f2fs: update f2fs documentation for inline dir support
[deliverable/linux.git] / fs / f2fs / super.c
1 /*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/f2fs.h>
36
37 static struct proc_dir_entry *f2fs_proc_root;
38 static struct kmem_cache *f2fs_inode_cachep;
39 static struct kset *f2fs_kset;
40
41 enum {
42 Opt_gc_background,
43 Opt_disable_roll_forward,
44 Opt_discard,
45 Opt_noheap,
46 Opt_user_xattr,
47 Opt_nouser_xattr,
48 Opt_acl,
49 Opt_noacl,
50 Opt_active_logs,
51 Opt_disable_ext_identify,
52 Opt_inline_xattr,
53 Opt_inline_data,
54 Opt_inline_dentry,
55 Opt_flush_merge,
56 Opt_nobarrier,
57 Opt_err,
58 };
59
60 static match_table_t f2fs_tokens = {
61 {Opt_gc_background, "background_gc=%s"},
62 {Opt_disable_roll_forward, "disable_roll_forward"},
63 {Opt_discard, "discard"},
64 {Opt_noheap, "no_heap"},
65 {Opt_user_xattr, "user_xattr"},
66 {Opt_nouser_xattr, "nouser_xattr"},
67 {Opt_acl, "acl"},
68 {Opt_noacl, "noacl"},
69 {Opt_active_logs, "active_logs=%u"},
70 {Opt_disable_ext_identify, "disable_ext_identify"},
71 {Opt_inline_xattr, "inline_xattr"},
72 {Opt_inline_data, "inline_data"},
73 {Opt_inline_dentry, "inline_dentry"},
74 {Opt_flush_merge, "flush_merge"},
75 {Opt_nobarrier, "nobarrier"},
76 {Opt_err, NULL},
77 };
78
79 /* Sysfs support for f2fs */
80 enum {
81 GC_THREAD, /* struct f2fs_gc_thread */
82 SM_INFO, /* struct f2fs_sm_info */
83 NM_INFO, /* struct f2fs_nm_info */
84 F2FS_SBI, /* struct f2fs_sb_info */
85 };
86
87 struct f2fs_attr {
88 struct attribute attr;
89 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
90 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
91 const char *, size_t);
92 int struct_type;
93 int offset;
94 };
95
96 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
97 {
98 if (struct_type == GC_THREAD)
99 return (unsigned char *)sbi->gc_thread;
100 else if (struct_type == SM_INFO)
101 return (unsigned char *)SM_I(sbi);
102 else if (struct_type == NM_INFO)
103 return (unsigned char *)NM_I(sbi);
104 else if (struct_type == F2FS_SBI)
105 return (unsigned char *)sbi;
106 return NULL;
107 }
108
109 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
110 struct f2fs_sb_info *sbi, char *buf)
111 {
112 unsigned char *ptr = NULL;
113 unsigned int *ui;
114
115 ptr = __struct_ptr(sbi, a->struct_type);
116 if (!ptr)
117 return -EINVAL;
118
119 ui = (unsigned int *)(ptr + a->offset);
120
121 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
122 }
123
124 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
125 struct f2fs_sb_info *sbi,
126 const char *buf, size_t count)
127 {
128 unsigned char *ptr;
129 unsigned long t;
130 unsigned int *ui;
131 ssize_t ret;
132
133 ptr = __struct_ptr(sbi, a->struct_type);
134 if (!ptr)
135 return -EINVAL;
136
137 ui = (unsigned int *)(ptr + a->offset);
138
139 ret = kstrtoul(skip_spaces(buf), 0, &t);
140 if (ret < 0)
141 return ret;
142 *ui = t;
143 return count;
144 }
145
146 static ssize_t f2fs_attr_show(struct kobject *kobj,
147 struct attribute *attr, char *buf)
148 {
149 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
150 s_kobj);
151 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
152
153 return a->show ? a->show(a, sbi, buf) : 0;
154 }
155
156 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
157 const char *buf, size_t len)
158 {
159 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
160 s_kobj);
161 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
162
163 return a->store ? a->store(a, sbi, buf, len) : 0;
164 }
165
166 static void f2fs_sb_release(struct kobject *kobj)
167 {
168 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
169 s_kobj);
170 complete(&sbi->s_kobj_unregister);
171 }
172
173 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
174 static struct f2fs_attr f2fs_attr_##_name = { \
175 .attr = {.name = __stringify(_name), .mode = _mode }, \
176 .show = _show, \
177 .store = _store, \
178 .struct_type = _struct_type, \
179 .offset = _offset \
180 }
181
182 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
183 F2FS_ATTR_OFFSET(struct_type, name, 0644, \
184 f2fs_sbi_show, f2fs_sbi_store, \
185 offsetof(struct struct_name, elname))
186
187 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
188 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
189 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
190 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
191 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
192 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
193 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
194 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
195 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
196 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
197 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
198 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
199
200 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
201 static struct attribute *f2fs_attrs[] = {
202 ATTR_LIST(gc_min_sleep_time),
203 ATTR_LIST(gc_max_sleep_time),
204 ATTR_LIST(gc_no_gc_sleep_time),
205 ATTR_LIST(gc_idle),
206 ATTR_LIST(reclaim_segments),
207 ATTR_LIST(max_small_discards),
208 ATTR_LIST(ipu_policy),
209 ATTR_LIST(min_ipu_util),
210 ATTR_LIST(min_fsync_blocks),
211 ATTR_LIST(max_victim_search),
212 ATTR_LIST(dir_level),
213 ATTR_LIST(ram_thresh),
214 NULL,
215 };
216
217 static const struct sysfs_ops f2fs_attr_ops = {
218 .show = f2fs_attr_show,
219 .store = f2fs_attr_store,
220 };
221
222 static struct kobj_type f2fs_ktype = {
223 .default_attrs = f2fs_attrs,
224 .sysfs_ops = &f2fs_attr_ops,
225 .release = f2fs_sb_release,
226 };
227
228 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
229 {
230 struct va_format vaf;
231 va_list args;
232
233 va_start(args, fmt);
234 vaf.fmt = fmt;
235 vaf.va = &args;
236 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
237 va_end(args);
238 }
239
240 static void init_once(void *foo)
241 {
242 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
243
244 inode_init_once(&fi->vfs_inode);
245 }
246
247 static int parse_options(struct super_block *sb, char *options)
248 {
249 struct f2fs_sb_info *sbi = F2FS_SB(sb);
250 substring_t args[MAX_OPT_ARGS];
251 char *p, *name;
252 int arg = 0;
253
254 if (!options)
255 return 0;
256
257 while ((p = strsep(&options, ",")) != NULL) {
258 int token;
259 if (!*p)
260 continue;
261 /*
262 * Initialize args struct so we know whether arg was
263 * found; some options take optional arguments.
264 */
265 args[0].to = args[0].from = NULL;
266 token = match_token(p, f2fs_tokens, args);
267
268 switch (token) {
269 case Opt_gc_background:
270 name = match_strdup(&args[0]);
271
272 if (!name)
273 return -ENOMEM;
274 if (strlen(name) == 2 && !strncmp(name, "on", 2))
275 set_opt(sbi, BG_GC);
276 else if (strlen(name) == 3 && !strncmp(name, "off", 3))
277 clear_opt(sbi, BG_GC);
278 else {
279 kfree(name);
280 return -EINVAL;
281 }
282 kfree(name);
283 break;
284 case Opt_disable_roll_forward:
285 set_opt(sbi, DISABLE_ROLL_FORWARD);
286 break;
287 case Opt_discard:
288 set_opt(sbi, DISCARD);
289 break;
290 case Opt_noheap:
291 set_opt(sbi, NOHEAP);
292 break;
293 #ifdef CONFIG_F2FS_FS_XATTR
294 case Opt_user_xattr:
295 set_opt(sbi, XATTR_USER);
296 break;
297 case Opt_nouser_xattr:
298 clear_opt(sbi, XATTR_USER);
299 break;
300 case Opt_inline_xattr:
301 set_opt(sbi, INLINE_XATTR);
302 break;
303 #else
304 case Opt_user_xattr:
305 f2fs_msg(sb, KERN_INFO,
306 "user_xattr options not supported");
307 break;
308 case Opt_nouser_xattr:
309 f2fs_msg(sb, KERN_INFO,
310 "nouser_xattr options not supported");
311 break;
312 case Opt_inline_xattr:
313 f2fs_msg(sb, KERN_INFO,
314 "inline_xattr options not supported");
315 break;
316 #endif
317 #ifdef CONFIG_F2FS_FS_POSIX_ACL
318 case Opt_acl:
319 set_opt(sbi, POSIX_ACL);
320 break;
321 case Opt_noacl:
322 clear_opt(sbi, POSIX_ACL);
323 break;
324 #else
325 case Opt_acl:
326 f2fs_msg(sb, KERN_INFO, "acl options not supported");
327 break;
328 case Opt_noacl:
329 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
330 break;
331 #endif
332 case Opt_active_logs:
333 if (args->from && match_int(args, &arg))
334 return -EINVAL;
335 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
336 return -EINVAL;
337 sbi->active_logs = arg;
338 break;
339 case Opt_disable_ext_identify:
340 set_opt(sbi, DISABLE_EXT_IDENTIFY);
341 break;
342 case Opt_inline_data:
343 set_opt(sbi, INLINE_DATA);
344 break;
345 case Opt_inline_dentry:
346 set_opt(sbi, INLINE_DENTRY);
347 break;
348 case Opt_flush_merge:
349 set_opt(sbi, FLUSH_MERGE);
350 break;
351 case Opt_nobarrier:
352 set_opt(sbi, NOBARRIER);
353 break;
354 default:
355 f2fs_msg(sb, KERN_ERR,
356 "Unrecognized mount option \"%s\" or missing value",
357 p);
358 return -EINVAL;
359 }
360 }
361 return 0;
362 }
363
364 static struct inode *f2fs_alloc_inode(struct super_block *sb)
365 {
366 struct f2fs_inode_info *fi;
367
368 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
369 if (!fi)
370 return NULL;
371
372 init_once((void *) fi);
373
374 /* Initialize f2fs-specific inode info */
375 fi->vfs_inode.i_version = 1;
376 atomic_set(&fi->dirty_pages, 0);
377 fi->i_current_depth = 1;
378 fi->i_advise = 0;
379 rwlock_init(&fi->ext.ext_lock);
380 init_rwsem(&fi->i_sem);
381 INIT_RADIX_TREE(&fi->inmem_root, GFP_NOFS);
382 INIT_LIST_HEAD(&fi->inmem_pages);
383 mutex_init(&fi->inmem_lock);
384
385 set_inode_flag(fi, FI_NEW_INODE);
386
387 if (test_opt(F2FS_SB(sb), INLINE_XATTR))
388 set_inode_flag(fi, FI_INLINE_XATTR);
389
390 /* Will be used by directory only */
391 fi->i_dir_level = F2FS_SB(sb)->dir_level;
392
393 return &fi->vfs_inode;
394 }
395
396 static int f2fs_drop_inode(struct inode *inode)
397 {
398 /*
399 * This is to avoid a deadlock condition like below.
400 * writeback_single_inode(inode)
401 * - f2fs_write_data_page
402 * - f2fs_gc -> iput -> evict
403 * - inode_wait_for_writeback(inode)
404 */
405 if (!inode_unhashed(inode) && inode->i_state & I_SYNC)
406 return 0;
407 return generic_drop_inode(inode);
408 }
409
410 /*
411 * f2fs_dirty_inode() is called from __mark_inode_dirty()
412 *
413 * We should call set_dirty_inode to write the dirty inode through write_inode.
414 */
415 static void f2fs_dirty_inode(struct inode *inode, int flags)
416 {
417 set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
418 }
419
420 static void f2fs_i_callback(struct rcu_head *head)
421 {
422 struct inode *inode = container_of(head, struct inode, i_rcu);
423 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
424 }
425
426 static void f2fs_destroy_inode(struct inode *inode)
427 {
428 call_rcu(&inode->i_rcu, f2fs_i_callback);
429 }
430
431 static void f2fs_put_super(struct super_block *sb)
432 {
433 struct f2fs_sb_info *sbi = F2FS_SB(sb);
434
435 if (sbi->s_proc) {
436 remove_proc_entry("segment_info", sbi->s_proc);
437 remove_proc_entry(sb->s_id, f2fs_proc_root);
438 }
439 kobject_del(&sbi->s_kobj);
440
441 f2fs_destroy_stats(sbi);
442 stop_gc_thread(sbi);
443
444 /* We don't need to do checkpoint when it's clean */
445 if (sbi->s_dirty) {
446 struct cp_control cpc = {
447 .reason = CP_UMOUNT,
448 };
449 write_checkpoint(sbi, &cpc);
450 }
451
452 /*
453 * normally superblock is clean, so we need to release this.
454 * In addition, EIO will skip do checkpoint, we need this as well.
455 */
456 release_dirty_inode(sbi);
457 release_discard_addrs(sbi);
458
459 iput(sbi->node_inode);
460 iput(sbi->meta_inode);
461
462 /* destroy f2fs internal modules */
463 destroy_node_manager(sbi);
464 destroy_segment_manager(sbi);
465
466 kfree(sbi->ckpt);
467 kobject_put(&sbi->s_kobj);
468 wait_for_completion(&sbi->s_kobj_unregister);
469
470 sb->s_fs_info = NULL;
471 brelse(sbi->raw_super_buf);
472 kfree(sbi);
473 }
474
475 int f2fs_sync_fs(struct super_block *sb, int sync)
476 {
477 struct f2fs_sb_info *sbi = F2FS_SB(sb);
478
479 trace_f2fs_sync_fs(sb, sync);
480
481 if (sync) {
482 struct cp_control cpc = {
483 .reason = CP_SYNC,
484 };
485 mutex_lock(&sbi->gc_mutex);
486 write_checkpoint(sbi, &cpc);
487 mutex_unlock(&sbi->gc_mutex);
488 } else {
489 f2fs_balance_fs(sbi);
490 }
491
492 return 0;
493 }
494
495 static int f2fs_freeze(struct super_block *sb)
496 {
497 int err;
498
499 if (f2fs_readonly(sb))
500 return 0;
501
502 err = f2fs_sync_fs(sb, 1);
503 return err;
504 }
505
506 static int f2fs_unfreeze(struct super_block *sb)
507 {
508 return 0;
509 }
510
511 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
512 {
513 struct super_block *sb = dentry->d_sb;
514 struct f2fs_sb_info *sbi = F2FS_SB(sb);
515 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
516 block_t total_count, user_block_count, start_count, ovp_count;
517
518 total_count = le64_to_cpu(sbi->raw_super->block_count);
519 user_block_count = sbi->user_block_count;
520 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
521 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
522 buf->f_type = F2FS_SUPER_MAGIC;
523 buf->f_bsize = sbi->blocksize;
524
525 buf->f_blocks = total_count - start_count;
526 buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
527 buf->f_bavail = user_block_count - valid_user_blocks(sbi);
528
529 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
530 buf->f_ffree = buf->f_files - valid_inode_count(sbi);
531
532 buf->f_namelen = F2FS_NAME_LEN;
533 buf->f_fsid.val[0] = (u32)id;
534 buf->f_fsid.val[1] = (u32)(id >> 32);
535
536 return 0;
537 }
538
539 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
540 {
541 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
542
543 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC))
544 seq_printf(seq, ",background_gc=%s", "on");
545 else
546 seq_printf(seq, ",background_gc=%s", "off");
547 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
548 seq_puts(seq, ",disable_roll_forward");
549 if (test_opt(sbi, DISCARD))
550 seq_puts(seq, ",discard");
551 if (test_opt(sbi, NOHEAP))
552 seq_puts(seq, ",no_heap_alloc");
553 #ifdef CONFIG_F2FS_FS_XATTR
554 if (test_opt(sbi, XATTR_USER))
555 seq_puts(seq, ",user_xattr");
556 else
557 seq_puts(seq, ",nouser_xattr");
558 if (test_opt(sbi, INLINE_XATTR))
559 seq_puts(seq, ",inline_xattr");
560 #endif
561 #ifdef CONFIG_F2FS_FS_POSIX_ACL
562 if (test_opt(sbi, POSIX_ACL))
563 seq_puts(seq, ",acl");
564 else
565 seq_puts(seq, ",noacl");
566 #endif
567 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
568 seq_puts(seq, ",disable_ext_identify");
569 if (test_opt(sbi, INLINE_DATA))
570 seq_puts(seq, ",inline_data");
571 if (test_opt(sbi, INLINE_DENTRY))
572 seq_puts(seq, ",inline_dentry");
573 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
574 seq_puts(seq, ",flush_merge");
575 if (test_opt(sbi, NOBARRIER))
576 seq_puts(seq, ",nobarrier");
577 seq_printf(seq, ",active_logs=%u", sbi->active_logs);
578
579 return 0;
580 }
581
582 static int segment_info_seq_show(struct seq_file *seq, void *offset)
583 {
584 struct super_block *sb = seq->private;
585 struct f2fs_sb_info *sbi = F2FS_SB(sb);
586 unsigned int total_segs =
587 le32_to_cpu(sbi->raw_super->segment_count_main);
588 int i;
589
590 seq_puts(seq, "format: segment_type|valid_blocks\n"
591 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
592
593 for (i = 0; i < total_segs; i++) {
594 struct seg_entry *se = get_seg_entry(sbi, i);
595
596 if ((i % 10) == 0)
597 seq_printf(seq, "%-5d", i);
598 seq_printf(seq, "%d|%-3u", se->type,
599 get_valid_blocks(sbi, i, 1));
600 if ((i % 10) == 9 || i == (total_segs - 1))
601 seq_putc(seq, '\n');
602 else
603 seq_putc(seq, ' ');
604 }
605
606 return 0;
607 }
608
609 static int segment_info_open_fs(struct inode *inode, struct file *file)
610 {
611 return single_open(file, segment_info_seq_show, PDE_DATA(inode));
612 }
613
614 static const struct file_operations f2fs_seq_segment_info_fops = {
615 .owner = THIS_MODULE,
616 .open = segment_info_open_fs,
617 .read = seq_read,
618 .llseek = seq_lseek,
619 .release = single_release,
620 };
621
622 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
623 {
624 struct f2fs_sb_info *sbi = F2FS_SB(sb);
625 struct f2fs_mount_info org_mount_opt;
626 int err, active_logs;
627 bool need_restart_gc = false;
628 bool need_stop_gc = false;
629
630 sync_filesystem(sb);
631
632 /*
633 * Save the old mount options in case we
634 * need to restore them.
635 */
636 org_mount_opt = sbi->mount_opt;
637 active_logs = sbi->active_logs;
638
639 sbi->mount_opt.opt = 0;
640 sbi->active_logs = NR_CURSEG_TYPE;
641
642 /* parse mount options */
643 err = parse_options(sb, data);
644 if (err)
645 goto restore_opts;
646
647 /*
648 * Previous and new state of filesystem is RO,
649 * so skip checking GC and FLUSH_MERGE conditions.
650 */
651 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
652 goto skip;
653
654 /*
655 * We stop the GC thread if FS is mounted as RO
656 * or if background_gc = off is passed in mount
657 * option. Also sync the filesystem.
658 */
659 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
660 if (sbi->gc_thread) {
661 stop_gc_thread(sbi);
662 f2fs_sync_fs(sb, 1);
663 need_restart_gc = true;
664 }
665 } else if (test_opt(sbi, BG_GC) && !sbi->gc_thread) {
666 err = start_gc_thread(sbi);
667 if (err)
668 goto restore_opts;
669 need_stop_gc = true;
670 }
671
672 /*
673 * We stop issue flush thread if FS is mounted as RO
674 * or if flush_merge is not passed in mount option.
675 */
676 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
677 destroy_flush_cmd_control(sbi);
678 } else if (test_opt(sbi, FLUSH_MERGE) && !SM_I(sbi)->cmd_control_info) {
679 err = create_flush_cmd_control(sbi);
680 if (err)
681 goto restore_gc;
682 }
683 skip:
684 /* Update the POSIXACL Flag */
685 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
686 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
687 return 0;
688 restore_gc:
689 if (need_restart_gc) {
690 if (start_gc_thread(sbi))
691 f2fs_msg(sbi->sb, KERN_WARNING,
692 "background gc thread has stopped");
693 } else if (need_stop_gc) {
694 stop_gc_thread(sbi);
695 }
696 restore_opts:
697 sbi->mount_opt = org_mount_opt;
698 sbi->active_logs = active_logs;
699 return err;
700 }
701
702 static struct super_operations f2fs_sops = {
703 .alloc_inode = f2fs_alloc_inode,
704 .drop_inode = f2fs_drop_inode,
705 .destroy_inode = f2fs_destroy_inode,
706 .write_inode = f2fs_write_inode,
707 .dirty_inode = f2fs_dirty_inode,
708 .show_options = f2fs_show_options,
709 .evict_inode = f2fs_evict_inode,
710 .put_super = f2fs_put_super,
711 .sync_fs = f2fs_sync_fs,
712 .freeze_fs = f2fs_freeze,
713 .unfreeze_fs = f2fs_unfreeze,
714 .statfs = f2fs_statfs,
715 .remount_fs = f2fs_remount,
716 };
717
718 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
719 u64 ino, u32 generation)
720 {
721 struct f2fs_sb_info *sbi = F2FS_SB(sb);
722 struct inode *inode;
723
724 if (check_nid_range(sbi, ino))
725 return ERR_PTR(-ESTALE);
726
727 /*
728 * f2fs_iget isn't quite right if the inode is currently unallocated!
729 * However f2fs_iget currently does appropriate checks to handle stale
730 * inodes so everything is OK.
731 */
732 inode = f2fs_iget(sb, ino);
733 if (IS_ERR(inode))
734 return ERR_CAST(inode);
735 if (unlikely(generation && inode->i_generation != generation)) {
736 /* we didn't find the right inode.. */
737 iput(inode);
738 return ERR_PTR(-ESTALE);
739 }
740 return inode;
741 }
742
743 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
744 int fh_len, int fh_type)
745 {
746 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
747 f2fs_nfs_get_inode);
748 }
749
750 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
751 int fh_len, int fh_type)
752 {
753 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
754 f2fs_nfs_get_inode);
755 }
756
757 static const struct export_operations f2fs_export_ops = {
758 .fh_to_dentry = f2fs_fh_to_dentry,
759 .fh_to_parent = f2fs_fh_to_parent,
760 .get_parent = f2fs_get_parent,
761 };
762
763 static loff_t max_file_size(unsigned bits)
764 {
765 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
766 loff_t leaf_count = ADDRS_PER_BLOCK;
767
768 /* two direct node blocks */
769 result += (leaf_count * 2);
770
771 /* two indirect node blocks */
772 leaf_count *= NIDS_PER_BLOCK;
773 result += (leaf_count * 2);
774
775 /* one double indirect node block */
776 leaf_count *= NIDS_PER_BLOCK;
777 result += leaf_count;
778
779 result <<= bits;
780 return result;
781 }
782
783 static int sanity_check_raw_super(struct super_block *sb,
784 struct f2fs_super_block *raw_super)
785 {
786 unsigned int blocksize;
787
788 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
789 f2fs_msg(sb, KERN_INFO,
790 "Magic Mismatch, valid(0x%x) - read(0x%x)",
791 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
792 return 1;
793 }
794
795 /* Currently, support only 4KB page cache size */
796 if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
797 f2fs_msg(sb, KERN_INFO,
798 "Invalid page_cache_size (%lu), supports only 4KB\n",
799 PAGE_CACHE_SIZE);
800 return 1;
801 }
802
803 /* Currently, support only 4KB block size */
804 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
805 if (blocksize != F2FS_BLKSIZE) {
806 f2fs_msg(sb, KERN_INFO,
807 "Invalid blocksize (%u), supports only 4KB\n",
808 blocksize);
809 return 1;
810 }
811
812 /* Currently, support 512/1024/2048/4096 bytes sector size */
813 if (le32_to_cpu(raw_super->log_sectorsize) >
814 F2FS_MAX_LOG_SECTOR_SIZE ||
815 le32_to_cpu(raw_super->log_sectorsize) <
816 F2FS_MIN_LOG_SECTOR_SIZE) {
817 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
818 le32_to_cpu(raw_super->log_sectorsize));
819 return 1;
820 }
821 if (le32_to_cpu(raw_super->log_sectors_per_block) +
822 le32_to_cpu(raw_super->log_sectorsize) !=
823 F2FS_MAX_LOG_SECTOR_SIZE) {
824 f2fs_msg(sb, KERN_INFO,
825 "Invalid log sectors per block(%u) log sectorsize(%u)",
826 le32_to_cpu(raw_super->log_sectors_per_block),
827 le32_to_cpu(raw_super->log_sectorsize));
828 return 1;
829 }
830 return 0;
831 }
832
833 static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
834 {
835 unsigned int total, fsmeta;
836 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
837 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
838
839 total = le32_to_cpu(raw_super->segment_count);
840 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
841 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
842 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
843 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
844 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
845
846 if (unlikely(fsmeta >= total))
847 return 1;
848
849 if (unlikely(f2fs_cp_error(sbi))) {
850 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
851 return 1;
852 }
853 return 0;
854 }
855
856 static void init_sb_info(struct f2fs_sb_info *sbi)
857 {
858 struct f2fs_super_block *raw_super = sbi->raw_super;
859 int i;
860
861 sbi->log_sectors_per_block =
862 le32_to_cpu(raw_super->log_sectors_per_block);
863 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
864 sbi->blocksize = 1 << sbi->log_blocksize;
865 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
866 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
867 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
868 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
869 sbi->total_sections = le32_to_cpu(raw_super->section_count);
870 sbi->total_node_count =
871 (le32_to_cpu(raw_super->segment_count_nat) / 2)
872 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
873 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
874 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
875 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
876 sbi->cur_victim_sec = NULL_SECNO;
877 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
878
879 for (i = 0; i < NR_COUNT_TYPE; i++)
880 atomic_set(&sbi->nr_pages[i], 0);
881
882 sbi->dir_level = DEF_DIR_LEVEL;
883 sbi->need_fsck = false;
884 }
885
886 /*
887 * Read f2fs raw super block.
888 * Because we have two copies of super block, so read the first one at first,
889 * if the first one is invalid, move to read the second one.
890 */
891 static int read_raw_super_block(struct super_block *sb,
892 struct f2fs_super_block **raw_super,
893 struct buffer_head **raw_super_buf)
894 {
895 int block = 0;
896
897 retry:
898 *raw_super_buf = sb_bread(sb, block);
899 if (!*raw_super_buf) {
900 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
901 block + 1);
902 if (block == 0) {
903 block++;
904 goto retry;
905 } else {
906 return -EIO;
907 }
908 }
909
910 *raw_super = (struct f2fs_super_block *)
911 ((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET);
912
913 /* sanity checking of raw super */
914 if (sanity_check_raw_super(sb, *raw_super)) {
915 brelse(*raw_super_buf);
916 f2fs_msg(sb, KERN_ERR,
917 "Can't find valid F2FS filesystem in %dth superblock",
918 block + 1);
919 if (block == 0) {
920 block++;
921 goto retry;
922 } else {
923 return -EINVAL;
924 }
925 }
926
927 return 0;
928 }
929
930 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
931 {
932 struct f2fs_sb_info *sbi;
933 struct f2fs_super_block *raw_super;
934 struct buffer_head *raw_super_buf;
935 struct inode *root;
936 long err = -EINVAL;
937 bool retry = true;
938 int i;
939
940 try_onemore:
941 /* allocate memory for f2fs-specific super block info */
942 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
943 if (!sbi)
944 return -ENOMEM;
945
946 /* set a block size */
947 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
948 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
949 goto free_sbi;
950 }
951
952 err = read_raw_super_block(sb, &raw_super, &raw_super_buf);
953 if (err)
954 goto free_sbi;
955
956 sb->s_fs_info = sbi;
957 /* init some FS parameters */
958 sbi->active_logs = NR_CURSEG_TYPE;
959
960 set_opt(sbi, BG_GC);
961
962 #ifdef CONFIG_F2FS_FS_XATTR
963 set_opt(sbi, XATTR_USER);
964 #endif
965 #ifdef CONFIG_F2FS_FS_POSIX_ACL
966 set_opt(sbi, POSIX_ACL);
967 #endif
968 /* parse mount options */
969 err = parse_options(sb, (char *)data);
970 if (err)
971 goto free_sb_buf;
972
973 sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
974 sb->s_max_links = F2FS_LINK_MAX;
975 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
976
977 sb->s_op = &f2fs_sops;
978 sb->s_xattr = f2fs_xattr_handlers;
979 sb->s_export_op = &f2fs_export_ops;
980 sb->s_magic = F2FS_SUPER_MAGIC;
981 sb->s_time_gran = 1;
982 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
983 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
984 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
985
986 /* init f2fs-specific super block info */
987 sbi->sb = sb;
988 sbi->raw_super = raw_super;
989 sbi->raw_super_buf = raw_super_buf;
990 mutex_init(&sbi->gc_mutex);
991 mutex_init(&sbi->writepages);
992 mutex_init(&sbi->cp_mutex);
993 init_rwsem(&sbi->node_write);
994 sbi->por_doing = false;
995 spin_lock_init(&sbi->stat_lock);
996
997 init_rwsem(&sbi->read_io.io_rwsem);
998 sbi->read_io.sbi = sbi;
999 sbi->read_io.bio = NULL;
1000 for (i = 0; i < NR_PAGE_TYPE; i++) {
1001 init_rwsem(&sbi->write_io[i].io_rwsem);
1002 sbi->write_io[i].sbi = sbi;
1003 sbi->write_io[i].bio = NULL;
1004 }
1005
1006 init_rwsem(&sbi->cp_rwsem);
1007 init_waitqueue_head(&sbi->cp_wait);
1008 init_sb_info(sbi);
1009
1010 /* get an inode for meta space */
1011 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1012 if (IS_ERR(sbi->meta_inode)) {
1013 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1014 err = PTR_ERR(sbi->meta_inode);
1015 goto free_sb_buf;
1016 }
1017
1018 err = get_valid_checkpoint(sbi);
1019 if (err) {
1020 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1021 goto free_meta_inode;
1022 }
1023
1024 /* sanity checking of checkpoint */
1025 err = -EINVAL;
1026 if (sanity_check_ckpt(sbi)) {
1027 f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
1028 goto free_cp;
1029 }
1030
1031 sbi->total_valid_node_count =
1032 le32_to_cpu(sbi->ckpt->valid_node_count);
1033 sbi->total_valid_inode_count =
1034 le32_to_cpu(sbi->ckpt->valid_inode_count);
1035 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1036 sbi->total_valid_block_count =
1037 le64_to_cpu(sbi->ckpt->valid_block_count);
1038 sbi->last_valid_block_count = sbi->total_valid_block_count;
1039 sbi->alloc_valid_block_count = 0;
1040 INIT_LIST_HEAD(&sbi->dir_inode_list);
1041 spin_lock_init(&sbi->dir_inode_lock);
1042
1043 init_ino_entry_info(sbi);
1044
1045 /* setup f2fs internal modules */
1046 err = build_segment_manager(sbi);
1047 if (err) {
1048 f2fs_msg(sb, KERN_ERR,
1049 "Failed to initialize F2FS segment manager");
1050 goto free_sm;
1051 }
1052 err = build_node_manager(sbi);
1053 if (err) {
1054 f2fs_msg(sb, KERN_ERR,
1055 "Failed to initialize F2FS node manager");
1056 goto free_nm;
1057 }
1058
1059 build_gc_manager(sbi);
1060
1061 /* get an inode for node space */
1062 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1063 if (IS_ERR(sbi->node_inode)) {
1064 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1065 err = PTR_ERR(sbi->node_inode);
1066 goto free_nm;
1067 }
1068
1069 /* if there are nt orphan nodes free them */
1070 recover_orphan_inodes(sbi);
1071
1072 /* read root inode and dentry */
1073 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1074 if (IS_ERR(root)) {
1075 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1076 err = PTR_ERR(root);
1077 goto free_node_inode;
1078 }
1079 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1080 iput(root);
1081 err = -EINVAL;
1082 goto free_node_inode;
1083 }
1084
1085 sb->s_root = d_make_root(root); /* allocate root dentry */
1086 if (!sb->s_root) {
1087 err = -ENOMEM;
1088 goto free_root_inode;
1089 }
1090
1091 err = f2fs_build_stats(sbi);
1092 if (err)
1093 goto free_root_inode;
1094
1095 if (f2fs_proc_root)
1096 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1097
1098 if (sbi->s_proc)
1099 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1100 &f2fs_seq_segment_info_fops, sb);
1101
1102 if (test_opt(sbi, DISCARD)) {
1103 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1104 if (!blk_queue_discard(q))
1105 f2fs_msg(sb, KERN_WARNING,
1106 "mounting with \"discard\" option, but "
1107 "the device does not support discard");
1108 }
1109
1110 sbi->s_kobj.kset = f2fs_kset;
1111 init_completion(&sbi->s_kobj_unregister);
1112 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1113 "%s", sb->s_id);
1114 if (err)
1115 goto free_proc;
1116
1117 if (!retry)
1118 sbi->need_fsck = true;
1119
1120 /* recover fsynced data */
1121 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1122 err = recover_fsync_data(sbi);
1123 if (err) {
1124 f2fs_msg(sb, KERN_ERR,
1125 "Cannot recover all fsync data errno=%ld", err);
1126 goto free_kobj;
1127 }
1128 }
1129
1130 /*
1131 * If filesystem is not mounted as read-only then
1132 * do start the gc_thread.
1133 */
1134 if (!f2fs_readonly(sb)) {
1135 /* After POR, we can run background GC thread.*/
1136 err = start_gc_thread(sbi);
1137 if (err)
1138 goto free_kobj;
1139 }
1140 return 0;
1141
1142 free_kobj:
1143 kobject_del(&sbi->s_kobj);
1144 free_proc:
1145 if (sbi->s_proc) {
1146 remove_proc_entry("segment_info", sbi->s_proc);
1147 remove_proc_entry(sb->s_id, f2fs_proc_root);
1148 }
1149 f2fs_destroy_stats(sbi);
1150 free_root_inode:
1151 dput(sb->s_root);
1152 sb->s_root = NULL;
1153 free_node_inode:
1154 iput(sbi->node_inode);
1155 free_nm:
1156 destroy_node_manager(sbi);
1157 free_sm:
1158 destroy_segment_manager(sbi);
1159 free_cp:
1160 kfree(sbi->ckpt);
1161 free_meta_inode:
1162 make_bad_inode(sbi->meta_inode);
1163 iput(sbi->meta_inode);
1164 free_sb_buf:
1165 brelse(raw_super_buf);
1166 free_sbi:
1167 kfree(sbi);
1168
1169 /* give only one another chance */
1170 if (retry) {
1171 retry = 0;
1172 shrink_dcache_sb(sb);
1173 goto try_onemore;
1174 }
1175 return err;
1176 }
1177
1178 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1179 const char *dev_name, void *data)
1180 {
1181 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1182 }
1183
1184 static struct file_system_type f2fs_fs_type = {
1185 .owner = THIS_MODULE,
1186 .name = "f2fs",
1187 .mount = f2fs_mount,
1188 .kill_sb = kill_block_super,
1189 .fs_flags = FS_REQUIRES_DEV,
1190 };
1191 MODULE_ALIAS_FS("f2fs");
1192
1193 static int __init init_inodecache(void)
1194 {
1195 f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
1196 sizeof(struct f2fs_inode_info));
1197 if (!f2fs_inode_cachep)
1198 return -ENOMEM;
1199 return 0;
1200 }
1201
1202 static void destroy_inodecache(void)
1203 {
1204 /*
1205 * Make sure all delayed rcu free inodes are flushed before we
1206 * destroy cache.
1207 */
1208 rcu_barrier();
1209 kmem_cache_destroy(f2fs_inode_cachep);
1210 }
1211
1212 static int __init init_f2fs_fs(void)
1213 {
1214 int err;
1215
1216 err = init_inodecache();
1217 if (err)
1218 goto fail;
1219 err = create_node_manager_caches();
1220 if (err)
1221 goto free_inodecache;
1222 err = create_segment_manager_caches();
1223 if (err)
1224 goto free_node_manager_caches;
1225 err = create_gc_caches();
1226 if (err)
1227 goto free_segment_manager_caches;
1228 err = create_checkpoint_caches();
1229 if (err)
1230 goto free_gc_caches;
1231 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1232 if (!f2fs_kset) {
1233 err = -ENOMEM;
1234 goto free_checkpoint_caches;
1235 }
1236 err = register_filesystem(&f2fs_fs_type);
1237 if (err)
1238 goto free_kset;
1239 f2fs_create_root_stats();
1240 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1241 return 0;
1242
1243 free_kset:
1244 kset_unregister(f2fs_kset);
1245 free_checkpoint_caches:
1246 destroy_checkpoint_caches();
1247 free_gc_caches:
1248 destroy_gc_caches();
1249 free_segment_manager_caches:
1250 destroy_segment_manager_caches();
1251 free_node_manager_caches:
1252 destroy_node_manager_caches();
1253 free_inodecache:
1254 destroy_inodecache();
1255 fail:
1256 return err;
1257 }
1258
1259 static void __exit exit_f2fs_fs(void)
1260 {
1261 remove_proc_entry("fs/f2fs", NULL);
1262 f2fs_destroy_root_stats();
1263 unregister_filesystem(&f2fs_fs_type);
1264 destroy_checkpoint_caches();
1265 destroy_gc_caches();
1266 destroy_segment_manager_caches();
1267 destroy_node_manager_caches();
1268 destroy_inodecache();
1269 kset_unregister(f2fs_kset);
1270 }
1271
1272 module_init(init_f2fs_fs)
1273 module_exit(exit_f2fs_fs)
1274
1275 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1276 MODULE_DESCRIPTION("Flash Friendly File System");
1277 MODULE_LICENSE("GPL");
This page took 0.055595 seconds and 5 git commands to generate.