Merge branch 'fixes' of git://ftp.arm.linux.org.uk/~rmk/linux-arm
[deliverable/linux.git] / fs / f2fs / super.c
1 /*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/f2fs.h>
36
37 static struct proc_dir_entry *f2fs_proc_root;
38 static struct kmem_cache *f2fs_inode_cachep;
39 static struct kset *f2fs_kset;
40
41 enum {
42 Opt_gc_background,
43 Opt_disable_roll_forward,
44 Opt_discard,
45 Opt_noheap,
46 Opt_user_xattr,
47 Opt_nouser_xattr,
48 Opt_acl,
49 Opt_noacl,
50 Opt_active_logs,
51 Opt_disable_ext_identify,
52 Opt_inline_xattr,
53 Opt_inline_data,
54 Opt_flush_merge,
55 Opt_nobarrier,
56 Opt_err,
57 };
58
59 static match_table_t f2fs_tokens = {
60 {Opt_gc_background, "background_gc=%s"},
61 {Opt_disable_roll_forward, "disable_roll_forward"},
62 {Opt_discard, "discard"},
63 {Opt_noheap, "no_heap"},
64 {Opt_user_xattr, "user_xattr"},
65 {Opt_nouser_xattr, "nouser_xattr"},
66 {Opt_acl, "acl"},
67 {Opt_noacl, "noacl"},
68 {Opt_active_logs, "active_logs=%u"},
69 {Opt_disable_ext_identify, "disable_ext_identify"},
70 {Opt_inline_xattr, "inline_xattr"},
71 {Opt_inline_data, "inline_data"},
72 {Opt_flush_merge, "flush_merge"},
73 {Opt_nobarrier, "nobarrier"},
74 {Opt_err, NULL},
75 };
76
77 /* Sysfs support for f2fs */
78 enum {
79 GC_THREAD, /* struct f2fs_gc_thread */
80 SM_INFO, /* struct f2fs_sm_info */
81 NM_INFO, /* struct f2fs_nm_info */
82 F2FS_SBI, /* struct f2fs_sb_info */
83 };
84
85 struct f2fs_attr {
86 struct attribute attr;
87 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
88 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
89 const char *, size_t);
90 int struct_type;
91 int offset;
92 };
93
94 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
95 {
96 if (struct_type == GC_THREAD)
97 return (unsigned char *)sbi->gc_thread;
98 else if (struct_type == SM_INFO)
99 return (unsigned char *)SM_I(sbi);
100 else if (struct_type == NM_INFO)
101 return (unsigned char *)NM_I(sbi);
102 else if (struct_type == F2FS_SBI)
103 return (unsigned char *)sbi;
104 return NULL;
105 }
106
107 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
108 struct f2fs_sb_info *sbi, char *buf)
109 {
110 unsigned char *ptr = NULL;
111 unsigned int *ui;
112
113 ptr = __struct_ptr(sbi, a->struct_type);
114 if (!ptr)
115 return -EINVAL;
116
117 ui = (unsigned int *)(ptr + a->offset);
118
119 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
120 }
121
122 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
123 struct f2fs_sb_info *sbi,
124 const char *buf, size_t count)
125 {
126 unsigned char *ptr;
127 unsigned long t;
128 unsigned int *ui;
129 ssize_t ret;
130
131 ptr = __struct_ptr(sbi, a->struct_type);
132 if (!ptr)
133 return -EINVAL;
134
135 ui = (unsigned int *)(ptr + a->offset);
136
137 ret = kstrtoul(skip_spaces(buf), 0, &t);
138 if (ret < 0)
139 return ret;
140 *ui = t;
141 return count;
142 }
143
144 static ssize_t f2fs_attr_show(struct kobject *kobj,
145 struct attribute *attr, char *buf)
146 {
147 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
148 s_kobj);
149 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
150
151 return a->show ? a->show(a, sbi, buf) : 0;
152 }
153
154 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
155 const char *buf, size_t len)
156 {
157 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
158 s_kobj);
159 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
160
161 return a->store ? a->store(a, sbi, buf, len) : 0;
162 }
163
164 static void f2fs_sb_release(struct kobject *kobj)
165 {
166 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
167 s_kobj);
168 complete(&sbi->s_kobj_unregister);
169 }
170
171 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
172 static struct f2fs_attr f2fs_attr_##_name = { \
173 .attr = {.name = __stringify(_name), .mode = _mode }, \
174 .show = _show, \
175 .store = _store, \
176 .struct_type = _struct_type, \
177 .offset = _offset \
178 }
179
180 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
181 F2FS_ATTR_OFFSET(struct_type, name, 0644, \
182 f2fs_sbi_show, f2fs_sbi_store, \
183 offsetof(struct struct_name, elname))
184
185 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
186 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
187 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
188 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
189 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
190 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
191 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
192 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
193 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
194 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
195 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
196 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
197
198 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
199 static struct attribute *f2fs_attrs[] = {
200 ATTR_LIST(gc_min_sleep_time),
201 ATTR_LIST(gc_max_sleep_time),
202 ATTR_LIST(gc_no_gc_sleep_time),
203 ATTR_LIST(gc_idle),
204 ATTR_LIST(reclaim_segments),
205 ATTR_LIST(max_small_discards),
206 ATTR_LIST(ipu_policy),
207 ATTR_LIST(min_ipu_util),
208 ATTR_LIST(min_fsync_blocks),
209 ATTR_LIST(max_victim_search),
210 ATTR_LIST(dir_level),
211 ATTR_LIST(ram_thresh),
212 NULL,
213 };
214
215 static const struct sysfs_ops f2fs_attr_ops = {
216 .show = f2fs_attr_show,
217 .store = f2fs_attr_store,
218 };
219
220 static struct kobj_type f2fs_ktype = {
221 .default_attrs = f2fs_attrs,
222 .sysfs_ops = &f2fs_attr_ops,
223 .release = f2fs_sb_release,
224 };
225
226 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
227 {
228 struct va_format vaf;
229 va_list args;
230
231 va_start(args, fmt);
232 vaf.fmt = fmt;
233 vaf.va = &args;
234 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
235 va_end(args);
236 }
237
238 static void init_once(void *foo)
239 {
240 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
241
242 inode_init_once(&fi->vfs_inode);
243 }
244
245 static int parse_options(struct super_block *sb, char *options)
246 {
247 struct f2fs_sb_info *sbi = F2FS_SB(sb);
248 substring_t args[MAX_OPT_ARGS];
249 char *p, *name;
250 int arg = 0;
251
252 if (!options)
253 return 0;
254
255 while ((p = strsep(&options, ",")) != NULL) {
256 int token;
257 if (!*p)
258 continue;
259 /*
260 * Initialize args struct so we know whether arg was
261 * found; some options take optional arguments.
262 */
263 args[0].to = args[0].from = NULL;
264 token = match_token(p, f2fs_tokens, args);
265
266 switch (token) {
267 case Opt_gc_background:
268 name = match_strdup(&args[0]);
269
270 if (!name)
271 return -ENOMEM;
272 if (strlen(name) == 2 && !strncmp(name, "on", 2))
273 set_opt(sbi, BG_GC);
274 else if (strlen(name) == 3 && !strncmp(name, "off", 3))
275 clear_opt(sbi, BG_GC);
276 else {
277 kfree(name);
278 return -EINVAL;
279 }
280 kfree(name);
281 break;
282 case Opt_disable_roll_forward:
283 set_opt(sbi, DISABLE_ROLL_FORWARD);
284 break;
285 case Opt_discard:
286 set_opt(sbi, DISCARD);
287 break;
288 case Opt_noheap:
289 set_opt(sbi, NOHEAP);
290 break;
291 #ifdef CONFIG_F2FS_FS_XATTR
292 case Opt_user_xattr:
293 set_opt(sbi, XATTR_USER);
294 break;
295 case Opt_nouser_xattr:
296 clear_opt(sbi, XATTR_USER);
297 break;
298 case Opt_inline_xattr:
299 set_opt(sbi, INLINE_XATTR);
300 break;
301 #else
302 case Opt_user_xattr:
303 f2fs_msg(sb, KERN_INFO,
304 "user_xattr options not supported");
305 break;
306 case Opt_nouser_xattr:
307 f2fs_msg(sb, KERN_INFO,
308 "nouser_xattr options not supported");
309 break;
310 case Opt_inline_xattr:
311 f2fs_msg(sb, KERN_INFO,
312 "inline_xattr options not supported");
313 break;
314 #endif
315 #ifdef CONFIG_F2FS_FS_POSIX_ACL
316 case Opt_acl:
317 set_opt(sbi, POSIX_ACL);
318 break;
319 case Opt_noacl:
320 clear_opt(sbi, POSIX_ACL);
321 break;
322 #else
323 case Opt_acl:
324 f2fs_msg(sb, KERN_INFO, "acl options not supported");
325 break;
326 case Opt_noacl:
327 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
328 break;
329 #endif
330 case Opt_active_logs:
331 if (args->from && match_int(args, &arg))
332 return -EINVAL;
333 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
334 return -EINVAL;
335 sbi->active_logs = arg;
336 break;
337 case Opt_disable_ext_identify:
338 set_opt(sbi, DISABLE_EXT_IDENTIFY);
339 break;
340 case Opt_inline_data:
341 set_opt(sbi, INLINE_DATA);
342 break;
343 case Opt_flush_merge:
344 set_opt(sbi, FLUSH_MERGE);
345 break;
346 case Opt_nobarrier:
347 set_opt(sbi, NOBARRIER);
348 break;
349 default:
350 f2fs_msg(sb, KERN_ERR,
351 "Unrecognized mount option \"%s\" or missing value",
352 p);
353 return -EINVAL;
354 }
355 }
356 return 0;
357 }
358
359 static struct inode *f2fs_alloc_inode(struct super_block *sb)
360 {
361 struct f2fs_inode_info *fi;
362
363 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
364 if (!fi)
365 return NULL;
366
367 init_once((void *) fi);
368
369 /* Initialize f2fs-specific inode info */
370 fi->vfs_inode.i_version = 1;
371 atomic_set(&fi->dirty_pages, 0);
372 fi->i_current_depth = 1;
373 fi->i_advise = 0;
374 rwlock_init(&fi->ext.ext_lock);
375 init_rwsem(&fi->i_sem);
376 INIT_LIST_HEAD(&fi->inmem_pages);
377 mutex_init(&fi->inmem_lock);
378
379 set_inode_flag(fi, FI_NEW_INODE);
380
381 if (test_opt(F2FS_SB(sb), INLINE_XATTR))
382 set_inode_flag(fi, FI_INLINE_XATTR);
383
384 /* Will be used by directory only */
385 fi->i_dir_level = F2FS_SB(sb)->dir_level;
386
387 return &fi->vfs_inode;
388 }
389
390 static int f2fs_drop_inode(struct inode *inode)
391 {
392 /*
393 * This is to avoid a deadlock condition like below.
394 * writeback_single_inode(inode)
395 * - f2fs_write_data_page
396 * - f2fs_gc -> iput -> evict
397 * - inode_wait_for_writeback(inode)
398 */
399 if (!inode_unhashed(inode) && inode->i_state & I_SYNC)
400 return 0;
401 return generic_drop_inode(inode);
402 }
403
404 /*
405 * f2fs_dirty_inode() is called from __mark_inode_dirty()
406 *
407 * We should call set_dirty_inode to write the dirty inode through write_inode.
408 */
409 static void f2fs_dirty_inode(struct inode *inode, int flags)
410 {
411 set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
412 }
413
414 static void f2fs_i_callback(struct rcu_head *head)
415 {
416 struct inode *inode = container_of(head, struct inode, i_rcu);
417 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
418 }
419
420 static void f2fs_destroy_inode(struct inode *inode)
421 {
422 call_rcu(&inode->i_rcu, f2fs_i_callback);
423 }
424
425 static void f2fs_put_super(struct super_block *sb)
426 {
427 struct f2fs_sb_info *sbi = F2FS_SB(sb);
428
429 if (sbi->s_proc) {
430 remove_proc_entry("segment_info", sbi->s_proc);
431 remove_proc_entry(sb->s_id, f2fs_proc_root);
432 }
433 kobject_del(&sbi->s_kobj);
434
435 f2fs_destroy_stats(sbi);
436 stop_gc_thread(sbi);
437
438 /* We don't need to do checkpoint when it's clean */
439 if (sbi->s_dirty) {
440 struct cp_control cpc = {
441 .reason = CP_UMOUNT,
442 };
443 write_checkpoint(sbi, &cpc);
444 }
445
446 /*
447 * normally superblock is clean, so we need to release this.
448 * In addition, EIO will skip do checkpoint, we need this as well.
449 */
450 release_dirty_inode(sbi);
451 release_discard_addrs(sbi);
452
453 iput(sbi->node_inode);
454 iput(sbi->meta_inode);
455
456 /* destroy f2fs internal modules */
457 destroy_node_manager(sbi);
458 destroy_segment_manager(sbi);
459
460 kfree(sbi->ckpt);
461 kobject_put(&sbi->s_kobj);
462 wait_for_completion(&sbi->s_kobj_unregister);
463
464 sb->s_fs_info = NULL;
465 brelse(sbi->raw_super_buf);
466 kfree(sbi);
467 }
468
469 int f2fs_sync_fs(struct super_block *sb, int sync)
470 {
471 struct f2fs_sb_info *sbi = F2FS_SB(sb);
472
473 trace_f2fs_sync_fs(sb, sync);
474
475 if (sync) {
476 struct cp_control cpc = {
477 .reason = CP_SYNC,
478 };
479 mutex_lock(&sbi->gc_mutex);
480 write_checkpoint(sbi, &cpc);
481 mutex_unlock(&sbi->gc_mutex);
482 } else {
483 f2fs_balance_fs(sbi);
484 }
485
486 return 0;
487 }
488
489 static int f2fs_freeze(struct super_block *sb)
490 {
491 int err;
492
493 if (f2fs_readonly(sb))
494 return 0;
495
496 err = f2fs_sync_fs(sb, 1);
497 return err;
498 }
499
500 static int f2fs_unfreeze(struct super_block *sb)
501 {
502 return 0;
503 }
504
505 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
506 {
507 struct super_block *sb = dentry->d_sb;
508 struct f2fs_sb_info *sbi = F2FS_SB(sb);
509 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
510 block_t total_count, user_block_count, start_count, ovp_count;
511
512 total_count = le64_to_cpu(sbi->raw_super->block_count);
513 user_block_count = sbi->user_block_count;
514 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
515 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
516 buf->f_type = F2FS_SUPER_MAGIC;
517 buf->f_bsize = sbi->blocksize;
518
519 buf->f_blocks = total_count - start_count;
520 buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
521 buf->f_bavail = user_block_count - valid_user_blocks(sbi);
522
523 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
524 buf->f_ffree = buf->f_files - valid_inode_count(sbi);
525
526 buf->f_namelen = F2FS_NAME_LEN;
527 buf->f_fsid.val[0] = (u32)id;
528 buf->f_fsid.val[1] = (u32)(id >> 32);
529
530 return 0;
531 }
532
533 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
534 {
535 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
536
537 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC))
538 seq_printf(seq, ",background_gc=%s", "on");
539 else
540 seq_printf(seq, ",background_gc=%s", "off");
541 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
542 seq_puts(seq, ",disable_roll_forward");
543 if (test_opt(sbi, DISCARD))
544 seq_puts(seq, ",discard");
545 if (test_opt(sbi, NOHEAP))
546 seq_puts(seq, ",no_heap_alloc");
547 #ifdef CONFIG_F2FS_FS_XATTR
548 if (test_opt(sbi, XATTR_USER))
549 seq_puts(seq, ",user_xattr");
550 else
551 seq_puts(seq, ",nouser_xattr");
552 if (test_opt(sbi, INLINE_XATTR))
553 seq_puts(seq, ",inline_xattr");
554 #endif
555 #ifdef CONFIG_F2FS_FS_POSIX_ACL
556 if (test_opt(sbi, POSIX_ACL))
557 seq_puts(seq, ",acl");
558 else
559 seq_puts(seq, ",noacl");
560 #endif
561 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
562 seq_puts(seq, ",disable_ext_identify");
563 if (test_opt(sbi, INLINE_DATA))
564 seq_puts(seq, ",inline_data");
565 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
566 seq_puts(seq, ",flush_merge");
567 if (test_opt(sbi, NOBARRIER))
568 seq_puts(seq, ",nobarrier");
569 seq_printf(seq, ",active_logs=%u", sbi->active_logs);
570
571 return 0;
572 }
573
574 static int segment_info_seq_show(struct seq_file *seq, void *offset)
575 {
576 struct super_block *sb = seq->private;
577 struct f2fs_sb_info *sbi = F2FS_SB(sb);
578 unsigned int total_segs =
579 le32_to_cpu(sbi->raw_super->segment_count_main);
580 int i;
581
582 seq_puts(seq, "format: segment_type|valid_blocks\n"
583 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
584
585 for (i = 0; i < total_segs; i++) {
586 struct seg_entry *se = get_seg_entry(sbi, i);
587
588 if ((i % 10) == 0)
589 seq_printf(seq, "%-5d", i);
590 seq_printf(seq, "%d|%-3u", se->type,
591 get_valid_blocks(sbi, i, 1));
592 if ((i % 10) == 9 || i == (total_segs - 1))
593 seq_putc(seq, '\n');
594 else
595 seq_putc(seq, ' ');
596 }
597
598 return 0;
599 }
600
601 static int segment_info_open_fs(struct inode *inode, struct file *file)
602 {
603 return single_open(file, segment_info_seq_show, PDE_DATA(inode));
604 }
605
606 static const struct file_operations f2fs_seq_segment_info_fops = {
607 .owner = THIS_MODULE,
608 .open = segment_info_open_fs,
609 .read = seq_read,
610 .llseek = seq_lseek,
611 .release = single_release,
612 };
613
614 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
615 {
616 struct f2fs_sb_info *sbi = F2FS_SB(sb);
617 struct f2fs_mount_info org_mount_opt;
618 int err, active_logs;
619 bool need_restart_gc = false;
620 bool need_stop_gc = false;
621
622 sync_filesystem(sb);
623
624 /*
625 * Save the old mount options in case we
626 * need to restore them.
627 */
628 org_mount_opt = sbi->mount_opt;
629 active_logs = sbi->active_logs;
630
631 sbi->mount_opt.opt = 0;
632 sbi->active_logs = NR_CURSEG_TYPE;
633
634 /* parse mount options */
635 err = parse_options(sb, data);
636 if (err)
637 goto restore_opts;
638
639 /*
640 * Previous and new state of filesystem is RO,
641 * so skip checking GC and FLUSH_MERGE conditions.
642 */
643 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
644 goto skip;
645
646 /*
647 * We stop the GC thread if FS is mounted as RO
648 * or if background_gc = off is passed in mount
649 * option. Also sync the filesystem.
650 */
651 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
652 if (sbi->gc_thread) {
653 stop_gc_thread(sbi);
654 f2fs_sync_fs(sb, 1);
655 need_restart_gc = true;
656 }
657 } else if (test_opt(sbi, BG_GC) && !sbi->gc_thread) {
658 err = start_gc_thread(sbi);
659 if (err)
660 goto restore_opts;
661 need_stop_gc = true;
662 }
663
664 /*
665 * We stop issue flush thread if FS is mounted as RO
666 * or if flush_merge is not passed in mount option.
667 */
668 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
669 destroy_flush_cmd_control(sbi);
670 } else if (test_opt(sbi, FLUSH_MERGE) && !SM_I(sbi)->cmd_control_info) {
671 err = create_flush_cmd_control(sbi);
672 if (err)
673 goto restore_gc;
674 }
675 skip:
676 /* Update the POSIXACL Flag */
677 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
678 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
679 return 0;
680 restore_gc:
681 if (need_restart_gc) {
682 if (start_gc_thread(sbi))
683 f2fs_msg(sbi->sb, KERN_WARNING,
684 "background gc thread has stopped");
685 } else if (need_stop_gc) {
686 stop_gc_thread(sbi);
687 }
688 restore_opts:
689 sbi->mount_opt = org_mount_opt;
690 sbi->active_logs = active_logs;
691 return err;
692 }
693
694 static struct super_operations f2fs_sops = {
695 .alloc_inode = f2fs_alloc_inode,
696 .drop_inode = f2fs_drop_inode,
697 .destroy_inode = f2fs_destroy_inode,
698 .write_inode = f2fs_write_inode,
699 .dirty_inode = f2fs_dirty_inode,
700 .show_options = f2fs_show_options,
701 .evict_inode = f2fs_evict_inode,
702 .put_super = f2fs_put_super,
703 .sync_fs = f2fs_sync_fs,
704 .freeze_fs = f2fs_freeze,
705 .unfreeze_fs = f2fs_unfreeze,
706 .statfs = f2fs_statfs,
707 .remount_fs = f2fs_remount,
708 };
709
710 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
711 u64 ino, u32 generation)
712 {
713 struct f2fs_sb_info *sbi = F2FS_SB(sb);
714 struct inode *inode;
715
716 if (check_nid_range(sbi, ino))
717 return ERR_PTR(-ESTALE);
718
719 /*
720 * f2fs_iget isn't quite right if the inode is currently unallocated!
721 * However f2fs_iget currently does appropriate checks to handle stale
722 * inodes so everything is OK.
723 */
724 inode = f2fs_iget(sb, ino);
725 if (IS_ERR(inode))
726 return ERR_CAST(inode);
727 if (unlikely(generation && inode->i_generation != generation)) {
728 /* we didn't find the right inode.. */
729 iput(inode);
730 return ERR_PTR(-ESTALE);
731 }
732 return inode;
733 }
734
735 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
736 int fh_len, int fh_type)
737 {
738 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
739 f2fs_nfs_get_inode);
740 }
741
742 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
743 int fh_len, int fh_type)
744 {
745 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
746 f2fs_nfs_get_inode);
747 }
748
749 static const struct export_operations f2fs_export_ops = {
750 .fh_to_dentry = f2fs_fh_to_dentry,
751 .fh_to_parent = f2fs_fh_to_parent,
752 .get_parent = f2fs_get_parent,
753 };
754
755 static loff_t max_file_size(unsigned bits)
756 {
757 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
758 loff_t leaf_count = ADDRS_PER_BLOCK;
759
760 /* two direct node blocks */
761 result += (leaf_count * 2);
762
763 /* two indirect node blocks */
764 leaf_count *= NIDS_PER_BLOCK;
765 result += (leaf_count * 2);
766
767 /* one double indirect node block */
768 leaf_count *= NIDS_PER_BLOCK;
769 result += leaf_count;
770
771 result <<= bits;
772 return result;
773 }
774
775 static int sanity_check_raw_super(struct super_block *sb,
776 struct f2fs_super_block *raw_super)
777 {
778 unsigned int blocksize;
779
780 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
781 f2fs_msg(sb, KERN_INFO,
782 "Magic Mismatch, valid(0x%x) - read(0x%x)",
783 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
784 return 1;
785 }
786
787 /* Currently, support only 4KB page cache size */
788 if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
789 f2fs_msg(sb, KERN_INFO,
790 "Invalid page_cache_size (%lu), supports only 4KB\n",
791 PAGE_CACHE_SIZE);
792 return 1;
793 }
794
795 /* Currently, support only 4KB block size */
796 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
797 if (blocksize != F2FS_BLKSIZE) {
798 f2fs_msg(sb, KERN_INFO,
799 "Invalid blocksize (%u), supports only 4KB\n",
800 blocksize);
801 return 1;
802 }
803
804 /* Currently, support 512/1024/2048/4096 bytes sector size */
805 if (le32_to_cpu(raw_super->log_sectorsize) >
806 F2FS_MAX_LOG_SECTOR_SIZE ||
807 le32_to_cpu(raw_super->log_sectorsize) <
808 F2FS_MIN_LOG_SECTOR_SIZE) {
809 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
810 le32_to_cpu(raw_super->log_sectorsize));
811 return 1;
812 }
813 if (le32_to_cpu(raw_super->log_sectors_per_block) +
814 le32_to_cpu(raw_super->log_sectorsize) !=
815 F2FS_MAX_LOG_SECTOR_SIZE) {
816 f2fs_msg(sb, KERN_INFO,
817 "Invalid log sectors per block(%u) log sectorsize(%u)",
818 le32_to_cpu(raw_super->log_sectors_per_block),
819 le32_to_cpu(raw_super->log_sectorsize));
820 return 1;
821 }
822 return 0;
823 }
824
825 static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
826 {
827 unsigned int total, fsmeta;
828 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
829 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
830
831 total = le32_to_cpu(raw_super->segment_count);
832 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
833 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
834 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
835 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
836 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
837
838 if (unlikely(fsmeta >= total))
839 return 1;
840
841 if (unlikely(f2fs_cp_error(sbi))) {
842 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
843 return 1;
844 }
845 return 0;
846 }
847
848 static void init_sb_info(struct f2fs_sb_info *sbi)
849 {
850 struct f2fs_super_block *raw_super = sbi->raw_super;
851 int i;
852
853 sbi->log_sectors_per_block =
854 le32_to_cpu(raw_super->log_sectors_per_block);
855 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
856 sbi->blocksize = 1 << sbi->log_blocksize;
857 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
858 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
859 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
860 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
861 sbi->total_sections = le32_to_cpu(raw_super->section_count);
862 sbi->total_node_count =
863 (le32_to_cpu(raw_super->segment_count_nat) / 2)
864 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
865 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
866 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
867 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
868 sbi->cur_victim_sec = NULL_SECNO;
869 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
870
871 for (i = 0; i < NR_COUNT_TYPE; i++)
872 atomic_set(&sbi->nr_pages[i], 0);
873
874 sbi->dir_level = DEF_DIR_LEVEL;
875 sbi->need_fsck = false;
876 }
877
878 /*
879 * Read f2fs raw super block.
880 * Because we have two copies of super block, so read the first one at first,
881 * if the first one is invalid, move to read the second one.
882 */
883 static int read_raw_super_block(struct super_block *sb,
884 struct f2fs_super_block **raw_super,
885 struct buffer_head **raw_super_buf)
886 {
887 int block = 0;
888
889 retry:
890 *raw_super_buf = sb_bread(sb, block);
891 if (!*raw_super_buf) {
892 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
893 block + 1);
894 if (block == 0) {
895 block++;
896 goto retry;
897 } else {
898 return -EIO;
899 }
900 }
901
902 *raw_super = (struct f2fs_super_block *)
903 ((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET);
904
905 /* sanity checking of raw super */
906 if (sanity_check_raw_super(sb, *raw_super)) {
907 brelse(*raw_super_buf);
908 f2fs_msg(sb, KERN_ERR,
909 "Can't find valid F2FS filesystem in %dth superblock",
910 block + 1);
911 if (block == 0) {
912 block++;
913 goto retry;
914 } else {
915 return -EINVAL;
916 }
917 }
918
919 return 0;
920 }
921
922 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
923 {
924 struct f2fs_sb_info *sbi;
925 struct f2fs_super_block *raw_super;
926 struct buffer_head *raw_super_buf;
927 struct inode *root;
928 long err = -EINVAL;
929 bool retry = true;
930 int i;
931
932 try_onemore:
933 /* allocate memory for f2fs-specific super block info */
934 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
935 if (!sbi)
936 return -ENOMEM;
937
938 /* set a block size */
939 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
940 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
941 goto free_sbi;
942 }
943
944 err = read_raw_super_block(sb, &raw_super, &raw_super_buf);
945 if (err)
946 goto free_sbi;
947
948 sb->s_fs_info = sbi;
949 /* init some FS parameters */
950 sbi->active_logs = NR_CURSEG_TYPE;
951
952 set_opt(sbi, BG_GC);
953
954 #ifdef CONFIG_F2FS_FS_XATTR
955 set_opt(sbi, XATTR_USER);
956 #endif
957 #ifdef CONFIG_F2FS_FS_POSIX_ACL
958 set_opt(sbi, POSIX_ACL);
959 #endif
960 /* parse mount options */
961 err = parse_options(sb, (char *)data);
962 if (err)
963 goto free_sb_buf;
964
965 sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
966 sb->s_max_links = F2FS_LINK_MAX;
967 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
968
969 sb->s_op = &f2fs_sops;
970 sb->s_xattr = f2fs_xattr_handlers;
971 sb->s_export_op = &f2fs_export_ops;
972 sb->s_magic = F2FS_SUPER_MAGIC;
973 sb->s_time_gran = 1;
974 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
975 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
976 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
977
978 /* init f2fs-specific super block info */
979 sbi->sb = sb;
980 sbi->raw_super = raw_super;
981 sbi->raw_super_buf = raw_super_buf;
982 mutex_init(&sbi->gc_mutex);
983 mutex_init(&sbi->writepages);
984 mutex_init(&sbi->cp_mutex);
985 init_rwsem(&sbi->node_write);
986 sbi->por_doing = false;
987 spin_lock_init(&sbi->stat_lock);
988
989 init_rwsem(&sbi->read_io.io_rwsem);
990 sbi->read_io.sbi = sbi;
991 sbi->read_io.bio = NULL;
992 for (i = 0; i < NR_PAGE_TYPE; i++) {
993 init_rwsem(&sbi->write_io[i].io_rwsem);
994 sbi->write_io[i].sbi = sbi;
995 sbi->write_io[i].bio = NULL;
996 }
997
998 init_rwsem(&sbi->cp_rwsem);
999 init_waitqueue_head(&sbi->cp_wait);
1000 init_sb_info(sbi);
1001
1002 /* get an inode for meta space */
1003 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1004 if (IS_ERR(sbi->meta_inode)) {
1005 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1006 err = PTR_ERR(sbi->meta_inode);
1007 goto free_sb_buf;
1008 }
1009
1010 err = get_valid_checkpoint(sbi);
1011 if (err) {
1012 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1013 goto free_meta_inode;
1014 }
1015
1016 /* sanity checking of checkpoint */
1017 err = -EINVAL;
1018 if (sanity_check_ckpt(sbi)) {
1019 f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
1020 goto free_cp;
1021 }
1022
1023 sbi->total_valid_node_count =
1024 le32_to_cpu(sbi->ckpt->valid_node_count);
1025 sbi->total_valid_inode_count =
1026 le32_to_cpu(sbi->ckpt->valid_inode_count);
1027 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1028 sbi->total_valid_block_count =
1029 le64_to_cpu(sbi->ckpt->valid_block_count);
1030 sbi->last_valid_block_count = sbi->total_valid_block_count;
1031 sbi->alloc_valid_block_count = 0;
1032 INIT_LIST_HEAD(&sbi->dir_inode_list);
1033 spin_lock_init(&sbi->dir_inode_lock);
1034
1035 init_ino_entry_info(sbi);
1036
1037 /* setup f2fs internal modules */
1038 err = build_segment_manager(sbi);
1039 if (err) {
1040 f2fs_msg(sb, KERN_ERR,
1041 "Failed to initialize F2FS segment manager");
1042 goto free_sm;
1043 }
1044 err = build_node_manager(sbi);
1045 if (err) {
1046 f2fs_msg(sb, KERN_ERR,
1047 "Failed to initialize F2FS node manager");
1048 goto free_nm;
1049 }
1050
1051 build_gc_manager(sbi);
1052
1053 /* get an inode for node space */
1054 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1055 if (IS_ERR(sbi->node_inode)) {
1056 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1057 err = PTR_ERR(sbi->node_inode);
1058 goto free_nm;
1059 }
1060
1061 /* if there are nt orphan nodes free them */
1062 recover_orphan_inodes(sbi);
1063
1064 /* read root inode and dentry */
1065 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1066 if (IS_ERR(root)) {
1067 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1068 err = PTR_ERR(root);
1069 goto free_node_inode;
1070 }
1071 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1072 iput(root);
1073 err = -EINVAL;
1074 goto free_node_inode;
1075 }
1076
1077 sb->s_root = d_make_root(root); /* allocate root dentry */
1078 if (!sb->s_root) {
1079 err = -ENOMEM;
1080 goto free_root_inode;
1081 }
1082
1083 err = f2fs_build_stats(sbi);
1084 if (err)
1085 goto free_root_inode;
1086
1087 if (f2fs_proc_root)
1088 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1089
1090 if (sbi->s_proc)
1091 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1092 &f2fs_seq_segment_info_fops, sb);
1093
1094 if (test_opt(sbi, DISCARD)) {
1095 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1096 if (!blk_queue_discard(q))
1097 f2fs_msg(sb, KERN_WARNING,
1098 "mounting with \"discard\" option, but "
1099 "the device does not support discard");
1100 }
1101
1102 sbi->s_kobj.kset = f2fs_kset;
1103 init_completion(&sbi->s_kobj_unregister);
1104 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1105 "%s", sb->s_id);
1106 if (err)
1107 goto free_proc;
1108
1109 if (!retry)
1110 sbi->need_fsck = true;
1111
1112 /* recover fsynced data */
1113 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1114 err = recover_fsync_data(sbi);
1115 if (err) {
1116 f2fs_msg(sb, KERN_ERR,
1117 "Cannot recover all fsync data errno=%ld", err);
1118 goto free_kobj;
1119 }
1120 }
1121
1122 /*
1123 * If filesystem is not mounted as read-only then
1124 * do start the gc_thread.
1125 */
1126 if (!f2fs_readonly(sb)) {
1127 /* After POR, we can run background GC thread.*/
1128 err = start_gc_thread(sbi);
1129 if (err)
1130 goto free_kobj;
1131 }
1132 return 0;
1133
1134 free_kobj:
1135 kobject_del(&sbi->s_kobj);
1136 free_proc:
1137 if (sbi->s_proc) {
1138 remove_proc_entry("segment_info", sbi->s_proc);
1139 remove_proc_entry(sb->s_id, f2fs_proc_root);
1140 }
1141 f2fs_destroy_stats(sbi);
1142 free_root_inode:
1143 dput(sb->s_root);
1144 sb->s_root = NULL;
1145 free_node_inode:
1146 iput(sbi->node_inode);
1147 free_nm:
1148 destroy_node_manager(sbi);
1149 free_sm:
1150 destroy_segment_manager(sbi);
1151 free_cp:
1152 kfree(sbi->ckpt);
1153 free_meta_inode:
1154 make_bad_inode(sbi->meta_inode);
1155 iput(sbi->meta_inode);
1156 free_sb_buf:
1157 brelse(raw_super_buf);
1158 free_sbi:
1159 kfree(sbi);
1160
1161 /* give only one another chance */
1162 if (retry) {
1163 retry = 0;
1164 shrink_dcache_sb(sb);
1165 goto try_onemore;
1166 }
1167 return err;
1168 }
1169
1170 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1171 const char *dev_name, void *data)
1172 {
1173 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1174 }
1175
1176 static struct file_system_type f2fs_fs_type = {
1177 .owner = THIS_MODULE,
1178 .name = "f2fs",
1179 .mount = f2fs_mount,
1180 .kill_sb = kill_block_super,
1181 .fs_flags = FS_REQUIRES_DEV,
1182 };
1183 MODULE_ALIAS_FS("f2fs");
1184
1185 static int __init init_inodecache(void)
1186 {
1187 f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
1188 sizeof(struct f2fs_inode_info));
1189 if (!f2fs_inode_cachep)
1190 return -ENOMEM;
1191 return 0;
1192 }
1193
1194 static void destroy_inodecache(void)
1195 {
1196 /*
1197 * Make sure all delayed rcu free inodes are flushed before we
1198 * destroy cache.
1199 */
1200 rcu_barrier();
1201 kmem_cache_destroy(f2fs_inode_cachep);
1202 }
1203
1204 static int __init init_f2fs_fs(void)
1205 {
1206 int err;
1207
1208 err = init_inodecache();
1209 if (err)
1210 goto fail;
1211 err = create_node_manager_caches();
1212 if (err)
1213 goto free_inodecache;
1214 err = create_segment_manager_caches();
1215 if (err)
1216 goto free_node_manager_caches;
1217 err = create_gc_caches();
1218 if (err)
1219 goto free_segment_manager_caches;
1220 err = create_checkpoint_caches();
1221 if (err)
1222 goto free_gc_caches;
1223 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1224 if (!f2fs_kset) {
1225 err = -ENOMEM;
1226 goto free_checkpoint_caches;
1227 }
1228 err = register_filesystem(&f2fs_fs_type);
1229 if (err)
1230 goto free_kset;
1231 f2fs_create_root_stats();
1232 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1233 return 0;
1234
1235 free_kset:
1236 kset_unregister(f2fs_kset);
1237 free_checkpoint_caches:
1238 destroy_checkpoint_caches();
1239 free_gc_caches:
1240 destroy_gc_caches();
1241 free_segment_manager_caches:
1242 destroy_segment_manager_caches();
1243 free_node_manager_caches:
1244 destroy_node_manager_caches();
1245 free_inodecache:
1246 destroy_inodecache();
1247 fail:
1248 return err;
1249 }
1250
1251 static void __exit exit_f2fs_fs(void)
1252 {
1253 remove_proc_entry("fs/f2fs", NULL);
1254 f2fs_destroy_root_stats();
1255 unregister_filesystem(&f2fs_fs_type);
1256 destroy_checkpoint_caches();
1257 destroy_gc_caches();
1258 destroy_segment_manager_caches();
1259 destroy_node_manager_caches();
1260 destroy_inodecache();
1261 kset_unregister(f2fs_kset);
1262 }
1263
1264 module_init(init_f2fs_fs)
1265 module_exit(exit_f2fs_fs)
1266
1267 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1268 MODULE_DESCRIPTION("Flash Friendly File System");
1269 MODULE_LICENSE("GPL");
This page took 0.076892 seconds and 5 git commands to generate.