 f2fs_msg(sb, KERN_INFO,
453 "nouser_xattr options not supported");
454 break;
455 case Opt_inline_xattr:
456 f2fs_msg(sb, KERN_INFO,
457 "inline_xattr options not supported");
458 break;
459 #endif
460 #ifdef CONFIG_F2FS_FS_POSIX_ACL
461 case Opt_acl:
462 set_opt(sbi, POSIX_ACL);
463 break;
464 case Opt_noacl:
465 clear_opt(sbi, POSIX_ACL);
466 break;
467 #else
468 case Opt_acl:
469 f2fs_msg(sb, KERN_INFO, "acl options not supported");
470 break;
471 case Opt_noacl:
472 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
473 break;
474 #endif
475 case Opt_active_logs:
476 if (args->from && match_int(args, &arg))
477 return -EINVAL;
478 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
479 return -EINVAL;
480 sbi->active_logs = arg;
481 break;
482 case Opt_disable_ext_identify:
483 set_opt(sbi, DISABLE_EXT_IDENTIFY);
484 break;
485 case Opt_inline_data:
486 set_opt(sbi, INLINE_DATA);
487 break;
488 case Opt_inline_dentry:
489 set_opt(sbi, INLINE_DENTRY);
490 break;
491 case Opt_flush_merge:
492 set_opt(sbi, FLUSH_MERGE);
493 break;
494 case Opt_noflush_merge:
495 clear_opt(sbi, FLUSH_MERGE);
496 break;
497 case Opt_nobarrier:
498 set_opt(sbi, NOBARRIER);
499 break;
500 case Opt_fastboot:
501 set_opt(sbi, FASTBOOT);
502 break;
503 case Opt_extent_cache:
504 set_opt(sbi, EXTENT_CACHE);
505 break;
506 case Opt_noextent_cache:
507 clear_opt(sbi, EXTENT_CACHE);
508 break;
509 case Opt_noinline_data:
510 clear_opt(sbi, INLINE_DATA);
511 break;
512 case Opt_data_flush:
513 set_opt(sbi, DATA_FLUSH);
514 break;
515 case Opt_mode:
516 name = match_strdup(&args[0]);
517
518 if (!name)
519 return -ENOMEM;
520 if (strlen(name) == 8 &&
521 !strncmp(name, "adaptive", 8)) {
522 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
523 } else if (strlen(name) == 3 &&
524 !strncmp(name, "lfs", 3)) {
525 set_opt_mode(sbi, F2FS_MOUNT_LFS);
526 } else {
527 kfree(name);
528 return -EINVAL;
529 }
530 kfree(name);
531 break;
532 case Opt_fault_injection:
533 if (args->from && match_int(args, &arg))
534 return -EINVAL;
535 #ifdef CONFIG_F2FS_FAULT_INJECTION
536 f2fs_build_fault_attr(arg);
537 #else
538 f2fs_msg(sb, KERN_INFO,
539 "FAULT_INJECTION was not selected");
540 #endif
541 break;
542 case Opt_lazytime:
543 sb->s_flags |= MS_LAZYTIME;
544 break;
545 case Opt_nolazytime:
546 sb->s_flags &= ~MS_LAZYTIME;
547 break;
548 default:
549 f2fs_msg(sb, KERN_ERR,
550 "Unrecognized mount option \"%s\" or missing value",
551 p);
552 return -EINVAL;
553 }
554 }
555 return 0;
556 }
557
558 static struct inode *f2fs_alloc_inode(struct super_block *sb)
559 {
560 struct f2fs_inode_info *fi;
561
562 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
563 if (!fi)
564 return NULL;
565
566 init_once((void *) fi);
567
568 if (percpu_counter_init(&fi->dirty_pages, 0, GFP_NOFS)) {
569 kmem_cache_free(f2fs_inode_cachep, fi);
570 return NULL;
571 }
572
573 /* Initialize f2fs-specific inode info */
574 fi->vfs_inode.i_version = 1;
575 fi->i_current_depth = 1;
576 fi->i_advise = 0;
577 init_rwsem(&fi->i_sem);
578 INIT_LIST_HEAD(&fi->dirty_list);
579 INIT_LIST_HEAD(&fi->gdirty_list);
580 INIT_LIST_HEAD(&fi->inmem_pages);
581 mutex_init(&fi->inmem_lock);
582
583 /* Will be used by directory only */
584 fi->i_dir_level = F2FS_SB(sb)->dir_level;
585 return &fi->vfs_inode;
586 }
587
588 static int f2fs_drop_inode(struct inode *inode)
589 {
590 /*
591 * This is to avoid a deadlock condition like below.
592 * writeback_single_inode(inode)
593 * - f2fs_write_data_page
594 * - f2fs_gc -> iput -> evict
595 * - inode_wait_for_writeback(inode)
596 */
597 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
598 if (!inode->i_nlink && !is_bad_inode(inode)) {
599 /* to avoid evict_inode call simultaneously */
600 atomic_inc(&inode->i_count);
601 spin_unlock(&inode->i_lock);
602
603 /* some remained atomic pages should discarded */
604 if (f2fs_is_atomic_file(inode))
605 drop_inmem_pages(inode);
606
607 /* should remain fi->extent_tree for writepage */
608 f2fs_destroy_extent_node(inode);
609
610 sb_start_intwrite(inode->i_sb);
611 f2fs_i_size_write(inode, 0);
612
613 if (F2FS_HAS_BLOCKS(inode))
614 f2fs_truncate(inode);
615
616 sb_end_intwrite(inode->i_sb);
617
618 fscrypt_put_encryption_info(inode, NULL);
619 spin_lock(&inode->i_lock);
620 atomic_dec(&inode->i_count);
621 }
622 return 0;
623 }
624
625 return generic_drop_inode(inode);
626 }
627
628 /*
629 * f2fs_dirty_inode() is called from __mark_inode_dirty()
630 *
631 * We should call set_dirty_inode to write the dirty inode through write_inode.
632 */
633 static void f2fs_dirty_inode(struct inode *inode, int flags)
634 {
635 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
636
637 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
638 inode->i_ino == F2FS_META_INO(sbi))
639 return;
640
641 if (flags == I_DIRTY_TIME)
642 return;
643
644 if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
645 clear_inode_flag(inode, FI_AUTO_RECOVER);
646
647 spin_lock(&sbi->inode_lock[DIRTY_META]);
648 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
649 spin_unlock(&sbi->inode_lock[DIRTY_META]);
650 return;
651 }
652
653 set_inode_flag(inode, FI_DIRTY_INODE);
654 list_add_tail(&F2FS_I(inode)->gdirty_list,
655 &sbi->inode_list[DIRTY_META]);
656 inc_page_count(sbi, F2FS_DIRTY_IMETA);
657 stat_inc_dirty_inode(sbi, DIRTY_META);
658 spin_unlock(&sbi->inode_lock[DIRTY_META]);
659 }
660
661 void f2fs_inode_synced(struct inode *inode)
662 {
663 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
664
665 spin_lock(&sbi->inode_lock[DIRTY_META]);
666 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
667 spin_unlock(&sbi->inode_lock[DIRTY_META]);
668 return;
669 }
670 list_del_init(&F2FS_I(inode)->gdirty_list);
671 clear_inode_flag(inode, FI_DIRTY_INODE);
672 clear_inode_flag(inode, FI_AUTO_RECOVER);
673 dec_page_count(sbi, F2FS_DIRTY_IMETA);
674 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
675 spin_unlock(&sbi->inode_lock[DIRTY_META]);
676 }
677
678 static void f2fs_i_callback(struct rcu_head *head)
679 {
680 struct inode *inode = container_of(head, struct inode, i_rcu);
681 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
682 }
683
684 static void f2fs_destroy_inode(struct inode *inode)
685 {
686 percpu_counter_destroy(&F2FS_I(inode)->dirty_pages);
687 call_rcu(&inode->i_rcu, f2fs_i_callback);
688 }
689
690 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
691 {
692 int i;
693
694 for (i = 0; i < NR_COUNT_TYPE; i++)
695 percpu_counter_destroy(&sbi->nr_pages[i]);
696 percpu_counter_destroy(&sbi->alloc_valid_block_count);
697 percpu_counter_destroy(&sbi->total_valid_inode_count);
698
699 percpu_free_rwsem(&sbi->cp_rwsem);
700 }
701
702 static void f2fs_put_super(struct super_block *sb)
703 {
704 struct f2fs_sb_info *sbi = F2FS_SB(sb);
705
706 if (sbi->s_proc) {
707 remove_proc_entry("segment_info", sbi->s_proc);
708 remove_proc_entry("segment_bits", sbi->s_proc);
709 remove_proc_entry(sb->s_id, f2fs_proc_root);
710 }
711 kobject_del(&sbi->s_kobj);
712
713 stop_gc_thread(sbi);
714
715 /* prevent remaining shrinker jobs */
716 mutex_lock(&sbi->umount_mutex);
717
718 /*
719 * We don't need to do checkpoint when superblock is clean.
720 * But, the previous checkpoint was not done by umount, it needs to do
721 * clean checkpoint again.
722 */
723 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
724 !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
725 struct cp_control cpc = {
726 .reason = CP_UMOUNT,
727 };
728 write_checkpoint(sbi, &cpc);
729 }
730
731 /* write_checkpoint can update stat informaion */
732 f2fs_destroy_stats(sbi);
733
734 /*
735 * normally superblock is clean, so we need to release this.
736 * In addition, EIO will skip do checkpoint, we need this as well.
737 */
738 release_ino_entry(sbi, true);
739 release_discard_addrs(sbi);
740
741 f2fs_leave_shrinker(sbi);
742 mutex_unlock(&sbi->umount_mutex);
743
744 /* our cp_error case, we can wait for any writeback page */
745 f2fs_flush_merged_bios(sbi);
746
747 iput(sbi->node_inode);
748 iput(sbi->meta_inode);
749
750 /* destroy f2fs internal modules */
751 destroy_node_manager(sbi);
752 destroy_segment_manager(sbi);
753
754 kfree(sbi->ckpt);
755 kobject_put(&sbi->s_kobj);
756 wait_for_completion(&sbi->s_kobj_unregister);
757
758 sb->s_fs_info = NULL;
759 if (sbi->s_chksum_driver)
760 crypto_free_shash(sbi->s_chksum_driver);
761 kfree(sbi->raw_super);
762
763 destroy_percpu_info(sbi);
764 kfree(sbi);
765 }
766
767 int f2fs_sync_fs(struct super_block *sb, int sync)
768 {
769 struct f2fs_sb_info *sbi = F2FS_SB(sb);
770 int err = 0;
771
772 trace_f2fs_sync_fs(sb, sync);
773
774 if (sync) {
775 struct cp_control cpc;
776
777 cpc.reason = __get_cp_reason(sbi);
778
779 mutex_lock(&sbi->gc_mutex);
780 err = write_checkpoint(sbi, &cpc);
781 mutex_unlock(&sbi->gc_mutex);
782 }
783 f2fs_trace_ios(NULL, 1);
784
785 return err;
786 }
787
788 static int f2fs_freeze(struct super_block *sb)
789 {
790 int err;
791
792 if (f2fs_readonly(sb))
793 return 0;
794
795 err = f2fs_sync_fs(sb, 1);
796 return err;
797 }
798
799 static int f2fs_unfreeze(struct super_block *sb)
800 {
801 return 0;
802 }
803
804 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
805 {
806 struct super_block *sb = dentry->d_sb;
807 struct f2fs_sb_info *sbi = F2FS_SB(sb);
808 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
809 block_t total_count, user_block_count, start_count, ovp_count;
810
811 total_count = le64_to_cpu(sbi->raw_super->block_count);
812 user_block_count = sbi->user_block_count;
813 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
814 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
815 buf->f_type = F2FS_SUPER_MAGIC;
816 buf->f_bsize = sbi->blocksize;
817
818 buf->f_blocks = total_count - start_count;
819 buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
820 buf->f_bavail = user_block_count - valid_user_blocks(sbi);
821
822 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
823 buf->f_ffree = buf->f_files - valid_inode_count(sbi);
824
825 buf->f_namelen = F2FS_NAME_LEN;
826 buf->f_fsid.val[0] = (u32)id;
827 buf->f_fsid.val[1] = (u32)(id >> 32);
828
829 return 0;
830 }
831
832 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
833 {
834 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
835
836 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
837 if (test_opt(sbi, FORCE_FG_GC))
838 seq_printf(seq, ",background_gc=%s", "sync");
839 else
840 seq_printf(seq, ",background_gc=%s", "on");
841 } else {
842 seq_printf(seq, ",background_gc=%s", "off");
843 }
844 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
845 seq_puts(seq, ",disable_roll_forward");
846 if (test_opt(sbi, DISCARD))
847 seq_puts(seq, ",discard");
848 if (test_opt(sbi, NOHEAP))
849 seq_puts(seq, ",no_heap_alloc");
850 #ifdef CONFIG_F2FS_FS_XATTR
851 if (test_opt(sbi, XATTR_USER))
852 seq_puts(seq, ",user_xattr");
853 else
854 seq_puts(seq, ",nouser_xattr");
855 if (test_opt(sbi, INLINE_XATTR))
856 seq_puts(seq, ",inline_xattr");
857 #endif
858 #ifdef CONFIG_F2FS_FS_POSIX_ACL
859 if (test_opt(sbi, POSIX_ACL))
860 seq_puts(seq, ",acl");
861 else
862 seq_puts(seq, ",noacl");
863 #endif
864 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
865 seq_puts(seq, ",disable_ext_identify");
866 if (test_opt(sbi, INLINE_DATA))
867 seq_puts(seq, ",inline_data");
868 else
869 seq_puts(seq, ",noinline_data");
870 if (test_opt(sbi, INLINE_DENTRY))
871 seq_puts(seq, ",inline_dentry");
872 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
873 seq_puts(seq, ",flush_merge");
874 if (test_opt(sbi, NOBARRIER))
875 seq_puts(seq, ",nobarrier");
876 if (test_opt(sbi, FASTBOOT))
877 seq_puts(seq, ",fastboot");
878 if (test_opt(sbi, EXTENT_CACHE))
879 seq_puts(seq, ",extent_cache");
880 else
881 seq_puts(seq, ",noextent_cache");
882 if (test_opt(sbi, DATA_FLUSH))
883 seq_puts(seq, ",data_flush");
884
885 seq_puts(seq, ",mode=");
886 if (test_opt(sbi, ADAPTIVE))
887 seq_puts(seq, "adaptive");
888 else if (test_opt(sbi, LFS))
889 seq_puts(seq, "lfs");
890 seq_printf(seq, ",active_logs=%u", sbi->active_logs);
891
892 return 0;
893 }
894
895 static int segment_info_seq_show(struct seq_file *seq, void *offset)
896 {
897 struct super_block *sb = seq->private;
898 struct f2fs_sb_info *sbi = F2FS_SB(sb);
899 unsigned int total_segs =
900 le32_to_cpu(sbi->raw_super->segment_count_main);
901 int i;
902
903 seq_puts(seq, "format: segment_type|valid_blocks\n"
904 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
905
906 for (i = 0; i < total_segs; i++) {
907 struct seg_entry *se = get_seg_entry(sbi, i);
908
909 if ((i % 10) == 0)
910 seq_printf(seq, "%-10d", i);
911 seq_printf(seq, "%d|%-3u", se->type,
912 get_valid_blocks(sbi, i, 1));
913 if ((i % 10) == 9 || i == (total_segs - 1))
914 seq_putc(seq, '\n');
915 else
916 seq_putc(seq, ' ');
917 }
918
919 return 0;
920 }
921
922 static int segment_bits_seq_show(struct seq_file *seq, void *offset)
923 {
924 struct super_block *sb = seq->private;
925 struct f2fs_sb_info *sbi = F2FS_SB(sb);
926 unsigned int total_segs =
927 le32_to_cpu(sbi->raw_super->segment_count_main);
928 int i, j;
929
930 seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
931 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
932
933 for (i = 0; i < total_segs; i++) {
934 struct seg_entry *se = get_seg_entry(sbi, i);
935
936 seq_printf(seq, "%-10d", i);
937 seq_printf(seq, "%d|%-3u|", se->type,
938 get_valid_blocks(sbi, i, 1));
939 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
940 seq_printf(seq, "%x ", se->cur_valid_map[j]);
941 seq_putc(seq, '\n');
942 }
943 return 0;
944 }
945
946 #define F2FS_PROC_FILE_DEF(_name) \
947 static int _name##_open_fs(struct inode *inode, struct file *file) \
948 { \
949 return single_open(file, _name##_seq_show, PDE_DATA(inode)); \
950 } \
951 \
952 static const struct file_operations f2fs_seq_##_name##_fops = { \
953 .owner = THIS_MODULE, \
954 .open = _name##_open_fs, \
955 .read = seq_read, \
956 .llseek = seq_lseek, \
957 .release = single_release, \
958 };
959
960 F2FS_PROC_FILE_DEF(segment_info);
961 F2FS_PROC_FILE_DEF(segment_bits);
962
963 static void default_options(struct f2fs_sb_info *sbi)
964 {
965 /* init some FS parameters */
966 sbi->active_logs = NR_CURSEG_TYPE;
967
968 set_opt(sbi, BG_GC);
969 set_opt(sbi, INLINE_DATA);
970 set_opt(sbi, EXTENT_CACHE);
971 sbi->sb->s_flags |= MS_LAZYTIME;
972 set_opt(sbi, FLUSH_MERGE);
973 if (f2fs_sb_mounted_hmsmr(sbi->sb)) {
974 set_opt_mode(sbi, F2FS_MOUNT_LFS);
975 set_opt(sbi, DISCARD);
976 } else {
977 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
978 }
979
980 #ifdef CONFIG_F2FS_FS_XATTR
981 set_opt(sbi, XATTR_USER);
982 #endif
983 #ifdef CONFIG_F2FS_FS_POSIX_ACL
984 set_opt(sbi, POSIX_ACL);
985 #endif
986 }
987
988 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
989 {
990 struct f2fs_sb_info *sbi = F2FS_SB(sb);
991 struct f2fs_mount_info org_mount_opt;
992 int err, active_logs;
993 bool need_restart_gc = false;
994 bool need_stop_gc = false;
995 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
996
997 /*
998 * Save the old mount options in case we
999 * need to restore them.
1000 */
1001 org_mount_opt = sbi->mount_opt;
1002 active_logs = sbi->active_logs;
1003
1004 /* recover superblocks we couldn't write due to previous RO mount */
1005 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1006 err = f2fs_commit_super(sbi, false);
1007 f2fs_msg(sb, KERN_INFO,
1008 "Try to recover all the superblocks, ret: %d", err);
1009 if (!err)
1010 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1011 }
1012
1013 sbi->mount_opt.opt = 0;
1014 default_options(sbi);
1015
1016 /* parse mount options */
1017 err = parse_options(sb, data);
1018 if (err)
1019 goto restore_opts;
1020
1021 /*
1022 * Previous and new state of filesystem is RO,
1023 * so skip checking GC and FLUSH_MERGE conditions.
1024 */
1025 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1026 goto skip;
1027
1028 /* disallow enable/disable extent_cache dynamically */
1029 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1030 err = -EINVAL;
1031 f2fs_msg(sbi->sb, KERN_WARNING,
1032 "switch extent_cache option is not allowed");
1033 goto restore_opts;
1034 }
1035
1036 /*
1037 * We stop the GC thread if FS is mounted as RO
1038 * or if background_gc = off is passed in mount
1039 * option. Also sync the filesystem.
1040 */
1041 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1042 if (sbi->gc_thread) {
1043 stop_gc_thread(sbi);
1044 need_restart_gc = true;
1045 }
1046 } else if (!sbi->gc_thread) {
1047 err = start_gc_thread(sbi);
1048 if (err)
1049 goto restore_opts;
1050 need_stop_gc = true;
1051 }
1052
1053 if (*flags & MS_RDONLY) {
1054 writeback_inodes_sb(sb, WB_REASON_SYNC);
1055 sync_inodes_sb(sb);
1056
1057 set_sbi_flag(sbi, SBI_IS_DIRTY);
1058 set_sbi_flag(sbi, SBI_IS_CLOSE);
1059 f2fs_sync_fs(sb, 1);
1060 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1061 }
1062
1063 /*
1064 * We stop issue flush thread if FS is mounted as RO
1065 * or if flush_merge is not passed in mount option.
1066 */
1067 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1068 destroy_flush_cmd_control(sbi);
1069 } else if (!SM_I(sbi)->cmd_control_info) {
1070 err = create_flush_cmd_control(sbi);
1071 if (err)
1072 goto restore_gc;
1073 }
1074 skip:
1075 /* Update the POSIXACL Flag */
1076 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1077 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1078
1079 return 0;
1080 restore_gc:
1081 if (need_restart_gc) {
1082 if (start_gc_thread(sbi))
1083 f2fs_msg(sbi->sb, KERN_WARNING,
1084 "background gc thread has stopped");
1085 } else if (need_stop_gc) {
1086 stop_gc_thread(sbi);
1087 }
1088 restore_opts:
1089 sbi->mount_opt = org_mount_opt;
1090 sbi->active_logs = active_logs;
1091 return err;
1092 }
1093
1094 static struct super_operations f2fs_sops = {
1095 .alloc_inode = f2fs_alloc_inode,
1096 .drop_inode = f2fs_drop_inode,
1097 .destroy_inode = f2fs_destroy_inode,
1098 .write_inode = f2fs_write_inode,
1099 .dirty_inode = f2fs_dirty_inode,
1100 .show_options = f2fs_show_options,
1101 .evict_inode = f2fs_evict_inode,
1102 .put_super = f2fs_put_super,
1103 .sync_fs = f2fs_sync_fs,
1104 .freeze_fs = f2fs_freeze,
1105 .unfreeze_fs = f2fs_unfreeze,
1106 .statfs = f2fs_statfs,
1107 .remount_fs = f2fs_remount,
1108 };
1109
1110 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1111 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1112 {
1113 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1114 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1115 ctx, len, NULL);
1116 }
1117
1118 static int f2fs_key_prefix(struct inode *inode, u8 **key)
1119 {
1120 *key = F2FS_I_SB(inode)->key_prefix;
1121 return F2FS_I_SB(inode)->key_prefix_size;
1122 }
1123
1124 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1125 void *fs_data)
1126 {
1127 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1128 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1129 ctx, len, fs_data, XATTR_CREATE);
1130 }
1131
1132 static unsigned f2fs_max_namelen(struct inode *inode)
1133 {
1134 return S_ISLNK(inode->i_mode) ?
1135 inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1136 }
1137
1138 static struct fscrypt_operations f2fs_cryptops = {
1139 .get_context = f2fs_get_context,
1140 .key_prefix = f2fs_key_prefix,
1141 .set_context = f2fs_set_context,
1142 .is_encrypted = f2fs_encrypted_inode,
1143 .empty_dir = f2fs_empty_dir,
1144 .max_namelen = f2fs_max_namelen,
1145 };
1146 #else
1147 static struct fscrypt_operations f2fs_cryptops = {
1148 .is_encrypted = f2fs_encrypted_inode,
1149 };
1150 #endif
1151
1152 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1153 u64 ino, u32 generation)
1154 {
1155 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1156 struct inode *inode;
1157
1158 if (check_nid_range(sbi, ino))
1159 return ERR_PTR(-ESTALE);
1160
1161 /*
1162 * f2fs_iget isn't quite right if the inode is currently unallocated!
1163 * However f2fs_iget currently does appropriate checks to handle stale
1164 * inodes so everything is OK.
1165 */
1166 inode = f2fs_iget(sb, ino);
1167 if (IS_ERR(inode))
1168 return ERR_CAST(inode);
1169 if (unlikely(generation && inode->i_generation != generation)) {
1170 /* we didn't find the right inode.. */
1171 iput(inode);
1172 return ERR_PTR(-ESTALE);
1173 }
1174 return inode;
1175 }
1176
1177 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1178 int fh_len, int fh_type)
1179 {
1180 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1181 f2fs_nfs_get_inode);
1182 }
1183
1184 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1185 int fh_len, int fh_type)
1186 {
1187 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1188 f2fs_nfs_get_inode);
1189 }
1190
1191 static const struct export_operations f2fs_export_ops = {
1192 .fh_to_dentry = f2fs_fh_to_dentry,
1193 .fh_to_parent = f2fs_fh_to_parent,
1194 .get_parent = f2fs_get_parent,
1195 };
1196
1197 static loff_t max_file_blocks(void)
1198 {
1199 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1200 loff_t leaf_count = ADDRS_PER_BLOCK;
1201
1202 /* two direct node blocks */
1203 result += (leaf_count * 2);
1204
1205 /* two indirect node blocks */
1206 leaf_count *= NIDS_PER_BLOCK;
1207 result += (leaf_count * 2);
1208
1209 /* one double indirect node block */
1210 leaf_count *= NIDS_PER_BLOCK;
1211 result += leaf_count;
1212
1213 return result;
1214 }
1215
1216 static int __f2fs_commit_super(struct buffer_head *bh,
1217 struct f2fs_super_block *super)
1218 {
1219 lock_buffer(bh);
1220 if (super)
1221 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1222 set_buffer_uptodate(bh);
1223 set_buffer_dirty(bh);
1224 unlock_buffer(bh);
1225
1226 /* it's rare case, we can do fua all the time */
1227 return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
1228 }
1229
1230 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1231 struct buffer_head *bh)
1232 {
1233 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1234 (bh->b_data + F2FS_SUPER_OFFSET);
1235 struct super_block *sb = sbi->sb;
1236 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1237 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1238 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1239 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1240 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1241 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1242 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1243 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1244 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1245 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1246 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1247 u32 segment_count = le32_to_cpu(raw_super->segment_count);
1248 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1249 u64 main_end_blkaddr = main_blkaddr +
1250 (segment_count_main << log_blocks_per_seg);
1251 u64 seg_end_blkaddr = segment0_blkaddr +
1252 (segment_count << log_blocks_per_seg);
1253
1254 if (segment0_blkaddr != cp_blkaddr) {
1255 f2fs_msg(sb, KERN_INFO,
1256 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1257 segment0_blkaddr, cp_blkaddr);
1258 return true;
1259 }
1260
1261 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1262 sit_blkaddr) {
1263 f2fs_msg(sb, KERN_INFO,
1264 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1265 cp_blkaddr, sit_blkaddr,
1266 segment_count_ckpt << log_blocks_per_seg);
1267 return true;
1268 }
1269
1270 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1271 nat_blkaddr) {
1272 f2fs_msg(sb, KERN_INFO,
1273 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1274 sit_blkaddr, nat_blkaddr,
1275 segment_count_sit << log_blocks_per_seg);
1276 return true;
1277 }
1278
1279 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1280 ssa_blkaddr) {
1281 f2fs_msg(sb, KERN_INFO,
1282 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1283 nat_blkaddr, ssa_blkaddr,
1284 segment_count_nat << log_blocks_per_seg);
1285 return true;
1286 }
1287
1288 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1289 main_blkaddr) {
1290 f2fs_msg(sb, KERN_INFO,
1291 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1292 ssa_blkaddr, main_blkaddr,
1293 segment_count_ssa << log_blocks_per_seg);
1294 return true;
1295 }
1296
1297 if (main_end_blkaddr > seg_end_blkaddr) {
1298 f2fs_msg(sb, KERN_INFO,
1299 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1300 main_blkaddr,
1301 segment0_blkaddr +
1302 (segment_count << log_blocks_per_seg),
1303 segment_count_main << log_blocks_per_seg);
1304 return true;
1305 } else if (main_end_blkaddr < seg_end_blkaddr) {
1306 int err = 0;
1307 char *res;
1308
1309 /* fix in-memory information all the time */
1310 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1311 segment0_blkaddr) >> log_blocks_per_seg);
1312
1313 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1314 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1315 res = "internally";
1316 } else {
1317 err = __f2fs_commit_super(bh, NULL);
1318 res = err ? "failed" : "done";
1319 }
1320 f2fs_msg(sb, KERN_INFO,
1321 "Fix alignment : %s, start(%u) end(%u) block(%u)",
1322 res, main_blkaddr,
1323 segment0_blkaddr +
1324 (segment_count << log_blocks_per_seg),
1325 segment_count_main << log_blocks_per_seg);
1326 if (err)
1327 return true;
1328 }
1329 return false;
1330 }
1331
1332 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1333 struct buffer_head *bh)
1334 {
1335 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1336 (bh->b_data + F2FS_SUPER_OFFSET);
1337 struct super_block *sb = sbi->sb;
1338 unsigned int blocksize;
1339
1340 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1341 f2fs_msg(sb, KERN_INFO,
1342 "Magic Mismatch, valid(0x%x) - read(0x%x)",
1343 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1344 return 1;
1345 }
1346
1347 /* Currently, support only 4KB page cache size */
1348 if (F2FS_BLKSIZE != PAGE_SIZE) {
1349 f2fs_msg(sb, KERN_INFO,
1350 "Invalid page_cache_size (%lu), supports only 4KB\n",
1351 PAGE_SIZE);
1352 return 1;
1353 }
1354
1355 /* Currently, support only 4KB block size */
1356 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1357 if (blocksize != F2FS_BLKSIZE) {
1358 f2fs_msg(sb, KERN_INFO,
1359 "Invalid blocksize (%u), supports only 4KB\n",
1360 blocksize);
1361 return 1;
1362 }
1363
1364 /* check log blocks per segment */
1365 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1366 f2fs_msg(sb, KERN_INFO,
1367 "Invalid log blocks per segment (%u)\n",
1368 le32_to_cpu(raw_super->log_blocks_per_seg));
1369 return 1;
1370 }
1371
1372 /* Currently, support 512/1024/2048/4096 bytes sector size */
1373 if (le32_to_cpu(raw_super->log_sectorsize) >
1374 F2FS_MAX_LOG_SECTOR_SIZE ||
1375 le32_to_cpu(raw_super->log_sectorsize) <
1376 F2FS_MIN_LOG_SECTOR_SIZE) {
1377 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1378 le32_to_cpu(raw_super->log_sectorsize));
1379 return 1;
1380 }
1381 if (le32_to_cpu(raw_super->log_sectors_per_block) +
1382 le32_to_cpu(raw_super->log_sectorsize) !=
1383 F2FS_MAX_LOG_SECTOR_SIZE) {
1384 f2fs_msg(sb, KERN_INFO,
1385 "Invalid log sectors per block(%u) log sectorsize(%u)",
1386 le32_to_cpu(raw_super->log_sectors_per_block),
1387 le32_to_cpu(raw_super->log_sectorsize));
1388 return 1;
1389 }
1390
1391 /* check reserved ino info */
1392 if (le32_to_cpu(raw_super->node_ino) != 1 ||
1393 le32_to_cpu(raw_super->meta_ino) != 2 ||
1394 le32_to_cpu(raw_super->root_ino) != 3) {
1395 f2fs_msg(sb, KERN_INFO,
1396 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1397 le32_to_cpu(raw_super->node_ino),
1398 le32_to_cpu(raw_super->meta_ino),
1399 le32_to_cpu(raw_super->root_ino));
1400 return 1;
1401 }
1402
1403 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1404 if (sanity_check_area_boundary(sbi, bh))
1405 return 1;
1406
1407 return 0;
1408 }
1409
1410 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1411 {
1412 unsigned int total, fsmeta;
1413 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1414 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1415
1416 total = le32_to_cpu(raw_super->segment_count);
1417 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1418 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1419 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1420 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1421 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1422
1423 if (unlikely(fsmeta >= total))
1424 return 1;
1425
1426 if (unlikely(f2fs_cp_error(sbi))) {
1427 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1428 return 1;
1429 }
1430 return 0;
1431 }
1432
1433 static void init_sb_info(struct f2fs_sb_info *sbi)
1434 {
1435 struct f2fs_super_block *raw_super = sbi->raw_super;
1436
1437 sbi->log_sectors_per_block =
1438 le32_to_cpu(raw_super->log_sectors_per_block);
1439 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1440 sbi->blocksize = 1 << sbi->log_blocksize;
1441 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1442 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1443 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1444 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1445 sbi->total_sections = le32_to_cpu(raw_super->section_count);
1446 sbi->total_node_count =
1447 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1448 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1449 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1450 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1451 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1452 sbi->cur_victim_sec = NULL_SECNO;
1453 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1454
1455 sbi->dir_level = DEF_DIR_LEVEL;
1456 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1457 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1458 clear_sbi_flag(sbi, SBI_NEED_FSCK);
1459
1460 INIT_LIST_HEAD(&sbi->s_list);
1461 mutex_init(&sbi->umount_mutex);
1462 mutex_init(&sbi->wio_mutex[NODE]);
1463 mutex_init(&sbi->wio_mutex[DATA]);
1464
1465 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1466 memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX,
1467 F2FS_KEY_DESC_PREFIX_SIZE);
1468 sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE;
1469 #endif
1470 }
1471
1472 static int init_percpu_info(struct f2fs_sb_info *sbi)
1473 {
1474 int i, err;
1475
1476 if (percpu_init_rwsem(&sbi->cp_rwsem))
1477 return -ENOMEM;
1478
1479 for (i = 0; i < NR_COUNT_TYPE; i++) {
1480 err = percpu_counter_init(&sbi->nr_pages[i], 0, GFP_KERNEL);
1481 if (err)
1482 return err;
1483 }
1484
1485 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1486 if (err)
1487 return err;
1488
1489 return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1490 GFP_KERNEL);
1491 }
1492
1493 /*
1494 * Read f2fs raw super block.
1495 * Because we have two copies of super block, so read both of them
1496 * to get the first valid one. If any one of them is broken, we pass
1497 * them recovery flag back to the caller.
1498 */
1499 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1500 struct f2fs_super_block **raw_super,
1501 int *valid_super_block, int *recovery)
1502 {
1503 struct super_block *sb = sbi->sb;
1504 int block;
1505 struct buffer_head *bh;
1506 struct f2fs_super_block *super;
1507 int err = 0;
1508
1509 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1510 if (!super)
1511 return -ENOMEM;
1512
1513 for (block = 0; block < 2; block++) {
1514 bh = sb_bread(sb, block);
1515 if (!bh) {
1516 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1517 block + 1);
1518 err = -EIO;
1519 continue;
1520 }
1521
1522 /* sanity checking of raw super */
1523 if (sanity_check_raw_super(sbi, bh)) {
1524 f2fs_msg(sb, KERN_ERR,
1525 "Can't find valid F2FS filesystem in %dth superblock",
1526 block + 1);
1527 err = -EINVAL;
1528 brelse(bh);
1529 continue;
1530 }
1531
1532 if (!*raw_super) {
1533 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1534 sizeof(*super));
1535 *valid_super_block = block;
1536 *raw_super = super;
1537 }
1538 brelse(bh);
1539 }
1540
1541 /* Fail to read any one of the superblocks*/
1542 if (err < 0)
1543 *recovery = 1;
1544
1545 /* No valid superblock */
1546 if (!*raw_super)
1547 kfree(super);
1548 else
1549 err = 0;
1550
1551 return err;
1552 }
1553
1554 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1555 {
1556 struct buffer_head *bh;
1557 int err;
1558
1559 if ((recover && f2fs_readonly(sbi->sb)) ||
1560 bdev_read_only(sbi->sb->s_bdev)) {
1561 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1562 return -EROFS;
1563 }
1564
1565 /* write back-up superblock first */
1566 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1567 if (!bh)
1568 return -EIO;
1569 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1570 brelse(bh);
1571
1572 /* if we are in recovery path, skip writing valid superblock */
1573 if (recover || err)
1574 return err;
1575
1576 /* write current valid superblock */
1577 bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1578 if (!bh)
1579 return -EIO;
1580 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1581 brelse(bh);
1582 return err;
1583 }
1584
1585 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1586 {
1587 struct f2fs_sb_info *sbi;
1588 struct f2fs_super_block *raw_super;
1589 struct inode *root;
1590 int err;
1591 bool retry = true, need_fsck = false;
1592 char *options = NULL;
1593 int recovery, i, valid_super_block;
1594 struct curseg_info *seg_i;
1595
1596 try_onemore:
1597 err = -EINVAL;
1598 raw_super = NULL;
1599 valid_super_block = -1;
1600 recovery = 0;
1601
1602 /* allocate memory for f2fs-specific super block info */
1603 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1604 if (!sbi)
1605 return -ENOMEM;
1606
1607 sbi->sb = sb;
1608
1609 /* Load the checksum driver */
1610 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1611 if (IS_ERR(sbi->s_chksum_driver)) {
1612 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1613 err = PTR_ERR(sbi->s_chksum_driver);
1614 sbi->s_chksum_driver = NULL;
1615 goto free_sbi;
1616 }
1617
1618 /* set a block size */
1619 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1620 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1621 goto free_sbi;
1622 }
1623
1624 err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1625 &recovery);
1626 if (err)
1627 goto free_sbi;
1628
1629 sb->s_fs_info = sbi;
1630 sbi->raw_super = raw_super;
1631
1632 default_options(sbi);
1633 /* parse mount options */
1634 options = kstrdup((const char *)data, GFP_KERNEL);
1635 if (data && !options) {
1636 err = -ENOMEM;
1637 goto free_sb_buf;
1638 }
1639
1640 err = parse_options(sb, options);
1641 if (err)
1642 goto free_options;
1643
1644 sbi->max_file_blocks = max_file_blocks();
1645 sb->s_maxbytes = sbi->max_file_blocks <<
1646 le32_to_cpu(raw_super->log_blocksize);
1647 sb->s_max_links = F2FS_LINK_MAX;
1648 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1649
1650 sb->s_op = &f2fs_sops;
1651 sb->s_cop = &f2fs_cryptops;
1652 sb->s_xattr = f2fs_xattr_handlers;
1653 sb->s_export_op = &f2fs_export_ops;
1654 sb->s_magic = F2FS_SUPER_MAGIC;
1655 sb->s_time_gran = 1;
1656 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1657 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1658 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1659
1660 /* init f2fs-specific super block info */
1661 sbi->valid_super_block = valid_super_block;
1662 mutex_init(&sbi->gc_mutex);
1663 mutex_init(&sbi->cp_mutex);
1664 init_rwsem(&sbi->node_write);
1665
1666 /* disallow all the data/node/meta page writes */
1667 set_sbi_flag(sbi, SBI_POR_DOING);
1668 spin_lock_init(&sbi->stat_lock);
1669
1670 init_rwsem(&sbi->read_io.io_rwsem);
1671 sbi->read_io.sbi = sbi;
1672 sbi->read_io.bio = NULL;
1673 for (i = 0; i < NR_PAGE_TYPE; i++) {
1674 init_rwsem(&sbi->write_io[i].io_rwsem);
1675 sbi->write_io[i].sbi = sbi;
1676 sbi->write_io[i].bio = NULL;
1677 }
1678
1679 init_waitqueue_head(&sbi->cp_wait);
1680 init_sb_info(sbi);
1681
1682 err = init_percpu_info(sbi);
1683 if (err)
1684 goto free_options;
1685
1686 /* get an inode for meta space */
1687 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1688 if (IS_ERR(sbi->meta_inode)) {
1689 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1690 err = PTR_ERR(sbi->meta_inode);
1691 goto free_options;
1692 }
1693
1694 err = get_valid_checkpoint(sbi);
1695 if (err) {
1696 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1697 goto free_meta_inode;
1698 }
1699
1700 sbi->total_valid_node_count =
1701 le32_to_cpu(sbi->ckpt->valid_node_count);
1702 percpu_counter_set(&sbi->total_valid_inode_count,
1703 le32_to_cpu(sbi->ckpt->valid_inode_count));
1704 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1705 sbi->total_valid_block_count =
1706 le64_to_cpu(sbi->ckpt->valid_block_count);
1707 sbi->last_valid_block_count = sbi->total_valid_block_count;
1708
1709 for (i = 0; i < NR_INODE_TYPE; i++) {
1710 INIT_LIST_HEAD(&sbi->inode_list[i]);
1711 spin_lock_init(&sbi->inode_lock[i]);
1712 }
1713
1714 init_extent_cache_info(sbi);
1715
1716 init_ino_entry_info(sbi);
1717
1718 /* setup f2fs internal modules */
1719 err = build_segment_manager(sbi);
1720 if (err) {
1721 f2fs_msg(sb, KERN_ERR,
1722 "Failed to initialize F2FS segment manager");
1723 goto free_sm;
1724 }
1725 err = build_node_manager(sbi);
1726 if (err) {
1727 f2fs_msg(sb, KERN_ERR,
1728 "Failed to initialize F2FS node manager");
1729 goto free_nm;
1730 }
1731
1732 /* For write statistics */
1733 if (sb->s_bdev->bd_part)
1734 sbi->sectors_written_start =
1735 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1736
1737 /* Read accumulated write IO statistics if exists */
1738 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1739 if (__exist_node_summaries(sbi))
1740 sbi->kbytes_written =
1741 le64_to_cpu(seg_i->journal->info.kbytes_written);
1742
1743 build_gc_manager(sbi);
1744
1745 /* get an inode for node space */
1746 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1747 if (IS_ERR(sbi->node_inode)) {
1748 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1749 err = PTR_ERR(sbi->node_inode);
1750 goto free_nm;
1751 }
1752
1753 f2fs_join_shrinker(sbi);
1754
1755 /* if there are nt orphan nodes free them */
1756 err = recover_orphan_inodes(sbi);
1757 if (err)
1758 goto free_node_inode;
1759
1760 /* read root inode and dentry */
1761 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1762 if (IS_ERR(root)) {
1763 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1764 err = PTR_ERR(root);
1765 goto free_node_inode;
1766 }
1767 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1768 iput(root);
1769 err = -EINVAL;
1770 goto free_node_inode;
1771 }
1772
1773 sb->s_root = d_make_root(root); /* allocate root dentry */
1774 if (!sb->s_root) {
1775 err = -ENOMEM;
1776 goto free_root_inode;
1777 }
1778
1779 err = f2fs_build_stats(sbi);
1780 if (err)
1781 goto free_root_inode;
1782
1783 if (f2fs_proc_root)
1784 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1785
1786 if (sbi->s_proc) {
1787 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1788 &f2fs_seq_segment_info_fops, sb);
1789 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
1790 &f2fs_seq_segment_bits_fops, sb);
1791 }
1792
1793 sbi->s_kobj.kset = f2fs_kset;
1794 init_completion(&sbi->s_kobj_unregister);
1795 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1796 "%s", sb->s_id);
1797 if (err)
1798 goto free_proc;
1799
1800 /* recover fsynced data */
1801 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1802 /*
1803 * mount should be failed, when device has readonly mode, and
1804 * previous checkpoint was not done by clean system shutdown.
1805 */
1806 if (bdev_read_only(sb->s_bdev) &&
1807 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1808 err = -EROFS;
1809 goto free_kobj;
1810 }
1811
1812 if (need_fsck)
1813 set_sbi_flag(sbi, SBI_NEED_FSCK);
1814
1815 err = recover_fsync_data(sbi, false);
1816 if (err < 0) {
1817 need_fsck = true;
1818 f2fs_msg(sb, KERN_ERR,
1819 "Cannot recover all fsync data errno=%d", err);
1820 goto free_kobj;
1821 }
1822 } else {
1823 err = recover_fsync_data(sbi, true);
1824
1825 if (!f2fs_readonly(sb) && err > 0) {
1826 err = -EINVAL;
1827 f2fs_msg(sb, KERN_ERR,
1828 "Need to recover fsync data");
1829 goto free_kobj;
1830 }
1831 }
1832
1833 /* recover_fsync_data() cleared this already */
1834 clear_sbi_flag(sbi, SBI_POR_DOING);
1835
1836 /*
1837 * If filesystem is not mounted as read-only then
1838 * do start the gc_thread.
1839 */
1840 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1841 /* After POR, we can run background GC thread.*/
1842 err = start_gc_thread(sbi);
1843 if (err)
1844 goto free_kobj;
1845 }
1846 kfree(options);
1847
1848 /* recover broken superblock */
1849 if (recovery) {
1850 err = f2fs_commit_super(sbi, true);
1851 f2fs_msg(sb, KERN_INFO,
1852 "Try to recover %dth superblock, ret: %d",
1853 sbi->valid_super_block ? 1 : 2, err);
1854 }
1855
1856 f2fs_update_time(sbi, CP_TIME);
1857 f2fs_update_time(sbi, REQ_TIME);
1858 return 0;
1859
1860 free_kobj:
1861 f2fs_sync_inode_meta(sbi);
1862 kobject_del(&sbi->s_kobj);
1863 kobject_put(&sbi->s_kobj);
1864 wait_for_completion(&sbi->s_kobj_unregister);
1865 free_proc:
1866 if (sbi->s_proc) {
1867 remove_proc_entry("segment_info", sbi->s_proc);
1868 remove_proc_entry("segment_bits", sbi->s_proc);
1869 remove_proc_entry(sb->s_id, f2fs_proc_root);
1870 }
1871 f2fs_destroy_stats(sbi);
1872 free_root_inode:
1873 dput(sb->s_root);
1874 sb->s_root = NULL;
1875 free_node_inode:
1876 mutex_lock(&sbi->umount_mutex);
1877 f2fs_leave_shrinker(sbi);
1878 iput(sbi->node_inode);
1879 mutex_unlock(&sbi->umount_mutex);
1880 free_nm:
1881 destroy_node_manager(sbi);
1882 free_sm:
1883 destroy_segment_manager(sbi);
1884 kfree(sbi->ckpt);
1885 free_meta_inode:
1886 make_bad_inode(sbi->meta_inode);
1887 iput(sbi->meta_inode);
1888 free_options:
1889 destroy_percpu_info(sbi);
1890 kfree(options);
1891 free_sb_buf:
1892 kfree(raw_super);
1893 free_sbi:
1894 if (sbi->s_chksum_driver)
1895 crypto_free_shash(sbi->s_chksum_driver);
1896 kfree(sbi);
1897
1898 /* give only one another chance */
1899 if (retry) {
1900 retry = false;
1901 shrink_dcache_sb(sb);
1902 goto try_onemore;
1903 }
1904 return err;
1905 }
1906
1907 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1908 const char *dev_name, void *data)
1909 {
1910 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1911 }
1912
1913 static void kill_f2fs_super(struct super_block *sb)
1914 {
1915 if (sb->s_root)
1916 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1917 kill_block_super(sb);
1918 }
1919
1920 static struct file_system_type f2fs_fs_type = {
1921 .owner = THIS_MODULE,
1922 .name = "f2fs",
1923 .mount = f2fs_mount,
1924 .kill_sb = kill_f2fs_super,
1925 .fs_flags = FS_REQUIRES_DEV,
1926 };
1927 MODULE_ALIAS_FS("f2fs");
1928
1929 static int __init init_inodecache(void)
1930 {
1931 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1932 sizeof(struct f2fs_inode_info), 0,
1933 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1934 if (!f2fs_inode_cachep)
1935 return -ENOMEM;
1936 return 0;
1937 }
1938
1939 static void destroy_inodecache(void)
1940 {
1941 /*
1942 * Make sure all delayed rcu free inodes are flushed before we
1943 * destroy cache.
1944 */
1945 rcu_barrier();
1946 kmem_cache_destroy(f2fs_inode_cachep);
1947 }
1948
1949 static int __init init_f2fs_fs(void)
1950 {
1951 int err;
1952
1953 f2fs_build_trace_ios();
1954
1955 err = init_inodecache();
1956 if (err)
1957 goto fail;
1958 err = create_node_manager_caches();
1959 if (err)
1960 goto free_inodecache;
1961 err = create_segment_manager_caches();
1962 if (err)
1963 goto free_node_manager_caches;
1964 err = create_checkpoint_caches();
1965 if (err)
1966 goto free_segment_manager_caches;
1967 err = create_extent_cache();
1968 if (err)
1969 goto free_checkpoint_caches;
1970 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1971 if (!f2fs_kset) {
1972 err = -ENOMEM;
1973 goto free_extent_cache;
1974 }
1975 #ifdef CONFIG_F2FS_FAULT_INJECTION
1976 f2fs_fault_inject.kset = f2fs_kset;
1977 f2fs_build_fault_attr(0);
1978 err = kobject_init_and_add(&f2fs_fault_inject, &f2fs_fault_ktype,
1979 NULL, "fault_injection");
1980 if (err) {
1981 f2fs_fault_inject.kset = NULL;
1982 goto free_kset;
1983 }
1984 #endif
1985 err = register_shrinker(&f2fs_shrinker_info);
1986 if (err)
1987 goto free_kset;
1988
1989 err = register_filesystem(&f2fs_fs_type);
1990 if (err)
1991 goto free_shrinker;
1992 err = f2fs_create_root_stats();
1993 if (err)
1994 goto free_filesystem;
1995 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1996 return 0;
1997
1998 free_filesystem:
1999 unregister_filesystem(&f2fs_fs_type);
2000 free_shrinker:
2001 unregister_shrinker(&f2fs_shrinker_info);
2002 free_kset:
2003 #ifdef CONFIG_F2FS_FAULT_INJECTION
2004 if (f2fs_fault_inject.kset)
2005 kobject_put(&f2fs_fault_inject);
2006 #endif
2007 kset_unregister(f2fs_kset);
2008 free_extent_cache:
2009 destroy_extent_cache();
2010 free_checkpoint_caches:
2011 destroy_checkpoint_caches();
2012 free_segment_manager_caches:
2013 destroy_segment_manager_caches();
2014 free_node_manager_caches:
2015 destroy_node_manager_caches();
2016 free_inodecache:
2017 destroy_inodecache();
2018 fail:
2019 return err;
2020 }
2021
2022 static void __exit exit_f2fs_fs(void)
2023 {
2024 remove_proc_entry("fs/f2fs", NULL);
2025 f2fs_destroy_root_stats();
2026 unregister_filesystem(&f2fs_fs_type);
2027 unregister_shrinker(&f2fs_shrinker_info);
2028 #ifdef CONFIG_F2FS_FAULT_INJECTION
2029 kobject_put(&f2fs_fault_inject);
2030 #endif
2031 kset_unregister(f2fs_kset);
2032 destroy_extent_cache();
2033 destroy_checkpoint_caches();
2034 destroy_segment_manager_caches();
2035 destroy_node_manager_caches();
2036 destroy_inodecache();
2037 f2fs_destroy_trace_ios();
2038 }
2039
2040 module_init(init_f2fs_fs)
2041 module_exit(exit_f2fs_fs)
2042
2043 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2044 MODULE_DESCRIPTION("Flash Friendly File System");
2045 MODULE_LICENSE("GPL");
This page took 0.188613 seconds and 5 git commands to generate.