6fa4ec8ea1f701f5b81b70ab86a15eda12297b04
[deliverable/linux.git] / fs / f2fs / super.c
1 /*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 struct f2fs_fault_info f2fs_fault;
44
45 char *fault_name[FAULT_MAX] = {
46 [FAULT_KMALLOC] = "kmalloc",
47 [FAULT_PAGE_ALLOC] = "page alloc",
48 [FAULT_ALLOC_NID] = "alloc nid",
49 [FAULT_ORPHAN] = "orphan",
50 [FAULT_BLOCK] = "no more block",
51 [FAULT_DIR_DEPTH] = "too big dir depth",
52 };
53
54 static void f2fs_build_fault_attr(unsigned int rate)
55 {
56 if (rate) {
57 atomic_set(&f2fs_fault.inject_ops, 0);
58 f2fs_fault.inject_rate = rate;
59 f2fs_fault.inject_type = (1 << FAULT_MAX) - 1;
60 } else {
61 memset(&f2fs_fault, 0, sizeof(struct f2fs_fault_info));
62 }
63 }
64 #endif
65
66 /* f2fs-wide shrinker description */
67 static struct shrinker f2fs_shrinker_info = {
68 .scan_objects = f2fs_shrink_scan,
69 .count_objects = f2fs_shrink_count,
70 .seeks = DEFAULT_SEEKS,
71 };
72
73 enum {
74 Opt_gc_background,
75 Opt_disable_roll_forward,
76 Opt_norecovery,
77 Opt_discard,
78 Opt_noheap,
79 Opt_user_xattr,
80 Opt_nouser_xattr,
81 Opt_acl,
82 Opt_noacl,
83 Opt_active_logs,
84 Opt_disable_ext_identify,
85 Opt_inline_xattr,
86 Opt_inline_data,
87 Opt_inline_dentry,
88 Opt_flush_merge,
89 Opt_nobarrier,
90 Opt_fastboot,
91 Opt_extent_cache,
92 Opt_noextent_cache,
93 Opt_noinline_data,
94 Opt_data_flush,
95 Opt_fault_injection,
96 Opt_err,
97 };
98
99 static match_table_t f2fs_tokens = {
100 {Opt_gc_background, "background_gc=%s"},
101 {Opt_disable_roll_forward, "disable_roll_forward"},
102 {Opt_norecovery, "norecovery"},
103 {Opt_discard, "discard"},
104 {Opt_noheap, "no_heap"},
105 {Opt_user_xattr, "user_xattr"},
106 {Opt_nouser_xattr, "nouser_xattr"},
107 {Opt_acl, "acl"},
108 {Opt_noacl, "noacl"},
109 {Opt_active_logs, "active_logs=%u"},
110 {Opt_disable_ext_identify, "disable_ext_identify"},
111 {Opt_inline_xattr, "inline_xattr"},
112 {Opt_inline_data, "inline_data"},
113 {Opt_inline_dentry, "inline_dentry"},
114 {Opt_flush_merge, "flush_merge"},
115 {Opt_nobarrier, "nobarrier"},
116 {Opt_fastboot, "fastboot"},
117 {Opt_extent_cache, "extent_cache"},
118 {Opt_noextent_cache, "noextent_cache"},
119 {Opt_noinline_data, "noinline_data"},
120 {Opt_data_flush, "data_flush"},
121 {Opt_fault_injection, "fault_injection=%u"},
122 {Opt_err, NULL},
123 };
124
125 /* Sysfs support for f2fs */
126 enum {
127 GC_THREAD, /* struct f2fs_gc_thread */
128 SM_INFO, /* struct f2fs_sm_info */
129 NM_INFO, /* struct f2fs_nm_info */
130 F2FS_SBI, /* struct f2fs_sb_info */
131 #ifdef CONFIG_F2FS_FAULT_INJECTION
132 FAULT_INFO_RATE, /* struct f2fs_fault_info */
133 FAULT_INFO_TYPE, /* struct f2fs_fault_info */
134 #endif
135 };
136
137 struct f2fs_attr {
138 struct attribute attr;
139 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
140 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
141 const char *, size_t);
142 int struct_type;
143 int offset;
144 };
145
146 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
147 {
148 if (struct_type == GC_THREAD)
149 return (unsigned char *)sbi->gc_thread;
150 else if (struct_type == SM_INFO)
151 return (unsigned char *)SM_I(sbi);
152 else if (struct_type == NM_INFO)
153 return (unsigned char *)NM_I(sbi);
154 else if (struct_type == F2FS_SBI)
155 return (unsigned char *)sbi;
156 #ifdef CONFIG_F2FS_FAULT_INJECTION
157 else if (struct_type == FAULT_INFO_RATE ||
158 struct_type == FAULT_INFO_TYPE)
159 return (unsigned char *)&f2fs_fault;
160 #endif
161 return NULL;
162 }
163
164 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
165 struct f2fs_sb_info *sbi, char *buf)
166 {
167 struct super_block *sb = sbi->sb;
168
169 if (!sb->s_bdev->bd_part)
170 return snprintf(buf, PAGE_SIZE, "0\n");
171
172 return snprintf(buf, PAGE_SIZE, "%llu\n",
173 (unsigned long long)(sbi->kbytes_written +
174 BD_PART_WRITTEN(sbi)));
175 }
176
177 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
178 struct f2fs_sb_info *sbi, char *buf)
179 {
180 unsigned char *ptr = NULL;
181 unsigned int *ui;
182
183 ptr = __struct_ptr(sbi, a->struct_type);
184 if (!ptr)
185 return -EINVAL;
186
187 ui = (unsigned int *)(ptr + a->offset);
188
189 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
190 }
191
192 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
193 struct f2fs_sb_info *sbi,
194 const char *buf, size_t count)
195 {
196 unsigned char *ptr;
197 unsigned long t;
198 unsigned int *ui;
199 ssize_t ret;
200
201 ptr = __struct_ptr(sbi, a->struct_type);
202 if (!ptr)
203 return -EINVAL;
204
205 ui = (unsigned int *)(ptr + a->offset);
206
207 ret = kstrtoul(skip_spaces(buf), 0, &t);
208 if (ret < 0)
209 return ret;
210 #ifdef CONFIG_F2FS_FAULT_INJECTION
211 if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
212 return -EINVAL;
213 #endif
214 *ui = t;
215 return count;
216 }
217
218 static ssize_t f2fs_attr_show(struct kobject *kobj,
219 struct attribute *attr, char *buf)
220 {
221 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
222 s_kobj);
223 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
224
225 return a->show ? a->show(a, sbi, buf) : 0;
226 }
227
228 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
229 const char *buf, size_t len)
230 {
231 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
232 s_kobj);
233 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
234
235 return a->store ? a->store(a, sbi, buf, len) : 0;
236 }
237
238 static void f2fs_sb_release(struct kobject *kobj)
239 {
240 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
241 s_kobj);
242 complete(&sbi->s_kobj_unregister);
243 }
244
245 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
246 static struct f2fs_attr f2fs_attr_##_name = { \
247 .attr = {.name = __stringify(_name), .mode = _mode }, \
248 .show = _show, \
249 .store = _store, \
250 .struct_type = _struct_type, \
251 .offset = _offset \
252 }
253
254 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
255 F2FS_ATTR_OFFSET(struct_type, name, 0644, \
256 f2fs_sbi_show, f2fs_sbi_store, \
257 offsetof(struct struct_name, elname))
258
259 #define F2FS_GENERAL_RO_ATTR(name) \
260 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
261
262 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
263 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
264 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
265 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
266 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
267 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
268 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
269 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
270 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
271 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
272 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
273 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
274 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
275 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
276 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
277 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
278 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
279 #ifdef CONFIG_F2FS_FAULT_INJECTION
280 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
281 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
282 #endif
283 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
284
285 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
286 static struct attribute *f2fs_attrs[] = {
287 ATTR_LIST(gc_min_sleep_time),
288 ATTR_LIST(gc_max_sleep_time),
289 ATTR_LIST(gc_no_gc_sleep_time),
290 ATTR_LIST(gc_idle),
291 ATTR_LIST(reclaim_segments),
292 ATTR_LIST(max_small_discards),
293 ATTR_LIST(batched_trim_sections),
294 ATTR_LIST(ipu_policy),
295 ATTR_LIST(min_ipu_util),
296 ATTR_LIST(min_fsync_blocks),
297 ATTR_LIST(max_victim_search),
298 ATTR_LIST(dir_level),
299 ATTR_LIST(ram_thresh),
300 ATTR_LIST(ra_nid_pages),
301 ATTR_LIST(dirty_nats_ratio),
302 ATTR_LIST(cp_interval),
303 ATTR_LIST(idle_interval),
304 ATTR_LIST(lifetime_write_kbytes),
305 NULL,
306 };
307
308 static const struct sysfs_ops f2fs_attr_ops = {
309 .show = f2fs_attr_show,
310 .store = f2fs_attr_store,
311 };
312
313 static struct kobj_type f2fs_ktype = {
314 .default_attrs = f2fs_attrs,
315 .sysfs_ops = &f2fs_attr_ops,
316 .release = f2fs_sb_release,
317 };
318
319 #ifdef CONFIG_F2FS_FAULT_INJECTION
320 /* sysfs for f2fs fault injection */
321 static struct kobject f2fs_fault_inject;
322
323 static struct attribute *f2fs_fault_attrs[] = {
324 ATTR_LIST(inject_rate),
325 ATTR_LIST(inject_type),
326 NULL
327 };
328
329 static struct kobj_type f2fs_fault_ktype = {
330 .default_attrs = f2fs_fault_attrs,
331 .sysfs_ops = &f2fs_attr_ops,
332 };
333 #endif
334
335 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
336 {
337 struct va_format vaf;
338 va_list args;
339
340 va_start(args, fmt);
341 vaf.fmt = fmt;
342 vaf.va = &args;
343 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
344 va_end(args);
345 }
346
347 static void init_once(void *foo)
348 {
349 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
350
351 inode_init_once(&fi->vfs_inode);
352 }
353
354 static int parse_options(struct super_block *sb, char *options)
355 {
356 struct f2fs_sb_info *sbi = F2FS_SB(sb);
357 struct request_queue *q;
358 substring_t args[MAX_OPT_ARGS];
359 char *p, *name;
360 int arg = 0;
361
362 #ifdef CONFIG_F2FS_FAULT_INJECTION
363 f2fs_build_fault_attr(0);
364 #endif
365
366 if (!options)
367 return 0;
368
369 while ((p = strsep(&options, ",")) != NULL) {
370 int token;
371 if (!*p)
372 continue;
373 /*
374 * Initialize args struct so we know whether arg was
375 * found; some options take optional arguments.
376 */
377 args[0].to = args[0].from = NULL;
378 token = match_token(p, f2fs_tokens, args);
379
380 switch (token) {
381 case Opt_gc_background:
382 name = match_strdup(&args[0]);
383
384 if (!name)
385 return -ENOMEM;
386 if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
387 set_opt(sbi, BG_GC);
388 clear_opt(sbi, FORCE_FG_GC);
389 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
390 clear_opt(sbi, BG_GC);
391 clear_opt(sbi, FORCE_FG_GC);
392 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
393 set_opt(sbi, BG_GC);
394 set_opt(sbi, FORCE_FG_GC);
395 } else {
396 kfree(name);
397 return -EINVAL;
398 }
399 kfree(name);
400 break;
401 case Opt_disable_roll_forward:
402 set_opt(sbi, DISABLE_ROLL_FORWARD);
403 break;
404 case Opt_norecovery:
405 /* this option mounts f2fs with ro */
406 set_opt(sbi, DISABLE_ROLL_FORWARD);
407 if (!f2fs_readonly(sb))
408 return -EINVAL;
409 break;
410 case Opt_discard:
411 q = bdev_get_queue(sb->s_bdev);
412 if (blk_queue_discard(q)) {
413 set_opt(sbi, DISCARD);
414 } else {
415 f2fs_msg(sb, KERN_WARNING,
416 "mounting with \"discard\" option, but "
417 "the device does not support discard");
418 }
419 break;
420 case Opt_noheap:
421 set_opt(sbi, NOHEAP);
422 break;
423 #ifdef CONFIG_F2FS_FS_XATTR
424 case Opt_user_xattr:
425 set_opt(sbi, XATTR_USER);
426 break;
427 case Opt_nouser_xattr:
428 clear_opt(sbi, XATTR_USER);
429 break;
430 case Opt_inline_xattr:
431 set_opt(sbi, INLINE_XATTR);
432 break;
433 #else
434 case Opt_user_xattr:
435 f2fs_msg(sb, KERN_INFO,
436 "user_xattr options not supported");
437 break;
438 case Opt_nouser_xattr:
439 f2fs_msg(sb, KERN_INFO,
440 "nouser_xattr options not supported");
441 break;
442 case Opt_inline_xattr:
443 f2fs_msg(sb, KERN_INFO,
444 "inline_xattr options not supported");
445 break;
446 #endif
447 #ifdef CONFIG_F2FS_FS_POSIX_ACL
448 case Opt_acl:
449 set_opt(sbi, POSIX_ACL);
450 break;
451 case Opt_noacl:
452 clear_opt(sbi, POSIX_ACL);
453 break;
454 #else
455 case Opt_acl:
456 f2fs_msg(sb, KERN_INFO, "acl options not supported");
457 break;
458 case Opt_noacl:
459 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
460 break;
461 #endif
462 case Opt_active_logs:
463 if (args->from && match_int(args, &arg))
464 return -EINVAL;
465 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
466 return -EINVAL;
467 sbi->active_logs = arg;
468 break;
469 case Opt_disable_ext_identify:
470 set_opt(sbi, DISABLE_EXT_IDENTIFY);
471 break;
472 case Opt_inline_data:
473 set_opt(sbi, INLINE_DATA);
474 break;
475 case Opt_inline_dentry:
476 set_opt(sbi, INLINE_DENTRY);
477 break;
478 case Opt_flush_merge:
479 set_opt(sbi, FLUSH_MERGE);
480 break;
481 case Opt_nobarrier:
482 set_opt(sbi, NOBARRIER);
483 break;
484 case Opt_fastboot:
485 set_opt(sbi, FASTBOOT);
486 break;
487 case Opt_extent_cache:
488 set_opt(sbi, EXTENT_CACHE);
489 break;
490 case Opt_noextent_cache:
491 clear_opt(sbi, EXTENT_CACHE);
492 break;
493 case Opt_noinline_data:
494 clear_opt(sbi, INLINE_DATA);
495 break;
496 case Opt_data_flush:
497 set_opt(sbi, DATA_FLUSH);
498 break;
499 case Opt_fault_injection:
500 if (args->from && match_int(args, &arg))
501 return -EINVAL;
502 #ifdef CONFIG_F2FS_FAULT_INJECTION
503 f2fs_build_fault_attr(arg);
504 #else
505 f2fs_msg(sb, KERN_INFO,
506 "FAULT_INJECTION was not selected");
507 #endif
508 break;
509 default:
510 f2fs_msg(sb, KERN_ERR,
511 "Unrecognized mount option \"%s\" or missing value",
512 p);
513 return -EINVAL;
514 }
515 }
516 return 0;
517 }
518
519 static struct inode *f2fs_alloc_inode(struct super_block *sb)
520 {
521 struct f2fs_inode_info *fi;
522
523 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
524 if (!fi)
525 return NULL;
526
527 init_once((void *) fi);
528
529 if (percpu_counter_init(&fi->dirty_pages, 0, GFP_NOFS)) {
530 kmem_cache_free(f2fs_inode_cachep, fi);
531 return NULL;
532 }
533
534 /* Initialize f2fs-specific inode info */
535 fi->vfs_inode.i_version = 1;
536 fi->i_current_depth = 1;
537 fi->i_advise = 0;
538 init_rwsem(&fi->i_sem);
539 INIT_LIST_HEAD(&fi->dirty_list);
540 INIT_LIST_HEAD(&fi->gdirty_list);
541 INIT_LIST_HEAD(&fi->inmem_pages);
542 mutex_init(&fi->inmem_lock);
543
544 /* Will be used by directory only */
545 fi->i_dir_level = F2FS_SB(sb)->dir_level;
546 return &fi->vfs_inode;
547 }
548
549 static int f2fs_drop_inode(struct inode *inode)
550 {
551 int ret;
552
553 /*
554 * This is to avoid a deadlock condition like below.
555 * writeback_single_inode(inode)
556 * - f2fs_write_data_page
557 * - f2fs_gc -> iput -> evict
558 * - inode_wait_for_writeback(inode)
559 */
560 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
561 if (!inode->i_nlink && !is_bad_inode(inode)) {
562 /* to avoid evict_inode call simultaneously */
563 atomic_inc(&inode->i_count);
564 spin_unlock(&inode->i_lock);
565
566 /* some remained atomic pages should discarded */
567 if (f2fs_is_atomic_file(inode))
568 drop_inmem_pages(inode);
569
570 /* should remain fi->extent_tree for writepage */
571 f2fs_destroy_extent_node(inode);
572
573 sb_start_intwrite(inode->i_sb);
574 f2fs_i_size_write(inode, 0);
575
576 if (F2FS_HAS_BLOCKS(inode))
577 f2fs_truncate(inode, true);
578
579 sb_end_intwrite(inode->i_sb);
580
581 fscrypt_put_encryption_info(inode, NULL);
582 spin_lock(&inode->i_lock);
583 atomic_dec(&inode->i_count);
584 }
585 return 0;
586 }
587
588 ret = generic_drop_inode(inode);
589 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
590 if (ret)
591 inode->i_state |= I_WILL_FREE;
592 spin_unlock(&inode->i_lock);
593
594 update_inode_page(inode);
595
596 spin_lock(&inode->i_lock);
597 if (ret)
598 inode->i_state &= ~I_WILL_FREE;
599 }
600 return ret;
601 }
602
603 /*
604 * f2fs_dirty_inode() is called from __mark_inode_dirty()
605 *
606 * We should call set_dirty_inode to write the dirty inode through write_inode.
607 */
608 static void f2fs_dirty_inode(struct inode *inode, int flags)
609 {
610 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
611
612 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
613 inode->i_ino == F2FS_META_INO(sbi))
614 return;
615
616 if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
617 clear_inode_flag(inode, FI_AUTO_RECOVER);
618
619 spin_lock(&sbi->inode_lock[DIRTY_META]);
620 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
621 spin_unlock(&sbi->inode_lock[DIRTY_META]);
622 return;
623 }
624
625 set_inode_flag(inode, FI_DIRTY_INODE);
626 list_add_tail(&F2FS_I(inode)->gdirty_list,
627 &sbi->inode_list[DIRTY_META]);
628 inc_page_count(sbi, F2FS_DIRTY_IMETA);
629 spin_unlock(&sbi->inode_lock[DIRTY_META]);
630 stat_inc_dirty_inode(sbi, DIRTY_META);
631 }
632
633 void f2fs_inode_synced(struct inode *inode)
634 {
635 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
636
637 spin_lock(&sbi->inode_lock[DIRTY_META]);
638 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
639 spin_unlock(&sbi->inode_lock[DIRTY_META]);
640 return;
641 }
642 list_del_init(&F2FS_I(inode)->gdirty_list);
643 clear_inode_flag(inode, FI_DIRTY_INODE);
644 clear_inode_flag(inode, FI_AUTO_RECOVER);
645 dec_page_count(sbi, F2FS_DIRTY_IMETA);
646 spin_unlock(&sbi->inode_lock[DIRTY_META]);
647 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
648 }
649
650 static void f2fs_i_callback(struct rcu_head *head)
651 {
652 struct inode *inode = container_of(head, struct inode, i_rcu);
653 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
654 }
655
656 static void f2fs_destroy_inode(struct inode *inode)
657 {
658 percpu_counter_destroy(&F2FS_I(inode)->dirty_pages);
659 call_rcu(&inode->i_rcu, f2fs_i_callback);
660 }
661
662 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
663 {
664 int i;
665
666 for (i = 0; i < NR_COUNT_TYPE; i++)
667 percpu_counter_destroy(&sbi->nr_pages[i]);
668 percpu_counter_destroy(&sbi->alloc_valid_block_count);
669 percpu_counter_destroy(&sbi->total_valid_inode_count);
670 }
671
672 static void f2fs_put_super(struct super_block *sb)
673 {
674 struct f2fs_sb_info *sbi = F2FS_SB(sb);
675
676 if (sbi->s_proc) {
677 remove_proc_entry("segment_info", sbi->s_proc);
678 remove_proc_entry("segment_bits", sbi->s_proc);
679 remove_proc_entry(sb->s_id, f2fs_proc_root);
680 }
681 kobject_del(&sbi->s_kobj);
682
683 stop_gc_thread(sbi);
684
685 /* prevent remaining shrinker jobs */
686 mutex_lock(&sbi->umount_mutex);
687
688 /*
689 * We don't need to do checkpoint when superblock is clean.
690 * But, the previous checkpoint was not done by umount, it needs to do
691 * clean checkpoint again.
692 */
693 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
694 !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
695 struct cp_control cpc = {
696 .reason = CP_UMOUNT,
697 };
698 write_checkpoint(sbi, &cpc);
699 }
700
701 /* write_checkpoint can update stat informaion */
702 f2fs_destroy_stats(sbi);
703
704 /*
705 * normally superblock is clean, so we need to release this.
706 * In addition, EIO will skip do checkpoint, we need this as well.
707 */
708 release_ino_entry(sbi, true);
709 release_discard_addrs(sbi);
710
711 f2fs_leave_shrinker(sbi);
712 mutex_unlock(&sbi->umount_mutex);
713
714 /* our cp_error case, we can wait for any writeback page */
715 f2fs_flush_merged_bios(sbi);
716
717 iput(sbi->node_inode);
718 iput(sbi->meta_inode);
719
720 /* destroy f2fs internal modules */
721 destroy_node_manager(sbi);
722 destroy_segment_manager(sbi);
723
724 kfree(sbi->ckpt);
725 kobject_put(&sbi->s_kobj);
726 wait_for_completion(&sbi->s_kobj_unregister);
727
728 sb->s_fs_info = NULL;
729 if (sbi->s_chksum_driver)
730 crypto_free_shash(sbi->s_chksum_driver);
731 kfree(sbi->raw_super);
732
733 destroy_percpu_info(sbi);
734 kfree(sbi);
735 }
736
737 int f2fs_sync_fs(struct super_block *sb, int sync)
738 {
739 struct f2fs_sb_info *sbi = F2FS_SB(sb);
740 int err = 0;
741
742 trace_f2fs_sync_fs(sb, sync);
743
744 if (sync) {
745 struct cp_control cpc;
746
747 cpc.reason = __get_cp_reason(sbi);
748
749 mutex_lock(&sbi->gc_mutex);
750 err = write_checkpoint(sbi, &cpc);
751 mutex_unlock(&sbi->gc_mutex);
752 }
753 f2fs_trace_ios(NULL, 1);
754
755 return err;
756 }
757
758 static int f2fs_freeze(struct super_block *sb)
759 {
760 int err;
761
762 if (f2fs_readonly(sb))
763 return 0;
764
765 err = f2fs_sync_fs(sb, 1);
766 return err;
767 }
768
769 static int f2fs_unfreeze(struct super_block *sb)
770 {
771 return 0;
772 }
773
774 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
775 {
776 struct super_block *sb = dentry->d_sb;
777 struct f2fs_sb_info *sbi = F2FS_SB(sb);
778 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
779 block_t total_count, user_block_count, start_count, ovp_count;
780
781 total_count = le64_to_cpu(sbi->raw_super->block_count);
782 user_block_count = sbi->user_block_count;
783 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
784 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
785 buf->f_type = F2FS_SUPER_MAGIC;
786 buf->f_bsize = sbi->blocksize;
787
788 buf->f_blocks = total_count - start_count;
789 buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
790 buf->f_bavail = user_block_count - valid_user_blocks(sbi);
791
792 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
793 buf->f_ffree = buf->f_files - valid_inode_count(sbi);
794
795 buf->f_namelen = F2FS_NAME_LEN;
796 buf->f_fsid.val[0] = (u32)id;
797 buf->f_fsid.val[1] = (u32)(id >> 32);
798
799 return 0;
800 }
801
802 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
803 {
804 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
805
806 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
807 if (test_opt(sbi, FORCE_FG_GC))
808 seq_printf(seq, ",background_gc=%s", "sync");
809 else
810 seq_printf(seq, ",background_gc=%s", "on");
811 } else {
812 seq_printf(seq, ",background_gc=%s", "off");
813 }
814 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
815 seq_puts(seq, ",disable_roll_forward");
816 if (test_opt(sbi, DISCARD))
817 seq_puts(seq, ",discard");
818 if (test_opt(sbi, NOHEAP))
819 seq_puts(seq, ",no_heap_alloc");
820 #ifdef CONFIG_F2FS_FS_XATTR
821 if (test_opt(sbi, XATTR_USER))
822 seq_puts(seq, ",user_xattr");
823 else
824 seq_puts(seq, ",nouser_xattr");
825 if (test_opt(sbi, INLINE_XATTR))
826 seq_puts(seq, ",inline_xattr");
827 #endif
828 #ifdef CONFIG_F2FS_FS_POSIX_ACL
829 if (test_opt(sbi, POSIX_ACL))
830 seq_puts(seq, ",acl");
831 else
832 seq_puts(seq, ",noacl");
833 #endif
834 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
835 seq_puts(seq, ",disable_ext_identify");
836 if (test_opt(sbi, INLINE_DATA))
837 seq_puts(seq, ",inline_data");
838 else
839 seq_puts(seq, ",noinline_data");
840 if (test_opt(sbi, INLINE_DENTRY))
841 seq_puts(seq, ",inline_dentry");
842 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
843 seq_puts(seq, ",flush_merge");
844 if (test_opt(sbi, NOBARRIER))
845 seq_puts(seq, ",nobarrier");
846 if (test_opt(sbi, FASTBOOT))
847 seq_puts(seq, ",fastboot");
848 if (test_opt(sbi, EXTENT_CACHE))
849 seq_puts(seq, ",extent_cache");
850 else
851 seq_puts(seq, ",noextent_cache");
852 if (test_opt(sbi, DATA_FLUSH))
853 seq_puts(seq, ",data_flush");
854 seq_printf(seq, ",active_logs=%u", sbi->active_logs);
855
856 return 0;
857 }
858
859 static int segment_info_seq_show(struct seq_file *seq, void *offset)
860 {
861 struct super_block *sb = seq->private;
862 struct f2fs_sb_info *sbi = F2FS_SB(sb);
863 unsigned int total_segs =
864 le32_to_cpu(sbi->raw_super->segment_count_main);
865 int i;
866
867 seq_puts(seq, "format: segment_type|valid_blocks\n"
868 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
869
870 for (i = 0; i < total_segs; i++) {
871 struct seg_entry *se = get_seg_entry(sbi, i);
872
873 if ((i % 10) == 0)
874 seq_printf(seq, "%-10d", i);
875 seq_printf(seq, "%d|%-3u", se->type,
876 get_valid_blocks(sbi, i, 1));
877 if ((i % 10) == 9 || i == (total_segs - 1))
878 seq_putc(seq, '\n');
879 else
880 seq_putc(seq, ' ');
881 }
882
883 return 0;
884 }
885
886 static int segment_bits_seq_show(struct seq_file *seq, void *offset)
887 {
888 struct super_block *sb = seq->private;
889 struct f2fs_sb_info *sbi = F2FS_SB(sb);
890 unsigned int total_segs =
891 le32_to_cpu(sbi->raw_super->segment_count_main);
892 int i, j;
893
894 seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
895 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
896
897 for (i = 0; i < total_segs; i++) {
898 struct seg_entry *se = get_seg_entry(sbi, i);
899
900 seq_printf(seq, "%-10d", i);
901 seq_printf(seq, "%d|%-3u|", se->type,
902 get_valid_blocks(sbi, i, 1));
903 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
904 seq_printf(seq, "%x ", se->cur_valid_map[j]);
905 seq_putc(seq, '\n');
906 }
907 return 0;
908 }
909
910 #define F2FS_PROC_FILE_DEF(_name) \
911 static int _name##_open_fs(struct inode *inode, struct file *file) \
912 { \
913 return single_open(file, _name##_seq_show, PDE_DATA(inode)); \
914 } \
915 \
916 static const struct file_operations f2fs_seq_##_name##_fops = { \
917 .owner = THIS_MODULE, \
918 .open = _name##_open_fs, \
919 .read = seq_read, \
920 .llseek = seq_lseek, \
921 .release = single_release, \
922 };
923
924 F2FS_PROC_FILE_DEF(segment_info);
925 F2FS_PROC_FILE_DEF(segment_bits);
926
927 static void default_options(struct f2fs_sb_info *sbi)
928 {
929 /* init some FS parameters */
930 sbi->active_logs = NR_CURSEG_TYPE;
931
932 set_opt(sbi, BG_GC);
933 set_opt(sbi, INLINE_DATA);
934 set_opt(sbi, EXTENT_CACHE);
935
936 #ifdef CONFIG_F2FS_FS_XATTR
937 set_opt(sbi, XATTR_USER);
938 #endif
939 #ifdef CONFIG_F2FS_FS_POSIX_ACL
940 set_opt(sbi, POSIX_ACL);
941 #endif
942 }
943
944 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
945 {
946 struct f2fs_sb_info *sbi = F2FS_SB(sb);
947 struct f2fs_mount_info org_mount_opt;
948 int err, active_logs;
949 bool need_restart_gc = false;
950 bool need_stop_gc = false;
951 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
952
953 /*
954 * Save the old mount options in case we
955 * need to restore them.
956 */
957 org_mount_opt = sbi->mount_opt;
958 active_logs = sbi->active_logs;
959
960 /* recover superblocks we couldn't write due to previous RO mount */
961 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
962 err = f2fs_commit_super(sbi, false);
963 f2fs_msg(sb, KERN_INFO,
964 "Try to recover all the superblocks, ret: %d", err);
965 if (!err)
966 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
967 }
968
969 sbi->mount_opt.opt = 0;
970 default_options(sbi);
971
972 /* parse mount options */
973 err = parse_options(sb, data);
974 if (err)
975 goto restore_opts;
976
977 /*
978 * Previous and new state of filesystem is RO,
979 * so skip checking GC and FLUSH_MERGE conditions.
980 */
981 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
982 goto skip;
983
984 /* disallow enable/disable extent_cache dynamically */
985 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
986 err = -EINVAL;
987 f2fs_msg(sbi->sb, KERN_WARNING,
988 "switch extent_cache option is not allowed");
989 goto restore_opts;
990 }
991
992 /*
993 * We stop the GC thread if FS is mounted as RO
994 * or if background_gc = off is passed in mount
995 * option. Also sync the filesystem.
996 */
997 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
998 if (sbi->gc_thread) {
999 stop_gc_thread(sbi);
1000 need_restart_gc = true;
1001 }
1002 } else if (!sbi->gc_thread) {
1003 err = start_gc_thread(sbi);
1004 if (err)
1005 goto restore_opts;
1006 need_stop_gc = true;
1007 }
1008
1009 if (*flags & MS_RDONLY) {
1010 writeback_inodes_sb(sb, WB_REASON_SYNC);
1011 sync_inodes_sb(sb);
1012
1013 set_sbi_flag(sbi, SBI_IS_DIRTY);
1014 set_sbi_flag(sbi, SBI_IS_CLOSE);
1015 f2fs_sync_fs(sb, 1);
1016 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1017 }
1018
1019 /*
1020 * We stop issue flush thread if FS is mounted as RO
1021 * or if flush_merge is not passed in mount option.
1022 */
1023 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1024 destroy_flush_cmd_control(sbi);
1025 } else if (!SM_I(sbi)->cmd_control_info) {
1026 err = create_flush_cmd_control(sbi);
1027 if (err)
1028 goto restore_gc;
1029 }
1030 skip:
1031 /* Update the POSIXACL Flag */
1032 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1033 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1034
1035 return 0;
1036 restore_gc:
1037 if (need_restart_gc) {
1038 if (start_gc_thread(sbi))
1039 f2fs_msg(sbi->sb, KERN_WARNING,
1040 "background gc thread has stopped");
1041 } else if (need_stop_gc) {
1042 stop_gc_thread(sbi);
1043 }
1044 restore_opts:
1045 sbi->mount_opt = org_mount_opt;
1046 sbi->active_logs = active_logs;
1047 return err;
1048 }
1049
1050 static struct super_operations f2fs_sops = {
1051 .alloc_inode = f2fs_alloc_inode,
1052 .drop_inode = f2fs_drop_inode,
1053 .destroy_inode = f2fs_destroy_inode,
1054 .write_inode = f2fs_write_inode,
1055 .dirty_inode = f2fs_dirty_inode,
1056 .show_options = f2fs_show_options,
1057 .evict_inode = f2fs_evict_inode,
1058 .put_super = f2fs_put_super,
1059 .sync_fs = f2fs_sync_fs,
1060 .freeze_fs = f2fs_freeze,
1061 .unfreeze_fs = f2fs_unfreeze,
1062 .statfs = f2fs_statfs,
1063 .remount_fs = f2fs_remount,
1064 };
1065
1066 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1067 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1068 {
1069 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1070 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1071 ctx, len, NULL);
1072 }
1073
1074 static int f2fs_key_prefix(struct inode *inode, u8 **key)
1075 {
1076 *key = F2FS_I_SB(inode)->key_prefix;
1077 return F2FS_I_SB(inode)->key_prefix_size;
1078 }
1079
1080 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1081 void *fs_data)
1082 {
1083 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1084 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1085 ctx, len, fs_data, XATTR_CREATE);
1086 }
1087
1088 static unsigned f2fs_max_namelen(struct inode *inode)
1089 {
1090 return S_ISLNK(inode->i_mode) ?
1091 inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1092 }
1093
1094 static struct fscrypt_operations f2fs_cryptops = {
1095 .get_context = f2fs_get_context,
1096 .key_prefix = f2fs_key_prefix,
1097 .set_context = f2fs_set_context,
1098 .is_encrypted = f2fs_encrypted_inode,
1099 .empty_dir = f2fs_empty_dir,
1100 .max_namelen = f2fs_max_namelen,
1101 };
1102 #else
1103 static struct fscrypt_operations f2fs_cryptops = {
1104 .is_encrypted = f2fs_encrypted_inode,
1105 };
1106 #endif
1107
1108 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1109 u64 ino, u32 generation)
1110 {
1111 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1112 struct inode *inode;
1113
1114 if (check_nid_range(sbi, ino))
1115 return ERR_PTR(-ESTALE);
1116
1117 /*
1118 * f2fs_iget isn't quite right if the inode is currently unallocated!
1119 * However f2fs_iget currently does appropriate checks to handle stale
1120 * inodes so everything is OK.
1121 */
1122 inode = f2fs_iget(sb, ino);
1123 if (IS_ERR(inode))
1124 return ERR_CAST(inode);
1125 if (unlikely(generation && inode->i_generation != generation)) {
1126 /* we didn't find the right inode.. */
1127 iput(inode);
1128 return ERR_PTR(-ESTALE);
1129 }
1130 return inode;
1131 }
1132
1133 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1134 int fh_len, int fh_type)
1135 {
1136 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1137 f2fs_nfs_get_inode);
1138 }
1139
1140 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1141 int fh_len, int fh_type)
1142 {
1143 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1144 f2fs_nfs_get_inode);
1145 }
1146
1147 static const struct export_operations f2fs_export_ops = {
1148 .fh_to_dentry = f2fs_fh_to_dentry,
1149 .fh_to_parent = f2fs_fh_to_parent,
1150 .get_parent = f2fs_get_parent,
1151 };
1152
1153 static loff_t max_file_blocks(void)
1154 {
1155 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1156 loff_t leaf_count = ADDRS_PER_BLOCK;
1157
1158 /* two direct node blocks */
1159 result += (leaf_count * 2);
1160
1161 /* two indirect node blocks */
1162 leaf_count *= NIDS_PER_BLOCK;
1163 result += (leaf_count * 2);
1164
1165 /* one double indirect node block */
1166 leaf_count *= NIDS_PER_BLOCK;
1167 result += leaf_count;
1168
1169 return result;
1170 }
1171
1172 static int __f2fs_commit_super(struct buffer_head *bh,
1173 struct f2fs_super_block *super)
1174 {
1175 lock_buffer(bh);
1176 if (super)
1177 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1178 set_buffer_uptodate(bh);
1179 set_buffer_dirty(bh);
1180 unlock_buffer(bh);
1181
1182 /* it's rare case, we can do fua all the time */
1183 return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
1184 }
1185
1186 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1187 struct buffer_head *bh)
1188 {
1189 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1190 (bh->b_data + F2FS_SUPER_OFFSET);
1191 struct super_block *sb = sbi->sb;
1192 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1193 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1194 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1195 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1196 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1197 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1198 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1199 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1200 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1201 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1202 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1203 u32 segment_count = le32_to_cpu(raw_super->segment_count);
1204 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1205 u64 main_end_blkaddr = main_blkaddr +
1206 (segment_count_main << log_blocks_per_seg);
1207 u64 seg_end_blkaddr = segment0_blkaddr +
1208 (segment_count << log_blocks_per_seg);
1209
1210 if (segment0_blkaddr != cp_blkaddr) {
1211 f2fs_msg(sb, KERN_INFO,
1212 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1213 segment0_blkaddr, cp_blkaddr);
1214 return true;
1215 }
1216
1217 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1218 sit_blkaddr) {
1219 f2fs_msg(sb, KERN_INFO,
1220 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1221 cp_blkaddr, sit_blkaddr,
1222 segment_count_ckpt << log_blocks_per_seg);
1223 return true;
1224 }
1225
1226 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1227 nat_blkaddr) {
1228 f2fs_msg(sb, KERN_INFO,
1229 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1230 sit_blkaddr, nat_blkaddr,
1231 segment_count_sit << log_blocks_per_seg);
1232 return true;
1233 }
1234
1235 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1236 ssa_blkaddr) {
1237 f2fs_msg(sb, KERN_INFO,
1238 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1239 nat_blkaddr, ssa_blkaddr,
1240 segment_count_nat << log_blocks_per_seg);
1241 return true;
1242 }
1243
1244 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1245 main_blkaddr) {
1246 f2fs_msg(sb, KERN_INFO,
1247 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1248 ssa_blkaddr, main_blkaddr,
1249 segment_count_ssa << log_blocks_per_seg);
1250 return true;
1251 }
1252
1253 if (main_end_blkaddr > seg_end_blkaddr) {
1254 f2fs_msg(sb, KERN_INFO,
1255 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1256 main_blkaddr,
1257 segment0_blkaddr +
1258 (segment_count << log_blocks_per_seg),
1259 segment_count_main << log_blocks_per_seg);
1260 return true;
1261 } else if (main_end_blkaddr < seg_end_blkaddr) {
1262 int err = 0;
1263 char *res;
1264
1265 /* fix in-memory information all the time */
1266 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1267 segment0_blkaddr) >> log_blocks_per_seg);
1268
1269 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1270 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1271 res = "internally";
1272 } else {
1273 err = __f2fs_commit_super(bh, NULL);
1274 res = err ? "failed" : "done";
1275 }
1276 f2fs_msg(sb, KERN_INFO,
1277 "Fix alignment : %s, start(%u) end(%u) block(%u)",
1278 res, main_blkaddr,
1279 segment0_blkaddr +
1280 (segment_count << log_blocks_per_seg),
1281 segment_count_main << log_blocks_per_seg);
1282 if (err)
1283 return true;
1284 }
1285 return false;
1286 }
1287
1288 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1289 struct buffer_head *bh)
1290 {
1291 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1292 (bh->b_data + F2FS_SUPER_OFFSET);
1293 struct super_block *sb = sbi->sb;
1294 unsigned int blocksize;
1295
1296 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1297 f2fs_msg(sb, KERN_INFO,
1298 "Magic Mismatch, valid(0x%x) - read(0x%x)",
1299 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1300 return 1;
1301 }
1302
1303 /* Currently, support only 4KB page cache size */
1304 if (F2FS_BLKSIZE != PAGE_SIZE) {
1305 f2fs_msg(sb, KERN_INFO,
1306 "Invalid page_cache_size (%lu), supports only 4KB\n",
1307 PAGE_SIZE);
1308 return 1;
1309 }
1310
1311 /* Currently, support only 4KB block size */
1312 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1313 if (blocksize != F2FS_BLKSIZE) {
1314 f2fs_msg(sb, KERN_INFO,
1315 "Invalid blocksize (%u), supports only 4KB\n",
1316 blocksize);
1317 return 1;
1318 }
1319
1320 /* check log blocks per segment */
1321 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1322 f2fs_msg(sb, KERN_INFO,
1323 "Invalid log blocks per segment (%u)\n",
1324 le32_to_cpu(raw_super->log_blocks_per_seg));
1325 return 1;
1326 }
1327
1328 /* Currently, support 512/1024/2048/4096 bytes sector size */
1329 if (le32_to_cpu(raw_super->log_sectorsize) >
1330 F2FS_MAX_LOG_SECTOR_SIZE ||
1331 le32_to_cpu(raw_super->log_sectorsize) <
1332 F2FS_MIN_LOG_SECTOR_SIZE) {
1333 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1334 le32_to_cpu(raw_super->log_sectorsize));
1335 return 1;
1336 }
1337 if (le32_to_cpu(raw_super->log_sectors_per_block) +
1338 le32_to_cpu(raw_super->log_sectorsize) !=
1339 F2FS_MAX_LOG_SECTOR_SIZE) {
1340 f2fs_msg(sb, KERN_INFO,
1341 "Invalid log sectors per block(%u) log sectorsize(%u)",
1342 le32_to_cpu(raw_super->log_sectors_per_block),
1343 le32_to_cpu(raw_super->log_sectorsize));
1344 return 1;
1345 }
1346
1347 /* check reserved ino info */
1348 if (le32_to_cpu(raw_super->node_ino) != 1 ||
1349 le32_to_cpu(raw_super->meta_ino) != 2 ||
1350 le32_to_cpu(raw_super->root_ino) != 3) {
1351 f2fs_msg(sb, KERN_INFO,
1352 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1353 le32_to_cpu(raw_super->node_ino),
1354 le32_to_cpu(raw_super->meta_ino),
1355 le32_to_cpu(raw_super->root_ino));
1356 return 1;
1357 }
1358
1359 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1360 if (sanity_check_area_boundary(sbi, bh))
1361 return 1;
1362
1363 return 0;
1364 }
1365
1366 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1367 {
1368 unsigned int total, fsmeta;
1369 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1370 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1371
1372 total = le32_to_cpu(raw_super->segment_count);
1373 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1374 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1375 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1376 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1377 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1378
1379 if (unlikely(fsmeta >= total))
1380 return 1;
1381
1382 if (unlikely(f2fs_cp_error(sbi))) {
1383 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1384 return 1;
1385 }
1386 return 0;
1387 }
1388
1389 static void init_sb_info(struct f2fs_sb_info *sbi)
1390 {
1391 struct f2fs_super_block *raw_super = sbi->raw_super;
1392
1393 sbi->log_sectors_per_block =
1394 le32_to_cpu(raw_super->log_sectors_per_block);
1395 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1396 sbi->blocksize = 1 << sbi->log_blocksize;
1397 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1398 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1399 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1400 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1401 sbi->total_sections = le32_to_cpu(raw_super->section_count);
1402 sbi->total_node_count =
1403 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1404 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1405 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1406 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1407 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1408 sbi->cur_victim_sec = NULL_SECNO;
1409 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1410
1411 sbi->dir_level = DEF_DIR_LEVEL;
1412 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1413 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1414 clear_sbi_flag(sbi, SBI_NEED_FSCK);
1415
1416 INIT_LIST_HEAD(&sbi->s_list);
1417 mutex_init(&sbi->umount_mutex);
1418
1419 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1420 memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX,
1421 F2FS_KEY_DESC_PREFIX_SIZE);
1422 sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE;
1423 #endif
1424 }
1425
1426 static int init_percpu_info(struct f2fs_sb_info *sbi)
1427 {
1428 int i, err;
1429
1430 for (i = 0; i < NR_COUNT_TYPE; i++) {
1431 err = percpu_counter_init(&sbi->nr_pages[i], 0, GFP_KERNEL);
1432 if (err)
1433 return err;
1434 }
1435
1436 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1437 if (err)
1438 return err;
1439
1440 return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1441 GFP_KERNEL);
1442 }
1443
1444 /*
1445 * Read f2fs raw super block.
1446 * Because we have two copies of super block, so read both of them
1447 * to get the first valid one. If any one of them is broken, we pass
1448 * them recovery flag back to the caller.
1449 */
1450 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1451 struct f2fs_super_block **raw_super,
1452 int *valid_super_block, int *recovery)
1453 {
1454 struct super_block *sb = sbi->sb;
1455 int block;
1456 struct buffer_head *bh;
1457 struct f2fs_super_block *super;
1458 int err = 0;
1459
1460 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1461 if (!super)
1462 return -ENOMEM;
1463
1464 for (block = 0; block < 2; block++) {
1465 bh = sb_bread(sb, block);
1466 if (!bh) {
1467 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1468 block + 1);
1469 err = -EIO;
1470 continue;
1471 }
1472
1473 /* sanity checking of raw super */
1474 if (sanity_check_raw_super(sbi, bh)) {
1475 f2fs_msg(sb, KERN_ERR,
1476 "Can't find valid F2FS filesystem in %dth superblock",
1477 block + 1);
1478 err = -EINVAL;
1479 brelse(bh);
1480 continue;
1481 }
1482
1483 if (!*raw_super) {
1484 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1485 sizeof(*super));
1486 *valid_super_block = block;
1487 *raw_super = super;
1488 }
1489 brelse(bh);
1490 }
1491
1492 /* Fail to read any one of the superblocks*/
1493 if (err < 0)
1494 *recovery = 1;
1495
1496 /* No valid superblock */
1497 if (!*raw_super)
1498 kfree(super);
1499 else
1500 err = 0;
1501
1502 return err;
1503 }
1504
1505 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1506 {
1507 struct buffer_head *bh;
1508 int err;
1509
1510 if ((recover && f2fs_readonly(sbi->sb)) ||
1511 bdev_read_only(sbi->sb->s_bdev)) {
1512 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1513 return -EROFS;
1514 }
1515
1516 /* write back-up superblock first */
1517 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1518 if (!bh)
1519 return -EIO;
1520 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1521 brelse(bh);
1522
1523 /* if we are in recovery path, skip writing valid superblock */
1524 if (recover || err)
1525 return err;
1526
1527 /* write current valid superblock */
1528 bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1529 if (!bh)
1530 return -EIO;
1531 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1532 brelse(bh);
1533 return err;
1534 }
1535
1536 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1537 {
1538 struct f2fs_sb_info *sbi;
1539 struct f2fs_super_block *raw_super;
1540 struct inode *root;
1541 int err;
1542 bool retry = true, need_fsck = false;
1543 char *options = NULL;
1544 int recovery, i, valid_super_block;
1545 struct curseg_info *seg_i;
1546
1547 try_onemore:
1548 err = -EINVAL;
1549 raw_super = NULL;
1550 valid_super_block = -1;
1551 recovery = 0;
1552
1553 /* allocate memory for f2fs-specific super block info */
1554 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1555 if (!sbi)
1556 return -ENOMEM;
1557
1558 sbi->sb = sb;
1559
1560 /* Load the checksum driver */
1561 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1562 if (IS_ERR(sbi->s_chksum_driver)) {
1563 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1564 err = PTR_ERR(sbi->s_chksum_driver);
1565 sbi->s_chksum_driver = NULL;
1566 goto free_sbi;
1567 }
1568
1569 /* set a block size */
1570 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1571 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1572 goto free_sbi;
1573 }
1574
1575 err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1576 &recovery);
1577 if (err)
1578 goto free_sbi;
1579
1580 sb->s_fs_info = sbi;
1581 default_options(sbi);
1582 /* parse mount options */
1583 options = kstrdup((const char *)data, GFP_KERNEL);
1584 if (data && !options) {
1585 err = -ENOMEM;
1586 goto free_sb_buf;
1587 }
1588
1589 err = parse_options(sb, options);
1590 if (err)
1591 goto free_options;
1592
1593 sbi->max_file_blocks = max_file_blocks();
1594 sb->s_maxbytes = sbi->max_file_blocks <<
1595 le32_to_cpu(raw_super->log_blocksize);
1596 sb->s_max_links = F2FS_LINK_MAX;
1597 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1598
1599 sb->s_op = &f2fs_sops;
1600 sb->s_cop = &f2fs_cryptops;
1601 sb->s_xattr = f2fs_xattr_handlers;
1602 sb->s_export_op = &f2fs_export_ops;
1603 sb->s_magic = F2FS_SUPER_MAGIC;
1604 sb->s_time_gran = 1;
1605 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1606 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1607 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1608
1609 /* init f2fs-specific super block info */
1610 sbi->raw_super = raw_super;
1611 sbi->valid_super_block = valid_super_block;
1612 mutex_init(&sbi->gc_mutex);
1613 mutex_init(&sbi->writepages);
1614 mutex_init(&sbi->cp_mutex);
1615 init_rwsem(&sbi->node_write);
1616
1617 /* disallow all the data/node/meta page writes */
1618 set_sbi_flag(sbi, SBI_POR_DOING);
1619 spin_lock_init(&sbi->stat_lock);
1620
1621 init_rwsem(&sbi->read_io.io_rwsem);
1622 sbi->read_io.sbi = sbi;
1623 sbi->read_io.bio = NULL;
1624 for (i = 0; i < NR_PAGE_TYPE; i++) {
1625 init_rwsem(&sbi->write_io[i].io_rwsem);
1626 sbi->write_io[i].sbi = sbi;
1627 sbi->write_io[i].bio = NULL;
1628 }
1629
1630 init_rwsem(&sbi->cp_rwsem);
1631 init_waitqueue_head(&sbi->cp_wait);
1632 init_sb_info(sbi);
1633
1634 err = init_percpu_info(sbi);
1635 if (err)
1636 goto free_options;
1637
1638 /* get an inode for meta space */
1639 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1640 if (IS_ERR(sbi->meta_inode)) {
1641 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1642 err = PTR_ERR(sbi->meta_inode);
1643 goto free_options;
1644 }
1645
1646 err = get_valid_checkpoint(sbi);
1647 if (err) {
1648 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1649 goto free_meta_inode;
1650 }
1651
1652 sbi->total_valid_node_count =
1653 le32_to_cpu(sbi->ckpt->valid_node_count);
1654 percpu_counter_set(&sbi->total_valid_inode_count,
1655 le32_to_cpu(sbi->ckpt->valid_inode_count));
1656 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1657 sbi->total_valid_block_count =
1658 le64_to_cpu(sbi->ckpt->valid_block_count);
1659 sbi->last_valid_block_count = sbi->total_valid_block_count;
1660
1661 for (i = 0; i < NR_INODE_TYPE; i++) {
1662 INIT_LIST_HEAD(&sbi->inode_list[i]);
1663 spin_lock_init(&sbi->inode_lock[i]);
1664 }
1665
1666 init_extent_cache_info(sbi);
1667
1668 init_ino_entry_info(sbi);
1669
1670 /* setup f2fs internal modules */
1671 err = build_segment_manager(sbi);
1672 if (err) {
1673 f2fs_msg(sb, KERN_ERR,
1674 "Failed to initialize F2FS segment manager");
1675 goto free_sm;
1676 }
1677 err = build_node_manager(sbi);
1678 if (err) {
1679 f2fs_msg(sb, KERN_ERR,
1680 "Failed to initialize F2FS node manager");
1681 goto free_nm;
1682 }
1683
1684 /* For write statistics */
1685 if (sb->s_bdev->bd_part)
1686 sbi->sectors_written_start =
1687 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1688
1689 /* Read accumulated write IO statistics if exists */
1690 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1691 if (__exist_node_summaries(sbi))
1692 sbi->kbytes_written =
1693 le64_to_cpu(seg_i->journal->info.kbytes_written);
1694
1695 build_gc_manager(sbi);
1696
1697 /* get an inode for node space */
1698 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1699 if (IS_ERR(sbi->node_inode)) {
1700 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1701 err = PTR_ERR(sbi->node_inode);
1702 goto free_nm;
1703 }
1704
1705 f2fs_join_shrinker(sbi);
1706
1707 /* if there are nt orphan nodes free them */
1708 err = recover_orphan_inodes(sbi);
1709 if (err)
1710 goto free_node_inode;
1711
1712 /* read root inode and dentry */
1713 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1714 if (IS_ERR(root)) {
1715 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1716 err = PTR_ERR(root);
1717 goto free_node_inode;
1718 }
1719 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1720 iput(root);
1721 err = -EINVAL;
1722 goto free_node_inode;
1723 }
1724
1725 sb->s_root = d_make_root(root); /* allocate root dentry */
1726 if (!sb->s_root) {
1727 err = -ENOMEM;
1728 goto free_root_inode;
1729 }
1730
1731 err = f2fs_build_stats(sbi);
1732 if (err)
1733 goto free_root_inode;
1734
1735 if (f2fs_proc_root)
1736 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1737
1738 if (sbi->s_proc) {
1739 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1740 &f2fs_seq_segment_info_fops, sb);
1741 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
1742 &f2fs_seq_segment_bits_fops, sb);
1743 }
1744
1745 sbi->s_kobj.kset = f2fs_kset;
1746 init_completion(&sbi->s_kobj_unregister);
1747 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1748 "%s", sb->s_id);
1749 if (err)
1750 goto free_proc;
1751
1752 /* recover fsynced data */
1753 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1754 /*
1755 * mount should be failed, when device has readonly mode, and
1756 * previous checkpoint was not done by clean system shutdown.
1757 */
1758 if (bdev_read_only(sb->s_bdev) &&
1759 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1760 err = -EROFS;
1761 goto free_kobj;
1762 }
1763
1764 if (need_fsck)
1765 set_sbi_flag(sbi, SBI_NEED_FSCK);
1766
1767 err = recover_fsync_data(sbi, false);
1768 if (err < 0) {
1769 need_fsck = true;
1770 f2fs_msg(sb, KERN_ERR,
1771 "Cannot recover all fsync data errno=%d", err);
1772 goto free_kobj;
1773 }
1774 } else {
1775 err = recover_fsync_data(sbi, true);
1776
1777 if (!f2fs_readonly(sb) && err > 0) {
1778 err = -EINVAL;
1779 f2fs_msg(sb, KERN_ERR,
1780 "Need to recover fsync data");
1781 goto free_kobj;
1782 }
1783 }
1784
1785 /* recover_fsync_data() cleared this already */
1786 clear_sbi_flag(sbi, SBI_POR_DOING);
1787
1788 /*
1789 * If filesystem is not mounted as read-only then
1790 * do start the gc_thread.
1791 */
1792 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1793 /* After POR, we can run background GC thread.*/
1794 err = start_gc_thread(sbi);
1795 if (err)
1796 goto free_kobj;
1797 }
1798 kfree(options);
1799
1800 /* recover broken superblock */
1801 if (recovery) {
1802 err = f2fs_commit_super(sbi, true);
1803 f2fs_msg(sb, KERN_INFO,
1804 "Try to recover %dth superblock, ret: %d",
1805 sbi->valid_super_block ? 1 : 2, err);
1806 }
1807
1808 f2fs_update_time(sbi, CP_TIME);
1809 f2fs_update_time(sbi, REQ_TIME);
1810 return 0;
1811
1812 free_kobj:
1813 f2fs_sync_inode_meta(sbi);
1814 kobject_del(&sbi->s_kobj);
1815 kobject_put(&sbi->s_kobj);
1816 wait_for_completion(&sbi->s_kobj_unregister);
1817 free_proc:
1818 if (sbi->s_proc) {
1819 remove_proc_entry("segment_info", sbi->s_proc);
1820 remove_proc_entry("segment_bits", sbi->s_proc);
1821 remove_proc_entry(sb->s_id, f2fs_proc_root);
1822 }
1823 f2fs_destroy_stats(sbi);
1824 free_root_inode:
1825 dput(sb->s_root);
1826 sb->s_root = NULL;
1827 free_node_inode:
1828 mutex_lock(&sbi->umount_mutex);
1829 f2fs_leave_shrinker(sbi);
1830 iput(sbi->node_inode);
1831 mutex_unlock(&sbi->umount_mutex);
1832 free_nm:
1833 destroy_node_manager(sbi);
1834 free_sm:
1835 destroy_segment_manager(sbi);
1836 kfree(sbi->ckpt);
1837 free_meta_inode:
1838 make_bad_inode(sbi->meta_inode);
1839 iput(sbi->meta_inode);
1840 free_options:
1841 destroy_percpu_info(sbi);
1842 kfree(options);
1843 free_sb_buf:
1844 kfree(raw_super);
1845 free_sbi:
1846 if (sbi->s_chksum_driver)
1847 crypto_free_shash(sbi->s_chksum_driver);
1848 kfree(sbi);
1849
1850 /* give only one another chance */
1851 if (retry) {
1852 retry = false;
1853 shrink_dcache_sb(sb);
1854 goto try_onemore;
1855 }
1856 return err;
1857 }
1858
1859 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1860 const char *dev_name, void *data)
1861 {
1862 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1863 }
1864
1865 static void kill_f2fs_super(struct super_block *sb)
1866 {
1867 if (sb->s_root)
1868 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1869 kill_block_super(sb);
1870 }
1871
1872 static struct file_system_type f2fs_fs_type = {
1873 .owner = THIS_MODULE,
1874 .name = "f2fs",
1875 .mount = f2fs_mount,
1876 .kill_sb = kill_f2fs_super,
1877 .fs_flags = FS_REQUIRES_DEV,
1878 };
1879 MODULE_ALIAS_FS("f2fs");
1880
1881 static int __init init_inodecache(void)
1882 {
1883 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1884 sizeof(struct f2fs_inode_info), 0,
1885 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1886 if (!f2fs_inode_cachep)
1887 return -ENOMEM;
1888 return 0;
1889 }
1890
1891 static void destroy_inodecache(void)
1892 {
1893 /*
1894 * Make sure all delayed rcu free inodes are flushed before we
1895 * destroy cache.
1896 */
1897 rcu_barrier();
1898 kmem_cache_destroy(f2fs_inode_cachep);
1899 }
1900
1901 static int __init init_f2fs_fs(void)
1902 {
1903 int err;
1904
1905 f2fs_build_trace_ios();
1906
1907 err = init_inodecache();
1908 if (err)
1909 goto fail;
1910 err = create_node_manager_caches();
1911 if (err)
1912 goto free_inodecache;
1913 err = create_segment_manager_caches();
1914 if (err)
1915 goto free_node_manager_caches;
1916 err = create_checkpoint_caches();
1917 if (err)
1918 goto free_segment_manager_caches;
1919 err = create_extent_cache();
1920 if (err)
1921 goto free_checkpoint_caches;
1922 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1923 if (!f2fs_kset) {
1924 err = -ENOMEM;
1925 goto free_extent_cache;
1926 }
1927 #ifdef CONFIG_F2FS_FAULT_INJECTION
1928 f2fs_fault_inject.kset = f2fs_kset;
1929 f2fs_build_fault_attr(0);
1930 err = kobject_init_and_add(&f2fs_fault_inject, &f2fs_fault_ktype,
1931 NULL, "fault_injection");
1932 if (err) {
1933 f2fs_fault_inject.kset = NULL;
1934 goto free_kset;
1935 }
1936 #endif
1937 err = register_shrinker(&f2fs_shrinker_info);
1938 if (err)
1939 goto free_kset;
1940
1941 err = register_filesystem(&f2fs_fs_type);
1942 if (err)
1943 goto free_shrinker;
1944 err = f2fs_create_root_stats();
1945 if (err)
1946 goto free_filesystem;
1947 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1948 return 0;
1949
1950 free_filesystem:
1951 unregister_filesystem(&f2fs_fs_type);
1952 free_shrinker:
1953 unregister_shrinker(&f2fs_shrinker_info);
1954 free_kset:
1955 #ifdef CONFIG_F2FS_FAULT_INJECTION
1956 if (f2fs_fault_inject.kset)
1957 kobject_put(&f2fs_fault_inject);
1958 #endif
1959 kset_unregister(f2fs_kset);
1960 free_extent_cache:
1961 destroy_extent_cache();
1962 free_checkpoint_caches:
1963 destroy_checkpoint_caches();
1964 free_segment_manager_caches:
1965 destroy_segment_manager_caches();
1966 free_node_manager_caches:
1967 destroy_node_manager_caches();
1968 free_inodecache:
1969 destroy_inodecache();
1970 fail:
1971 return err;
1972 }
1973
1974 static void __exit exit_f2fs_fs(void)
1975 {
1976 remove_proc_entry("fs/f2fs", NULL);
1977 f2fs_destroy_root_stats();
1978 unregister_filesystem(&f2fs_fs_type);
1979 unregister_shrinker(&f2fs_shrinker_info);
1980 #ifdef CONFIG_F2FS_FAULT_INJECTION
1981 kobject_put(&f2fs_fault_inject);
1982 #endif
1983 kset_unregister(f2fs_kset);
1984 destroy_extent_cache();
1985 destroy_checkpoint_caches();
1986 destroy_segment_manager_caches();
1987 destroy_node_manager_caches();
1988 destroy_inodecache();
1989 f2fs_destroy_trace_ios();
1990 }
1991
1992 module_init(init_f2fs_fs)
1993 module_exit(exit_f2fs_fs)
1994
1995 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1996 MODULE_DESCRIPTION("Flash Friendly File System");
1997 MODULE_LICENSE("GPL");
This page took 0.093058 seconds and 5 git commands to generate.