fs crypto: move per-file encryption from f2fs tree to fs/crypto
[deliverable/linux.git] / fs / f2fs / super.c
1 /*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 /* f2fs-wide shrinker description */
43 static struct shrinker f2fs_shrinker_info = {
44 .scan_objects = f2fs_shrink_scan,
45 .count_objects = f2fs_shrink_count,
46 .seeks = DEFAULT_SEEKS,
47 };
48
49 enum {
50 Opt_gc_background,
51 Opt_disable_roll_forward,
52 Opt_norecovery,
53 Opt_discard,
54 Opt_noheap,
55 Opt_user_xattr,
56 Opt_nouser_xattr,
57 Opt_acl,
58 Opt_noacl,
59 Opt_active_logs,
60 Opt_disable_ext_identify,
61 Opt_inline_xattr,
62 Opt_inline_data,
63 Opt_inline_dentry,
64 Opt_flush_merge,
65 Opt_nobarrier,
66 Opt_fastboot,
67 Opt_extent_cache,
68 Opt_noextent_cache,
69 Opt_noinline_data,
70 Opt_data_flush,
71 Opt_err,
72 };
73
74 static match_table_t f2fs_tokens = {
75 {Opt_gc_background, "background_gc=%s"},
76 {Opt_disable_roll_forward, "disable_roll_forward"},
77 {Opt_norecovery, "norecovery"},
78 {Opt_discard, "discard"},
79 {Opt_noheap, "no_heap"},
80 {Opt_user_xattr, "user_xattr"},
81 {Opt_nouser_xattr, "nouser_xattr"},
82 {Opt_acl, "acl"},
83 {Opt_noacl, "noacl"},
84 {Opt_active_logs, "active_logs=%u"},
85 {Opt_disable_ext_identify, "disable_ext_identify"},
86 {Opt_inline_xattr, "inline_xattr"},
87 {Opt_inline_data, "inline_data"},
88 {Opt_inline_dentry, "inline_dentry"},
89 {Opt_flush_merge, "flush_merge"},
90 {Opt_nobarrier, "nobarrier"},
91 {Opt_fastboot, "fastboot"},
92 {Opt_extent_cache, "extent_cache"},
93 {Opt_noextent_cache, "noextent_cache"},
94 {Opt_noinline_data, "noinline_data"},
95 {Opt_data_flush, "data_flush"},
96 {Opt_err, NULL},
97 };
98
99 /* Sysfs support for f2fs */
100 enum {
101 GC_THREAD, /* struct f2fs_gc_thread */
102 SM_INFO, /* struct f2fs_sm_info */
103 NM_INFO, /* struct f2fs_nm_info */
104 F2FS_SBI, /* struct f2fs_sb_info */
105 };
106
107 struct f2fs_attr {
108 struct attribute attr;
109 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
110 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
111 const char *, size_t);
112 int struct_type;
113 int offset;
114 };
115
116 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
117 {
118 if (struct_type == GC_THREAD)
119 return (unsigned char *)sbi->gc_thread;
120 else if (struct_type == SM_INFO)
121 return (unsigned char *)SM_I(sbi);
122 else if (struct_type == NM_INFO)
123 return (unsigned char *)NM_I(sbi);
124 else if (struct_type == F2FS_SBI)
125 return (unsigned char *)sbi;
126 return NULL;
127 }
128
129 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
130 struct f2fs_sb_info *sbi, char *buf)
131 {
132 struct super_block *sb = sbi->sb;
133
134 if (!sb->s_bdev->bd_part)
135 return snprintf(buf, PAGE_SIZE, "0\n");
136
137 return snprintf(buf, PAGE_SIZE, "%llu\n",
138 (unsigned long long)(sbi->kbytes_written +
139 BD_PART_WRITTEN(sbi)));
140 }
141
142 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
143 struct f2fs_sb_info *sbi, char *buf)
144 {
145 unsigned char *ptr = NULL;
146 unsigned int *ui;
147
148 ptr = __struct_ptr(sbi, a->struct_type);
149 if (!ptr)
150 return -EINVAL;
151
152 ui = (unsigned int *)(ptr + a->offset);
153
154 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
155 }
156
157 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
158 struct f2fs_sb_info *sbi,
159 const char *buf, size_t count)
160 {
161 unsigned char *ptr;
162 unsigned long t;
163 unsigned int *ui;
164 ssize_t ret;
165
166 ptr = __struct_ptr(sbi, a->struct_type);
167 if (!ptr)
168 return -EINVAL;
169
170 ui = (unsigned int *)(ptr + a->offset);
171
172 ret = kstrtoul(skip_spaces(buf), 0, &t);
173 if (ret < 0)
174 return ret;
175 *ui = t;
176 return count;
177 }
178
179 static ssize_t f2fs_attr_show(struct kobject *kobj,
180 struct attribute *attr, char *buf)
181 {
182 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
183 s_kobj);
184 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
185
186 return a->show ? a->show(a, sbi, buf) : 0;
187 }
188
189 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
190 const char *buf, size_t len)
191 {
192 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
193 s_kobj);
194 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
195
196 return a->store ? a->store(a, sbi, buf, len) : 0;
197 }
198
199 static void f2fs_sb_release(struct kobject *kobj)
200 {
201 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
202 s_kobj);
203 complete(&sbi->s_kobj_unregister);
204 }
205
206 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
207 static struct f2fs_attr f2fs_attr_##_name = { \
208 .attr = {.name = __stringify(_name), .mode = _mode }, \
209 .show = _show, \
210 .store = _store, \
211 .struct_type = _struct_type, \
212 .offset = _offset \
213 }
214
215 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
216 F2FS_ATTR_OFFSET(struct_type, name, 0644, \
217 f2fs_sbi_show, f2fs_sbi_store, \
218 offsetof(struct struct_name, elname))
219
220 #define F2FS_GENERAL_RO_ATTR(name) \
221 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
222
223 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
224 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
225 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
226 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
227 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
228 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
229 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
230 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
231 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
232 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
233 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
234 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
235 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
236 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
237 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
238 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
239 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
240 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
241
242 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
243 static struct attribute *f2fs_attrs[] = {
244 ATTR_LIST(gc_min_sleep_time),
245 ATTR_LIST(gc_max_sleep_time),
246 ATTR_LIST(gc_no_gc_sleep_time),
247 ATTR_LIST(gc_idle),
248 ATTR_LIST(reclaim_segments),
249 ATTR_LIST(max_small_discards),
250 ATTR_LIST(batched_trim_sections),
251 ATTR_LIST(ipu_policy),
252 ATTR_LIST(min_ipu_util),
253 ATTR_LIST(min_fsync_blocks),
254 ATTR_LIST(max_victim_search),
255 ATTR_LIST(dir_level),
256 ATTR_LIST(ram_thresh),
257 ATTR_LIST(ra_nid_pages),
258 ATTR_LIST(dirty_nats_ratio),
259 ATTR_LIST(cp_interval),
260 ATTR_LIST(idle_interval),
261 ATTR_LIST(lifetime_write_kbytes),
262 NULL,
263 };
264
265 static const struct sysfs_ops f2fs_attr_ops = {
266 .show = f2fs_attr_show,
267 .store = f2fs_attr_store,
268 };
269
270 static struct kobj_type f2fs_ktype = {
271 .default_attrs = f2fs_attrs,
272 .sysfs_ops = &f2fs_attr_ops,
273 .release = f2fs_sb_release,
274 };
275
276 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
277 {
278 struct va_format vaf;
279 va_list args;
280
281 va_start(args, fmt);
282 vaf.fmt = fmt;
283 vaf.va = &args;
284 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
285 va_end(args);
286 }
287
288 static void init_once(void *foo)
289 {
290 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
291
292 inode_init_once(&fi->vfs_inode);
293 }
294
295 static int parse_options(struct super_block *sb, char *options)
296 {
297 struct f2fs_sb_info *sbi = F2FS_SB(sb);
298 struct request_queue *q;
299 substring_t args[MAX_OPT_ARGS];
300 char *p, *name;
301 int arg = 0;
302
303 if (!options)
304 return 0;
305
306 while ((p = strsep(&options, ",")) != NULL) {
307 int token;
308 if (!*p)
309 continue;
310 /*
311 * Initialize args struct so we know whether arg was
312 * found; some options take optional arguments.
313 */
314 args[0].to = args[0].from = NULL;
315 token = match_token(p, f2fs_tokens, args);
316
317 switch (token) {
318 case Opt_gc_background:
319 name = match_strdup(&args[0]);
320
321 if (!name)
322 return -ENOMEM;
323 if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
324 set_opt(sbi, BG_GC);
325 clear_opt(sbi, FORCE_FG_GC);
326 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
327 clear_opt(sbi, BG_GC);
328 clear_opt(sbi, FORCE_FG_GC);
329 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
330 set_opt(sbi, BG_GC);
331 set_opt(sbi, FORCE_FG_GC);
332 } else {
333 kfree(name);
334 return -EINVAL;
335 }
336 kfree(name);
337 break;
338 case Opt_disable_roll_forward:
339 set_opt(sbi, DISABLE_ROLL_FORWARD);
340 break;
341 case Opt_norecovery:
342 /* this option mounts f2fs with ro */
343 set_opt(sbi, DISABLE_ROLL_FORWARD);
344 if (!f2fs_readonly(sb))
345 return -EINVAL;
346 break;
347 case Opt_discard:
348 q = bdev_get_queue(sb->s_bdev);
349 if (blk_queue_discard(q)) {
350 set_opt(sbi, DISCARD);
351 } else {
352 f2fs_msg(sb, KERN_WARNING,
353 "mounting with \"discard\" option, but "
354 "the device does not support discard");
355 }
356 break;
357 case Opt_noheap:
358 set_opt(sbi, NOHEAP);
359 break;
360 #ifdef CONFIG_F2FS_FS_XATTR
361 case Opt_user_xattr:
362 set_opt(sbi, XATTR_USER);
363 break;
364 case Opt_nouser_xattr:
365 clear_opt(sbi, XATTR_USER);
366 break;
367 case Opt_inline_xattr:
368 set_opt(sbi, INLINE_XATTR);
369 break;
370 #else
371 case Opt_user_xattr:
372 f2fs_msg(sb, KERN_INFO,
373 "user_xattr options not supported");
374 break;
375 case Opt_nouser_xattr:
376 f2fs_msg(sb, KERN_INFO,
377 "nouser_xattr options not supported");
378 break;
379 case Opt_inline_xattr:
380 f2fs_msg(sb, KERN_INFO,
381 "inline_xattr options not supported");
382 break;
383 #endif
384 #ifdef CONFIG_F2FS_FS_POSIX_ACL
385 case Opt_acl:
386 set_opt(sbi, POSIX_ACL);
387 break;
388 case Opt_noacl:
389 clear_opt(sbi, POSIX_ACL);
390 break;
391 #else
392 case Opt_acl:
393 f2fs_msg(sb, KERN_INFO, "acl options not supported");
394 break;
395 case Opt_noacl:
396 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
397 break;
398 #endif
399 case Opt_active_logs:
400 if (args->from && match_int(args, &arg))
401 return -EINVAL;
402 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
403 return -EINVAL;
404 sbi->active_logs = arg;
405 break;
406 case Opt_disable_ext_identify:
407 set_opt(sbi, DISABLE_EXT_IDENTIFY);
408 break;
409 case Opt_inline_data:
410 set_opt(sbi, INLINE_DATA);
411 break;
412 case Opt_inline_dentry:
413 set_opt(sbi, INLINE_DENTRY);
414 break;
415 case Opt_flush_merge:
416 set_opt(sbi, FLUSH_MERGE);
417 break;
418 case Opt_nobarrier:
419 set_opt(sbi, NOBARRIER);
420 break;
421 case Opt_fastboot:
422 set_opt(sbi, FASTBOOT);
423 break;
424 case Opt_extent_cache:
425 set_opt(sbi, EXTENT_CACHE);
426 break;
427 case Opt_noextent_cache:
428 clear_opt(sbi, EXTENT_CACHE);
429 break;
430 case Opt_noinline_data:
431 clear_opt(sbi, INLINE_DATA);
432 break;
433 case Opt_data_flush:
434 set_opt(sbi, DATA_FLUSH);
435 break;
436 default:
437 f2fs_msg(sb, KERN_ERR,
438 "Unrecognized mount option \"%s\" or missing value",
439 p);
440 return -EINVAL;
441 }
442 }
443 return 0;
444 }
445
446 static struct inode *f2fs_alloc_inode(struct super_block *sb)
447 {
448 struct f2fs_inode_info *fi;
449
450 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
451 if (!fi)
452 return NULL;
453
454 init_once((void *) fi);
455
456 /* Initialize f2fs-specific inode info */
457 fi->vfs_inode.i_version = 1;
458 atomic_set(&fi->dirty_pages, 0);
459 fi->i_current_depth = 1;
460 fi->i_advise = 0;
461 init_rwsem(&fi->i_sem);
462 INIT_LIST_HEAD(&fi->dirty_list);
463 INIT_LIST_HEAD(&fi->inmem_pages);
464 mutex_init(&fi->inmem_lock);
465
466 set_inode_flag(fi, FI_NEW_INODE);
467
468 if (test_opt(F2FS_SB(sb), INLINE_XATTR))
469 set_inode_flag(fi, FI_INLINE_XATTR);
470
471 /* Will be used by directory only */
472 fi->i_dir_level = F2FS_SB(sb)->dir_level;
473 return &fi->vfs_inode;
474 }
475
476 static int f2fs_drop_inode(struct inode *inode)
477 {
478 /*
479 * This is to avoid a deadlock condition like below.
480 * writeback_single_inode(inode)
481 * - f2fs_write_data_page
482 * - f2fs_gc -> iput -> evict
483 * - inode_wait_for_writeback(inode)
484 */
485 if (!inode_unhashed(inode) && inode->i_state & I_SYNC) {
486 if (!inode->i_nlink && !is_bad_inode(inode)) {
487 /* to avoid evict_inode call simultaneously */
488 atomic_inc(&inode->i_count);
489 spin_unlock(&inode->i_lock);
490
491 /* some remained atomic pages should discarded */
492 if (f2fs_is_atomic_file(inode))
493 drop_inmem_pages(inode);
494
495 /* should remain fi->extent_tree for writepage */
496 f2fs_destroy_extent_node(inode);
497
498 sb_start_intwrite(inode->i_sb);
499 i_size_write(inode, 0);
500
501 if (F2FS_HAS_BLOCKS(inode))
502 f2fs_truncate(inode, true);
503
504 sb_end_intwrite(inode->i_sb);
505
506 fscrypt_put_encryption_info(inode, NULL);
507 spin_lock(&inode->i_lock);
508 atomic_dec(&inode->i_count);
509 }
510 return 0;
511 }
512 return generic_drop_inode(inode);
513 }
514
515 /*
516 * f2fs_dirty_inode() is called from __mark_inode_dirty()
517 *
518 * We should call set_dirty_inode to write the dirty inode through write_inode.
519 */
520 static void f2fs_dirty_inode(struct inode *inode, int flags)
521 {
522 set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
523 }
524
525 static void f2fs_i_callback(struct rcu_head *head)
526 {
527 struct inode *inode = container_of(head, struct inode, i_rcu);
528 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
529 }
530
531 static void f2fs_destroy_inode(struct inode *inode)
532 {
533 call_rcu(&inode->i_rcu, f2fs_i_callback);
534 }
535
536 static void f2fs_put_super(struct super_block *sb)
537 {
538 struct f2fs_sb_info *sbi = F2FS_SB(sb);
539
540 if (sbi->s_proc) {
541 remove_proc_entry("segment_info", sbi->s_proc);
542 remove_proc_entry(sb->s_id, f2fs_proc_root);
543 }
544 kobject_del(&sbi->s_kobj);
545
546 stop_gc_thread(sbi);
547
548 /* prevent remaining shrinker jobs */
549 mutex_lock(&sbi->umount_mutex);
550
551 /*
552 * We don't need to do checkpoint when superblock is clean.
553 * But, the previous checkpoint was not done by umount, it needs to do
554 * clean checkpoint again.
555 */
556 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
557 !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
558 struct cp_control cpc = {
559 .reason = CP_UMOUNT,
560 };
561 write_checkpoint(sbi, &cpc);
562 }
563
564 /* write_checkpoint can update stat informaion */
565 f2fs_destroy_stats(sbi);
566
567 /*
568 * normally superblock is clean, so we need to release this.
569 * In addition, EIO will skip do checkpoint, we need this as well.
570 */
571 release_ino_entry(sbi);
572 release_discard_addrs(sbi);
573
574 f2fs_leave_shrinker(sbi);
575 mutex_unlock(&sbi->umount_mutex);
576
577 /* our cp_error case, we can wait for any writeback page */
578 if (get_pages(sbi, F2FS_WRITEBACK))
579 f2fs_flush_merged_bios(sbi);
580
581 iput(sbi->node_inode);
582 iput(sbi->meta_inode);
583
584 /* destroy f2fs internal modules */
585 destroy_node_manager(sbi);
586 destroy_segment_manager(sbi);
587
588 kfree(sbi->ckpt);
589 kobject_put(&sbi->s_kobj);
590 wait_for_completion(&sbi->s_kobj_unregister);
591
592 sb->s_fs_info = NULL;
593 kfree(sbi->raw_super);
594 kfree(sbi);
595 }
596
597 int f2fs_sync_fs(struct super_block *sb, int sync)
598 {
599 struct f2fs_sb_info *sbi = F2FS_SB(sb);
600 int err = 0;
601
602 trace_f2fs_sync_fs(sb, sync);
603
604 if (sync) {
605 struct cp_control cpc;
606
607 cpc.reason = __get_cp_reason(sbi);
608
609 mutex_lock(&sbi->gc_mutex);
610 err = write_checkpoint(sbi, &cpc);
611 mutex_unlock(&sbi->gc_mutex);
612 }
613 f2fs_trace_ios(NULL, 1);
614
615 return err;
616 }
617
618 static int f2fs_freeze(struct super_block *sb)
619 {
620 int err;
621
622 if (f2fs_readonly(sb))
623 return 0;
624
625 err = f2fs_sync_fs(sb, 1);
626 return err;
627 }
628
629 static int f2fs_unfreeze(struct super_block *sb)
630 {
631 return 0;
632 }
633
634 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
635 {
636 struct super_block *sb = dentry->d_sb;
637 struct f2fs_sb_info *sbi = F2FS_SB(sb);
638 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
639 block_t total_count, user_block_count, start_count, ovp_count;
640
641 total_count = le64_to_cpu(sbi->raw_super->block_count);
642 user_block_count = sbi->user_block_count;
643 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
644 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
645 buf->f_type = F2FS_SUPER_MAGIC;
646 buf->f_bsize = sbi->blocksize;
647
648 buf->f_blocks = total_count - start_count;
649 buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
650 buf->f_bavail = user_block_count - valid_user_blocks(sbi);
651
652 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
653 buf->f_ffree = buf->f_files - valid_inode_count(sbi);
654
655 buf->f_namelen = F2FS_NAME_LEN;
656 buf->f_fsid.val[0] = (u32)id;
657 buf->f_fsid.val[1] = (u32)(id >> 32);
658
659 return 0;
660 }
661
662 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
663 {
664 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
665
666 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
667 if (test_opt(sbi, FORCE_FG_GC))
668 seq_printf(seq, ",background_gc=%s", "sync");
669 else
670 seq_printf(seq, ",background_gc=%s", "on");
671 } else {
672 seq_printf(seq, ",background_gc=%s", "off");
673 }
674 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
675 seq_puts(seq, ",disable_roll_forward");
676 if (test_opt(sbi, DISCARD))
677 seq_puts(seq, ",discard");
678 if (test_opt(sbi, NOHEAP))
679 seq_puts(seq, ",no_heap_alloc");
680 #ifdef CONFIG_F2FS_FS_XATTR
681 if (test_opt(sbi, XATTR_USER))
682 seq_puts(seq, ",user_xattr");
683 else
684 seq_puts(seq, ",nouser_xattr");
685 if (test_opt(sbi, INLINE_XATTR))
686 seq_puts(seq, ",inline_xattr");
687 #endif
688 #ifdef CONFIG_F2FS_FS_POSIX_ACL
689 if (test_opt(sbi, POSIX_ACL))
690 seq_puts(seq, ",acl");
691 else
692 seq_puts(seq, ",noacl");
693 #endif
694 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
695 seq_puts(seq, ",disable_ext_identify");
696 if (test_opt(sbi, INLINE_DATA))
697 seq_puts(seq, ",inline_data");
698 else
699 seq_puts(seq, ",noinline_data");
700 if (test_opt(sbi, INLINE_DENTRY))
701 seq_puts(seq, ",inline_dentry");
702 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
703 seq_puts(seq, ",flush_merge");
704 if (test_opt(sbi, NOBARRIER))
705 seq_puts(seq, ",nobarrier");
706 if (test_opt(sbi, FASTBOOT))
707 seq_puts(seq, ",fastboot");
708 if (test_opt(sbi, EXTENT_CACHE))
709 seq_puts(seq, ",extent_cache");
710 else
711 seq_puts(seq, ",noextent_cache");
712 if (test_opt(sbi, DATA_FLUSH))
713 seq_puts(seq, ",data_flush");
714 seq_printf(seq, ",active_logs=%u", sbi->active_logs);
715
716 return 0;
717 }
718
719 static int segment_info_seq_show(struct seq_file *seq, void *offset)
720 {
721 struct super_block *sb = seq->private;
722 struct f2fs_sb_info *sbi = F2FS_SB(sb);
723 unsigned int total_segs =
724 le32_to_cpu(sbi->raw_super->segment_count_main);
725 int i;
726
727 seq_puts(seq, "format: segment_type|valid_blocks\n"
728 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
729
730 for (i = 0; i < total_segs; i++) {
731 struct seg_entry *se = get_seg_entry(sbi, i);
732
733 if ((i % 10) == 0)
734 seq_printf(seq, "%-10d", i);
735 seq_printf(seq, "%d|%-3u", se->type,
736 get_valid_blocks(sbi, i, 1));
737 if ((i % 10) == 9 || i == (total_segs - 1))
738 seq_putc(seq, '\n');
739 else
740 seq_putc(seq, ' ');
741 }
742
743 return 0;
744 }
745
746 static int segment_info_open_fs(struct inode *inode, struct file *file)
747 {
748 return single_open(file, segment_info_seq_show, PDE_DATA(inode));
749 }
750
751 static const struct file_operations f2fs_seq_segment_info_fops = {
752 .owner = THIS_MODULE,
753 .open = segment_info_open_fs,
754 .read = seq_read,
755 .llseek = seq_lseek,
756 .release = single_release,
757 };
758
759 static void default_options(struct f2fs_sb_info *sbi)
760 {
761 /* init some FS parameters */
762 sbi->active_logs = NR_CURSEG_TYPE;
763
764 set_opt(sbi, BG_GC);
765 set_opt(sbi, INLINE_DATA);
766 set_opt(sbi, EXTENT_CACHE);
767
768 #ifdef CONFIG_F2FS_FS_XATTR
769 set_opt(sbi, XATTR_USER);
770 #endif
771 #ifdef CONFIG_F2FS_FS_POSIX_ACL
772 set_opt(sbi, POSIX_ACL);
773 #endif
774 }
775
776 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
777 {
778 struct f2fs_sb_info *sbi = F2FS_SB(sb);
779 struct f2fs_mount_info org_mount_opt;
780 int err, active_logs;
781 bool need_restart_gc = false;
782 bool need_stop_gc = false;
783 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
784
785 /*
786 * Save the old mount options in case we
787 * need to restore them.
788 */
789 org_mount_opt = sbi->mount_opt;
790 active_logs = sbi->active_logs;
791
792 if (*flags & MS_RDONLY) {
793 set_opt(sbi, FASTBOOT);
794 set_sbi_flag(sbi, SBI_IS_DIRTY);
795 }
796
797 sync_filesystem(sb);
798
799 sbi->mount_opt.opt = 0;
800 default_options(sbi);
801
802 /* parse mount options */
803 err = parse_options(sb, data);
804 if (err)
805 goto restore_opts;
806
807 /*
808 * Previous and new state of filesystem is RO,
809 * so skip checking GC and FLUSH_MERGE conditions.
810 */
811 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
812 goto skip;
813
814 /* disallow enable/disable extent_cache dynamically */
815 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
816 err = -EINVAL;
817 f2fs_msg(sbi->sb, KERN_WARNING,
818 "switch extent_cache option is not allowed");
819 goto restore_opts;
820 }
821
822 /*
823 * We stop the GC thread if FS is mounted as RO
824 * or if background_gc = off is passed in mount
825 * option. Also sync the filesystem.
826 */
827 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
828 if (sbi->gc_thread) {
829 stop_gc_thread(sbi);
830 f2fs_sync_fs(sb, 1);
831 need_restart_gc = true;
832 }
833 } else if (!sbi->gc_thread) {
834 err = start_gc_thread(sbi);
835 if (err)
836 goto restore_opts;
837 need_stop_gc = true;
838 }
839
840 /*
841 * We stop issue flush thread if FS is mounted as RO
842 * or if flush_merge is not passed in mount option.
843 */
844 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
845 destroy_flush_cmd_control(sbi);
846 } else if (!SM_I(sbi)->cmd_control_info) {
847 err = create_flush_cmd_control(sbi);
848 if (err)
849 goto restore_gc;
850 }
851 skip:
852 /* Update the POSIXACL Flag */
853 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
854 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
855 return 0;
856 restore_gc:
857 if (need_restart_gc) {
858 if (start_gc_thread(sbi))
859 f2fs_msg(sbi->sb, KERN_WARNING,
860 "background gc thread has stopped");
861 } else if (need_stop_gc) {
862 stop_gc_thread(sbi);
863 }
864 restore_opts:
865 sbi->mount_opt = org_mount_opt;
866 sbi->active_logs = active_logs;
867 return err;
868 }
869
870 static struct super_operations f2fs_sops = {
871 .alloc_inode = f2fs_alloc_inode,
872 .drop_inode = f2fs_drop_inode,
873 .destroy_inode = f2fs_destroy_inode,
874 .write_inode = f2fs_write_inode,
875 .dirty_inode = f2fs_dirty_inode,
876 .show_options = f2fs_show_options,
877 .evict_inode = f2fs_evict_inode,
878 .put_super = f2fs_put_super,
879 .sync_fs = f2fs_sync_fs,
880 .freeze_fs = f2fs_freeze,
881 .unfreeze_fs = f2fs_unfreeze,
882 .statfs = f2fs_statfs,
883 .remount_fs = f2fs_remount,
884 };
885
886 #ifdef CONFIG_F2FS_FS_ENCRYPTION
887 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
888 {
889 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
890 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
891 ctx, len, NULL);
892 }
893
894 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
895 void *fs_data)
896 {
897 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
898 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
899 ctx, len, fs_data, XATTR_CREATE);
900 }
901
902 static unsigned f2fs_max_namelen(struct inode *inode)
903 {
904 return S_ISLNK(inode->i_mode) ?
905 inode->i_sb->s_blocksize : F2FS_NAME_LEN;
906 }
907
908 static struct fscrypt_operations f2fs_cryptops = {
909 .get_context = f2fs_get_context,
910 .set_context = f2fs_set_context,
911 .is_encrypted = f2fs_encrypted_inode,
912 .empty_dir = f2fs_empty_dir,
913 .max_namelen = f2fs_max_namelen,
914 };
915 #else
916 static struct fscrypt_operations f2fs_cryptops = {
917 .is_encrypted = f2fs_encrypted_inode,
918 };
919 #endif
920
921 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
922 u64 ino, u32 generation)
923 {
924 struct f2fs_sb_info *sbi = F2FS_SB(sb);
925 struct inode *inode;
926
927 if (check_nid_range(sbi, ino))
928 return ERR_PTR(-ESTALE);
929
930 /*
931 * f2fs_iget isn't quite right if the inode is currently unallocated!
932 * However f2fs_iget currently does appropriate checks to handle stale
933 * inodes so everything is OK.
934 */
935 inode = f2fs_iget(sb, ino);
936 if (IS_ERR(inode))
937 return ERR_CAST(inode);
938 if (unlikely(generation && inode->i_generation != generation)) {
939 /* we didn't find the right inode.. */
940 iput(inode);
941 return ERR_PTR(-ESTALE);
942 }
943 return inode;
944 }
945
946 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
947 int fh_len, int fh_type)
948 {
949 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
950 f2fs_nfs_get_inode);
951 }
952
953 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
954 int fh_len, int fh_type)
955 {
956 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
957 f2fs_nfs_get_inode);
958 }
959
960 static const struct export_operations f2fs_export_ops = {
961 .fh_to_dentry = f2fs_fh_to_dentry,
962 .fh_to_parent = f2fs_fh_to_parent,
963 .get_parent = f2fs_get_parent,
964 };
965
966 static loff_t max_file_blocks(void)
967 {
968 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
969 loff_t leaf_count = ADDRS_PER_BLOCK;
970
971 /* two direct node blocks */
972 result += (leaf_count * 2);
973
974 /* two indirect node blocks */
975 leaf_count *= NIDS_PER_BLOCK;
976 result += (leaf_count * 2);
977
978 /* one double indirect node block */
979 leaf_count *= NIDS_PER_BLOCK;
980 result += leaf_count;
981
982 return result;
983 }
984
985 static inline bool sanity_check_area_boundary(struct super_block *sb,
986 struct f2fs_super_block *raw_super)
987 {
988 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
989 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
990 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
991 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
992 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
993 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
994 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
995 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
996 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
997 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
998 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
999 u32 segment_count = le32_to_cpu(raw_super->segment_count);
1000 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1001
1002 if (segment0_blkaddr != cp_blkaddr) {
1003 f2fs_msg(sb, KERN_INFO,
1004 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1005 segment0_blkaddr, cp_blkaddr);
1006 return true;
1007 }
1008
1009 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1010 sit_blkaddr) {
1011 f2fs_msg(sb, KERN_INFO,
1012 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1013 cp_blkaddr, sit_blkaddr,
1014 segment_count_ckpt << log_blocks_per_seg);
1015 return true;
1016 }
1017
1018 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1019 nat_blkaddr) {
1020 f2fs_msg(sb, KERN_INFO,
1021 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1022 sit_blkaddr, nat_blkaddr,
1023 segment_count_sit << log_blocks_per_seg);
1024 return true;
1025 }
1026
1027 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1028 ssa_blkaddr) {
1029 f2fs_msg(sb, KERN_INFO,
1030 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1031 nat_blkaddr, ssa_blkaddr,
1032 segment_count_nat << log_blocks_per_seg);
1033 return true;
1034 }
1035
1036 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1037 main_blkaddr) {
1038 f2fs_msg(sb, KERN_INFO,
1039 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1040 ssa_blkaddr, main_blkaddr,
1041 segment_count_ssa << log_blocks_per_seg);
1042 return true;
1043 }
1044
1045 if (main_blkaddr + (segment_count_main << log_blocks_per_seg) !=
1046 segment0_blkaddr + (segment_count << log_blocks_per_seg)) {
1047 f2fs_msg(sb, KERN_INFO,
1048 "Wrong MAIN_AREA boundary, start(%u) end(%u) blocks(%u)",
1049 main_blkaddr,
1050 segment0_blkaddr + (segment_count << log_blocks_per_seg),
1051 segment_count_main << log_blocks_per_seg);
1052 return true;
1053 }
1054
1055 return false;
1056 }
1057
1058 static int sanity_check_raw_super(struct super_block *sb,
1059 struct f2fs_super_block *raw_super)
1060 {
1061 unsigned int blocksize;
1062
1063 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1064 f2fs_msg(sb, KERN_INFO,
1065 "Magic Mismatch, valid(0x%x) - read(0x%x)",
1066 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1067 return 1;
1068 }
1069
1070 /* Currently, support only 4KB page cache size */
1071 if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
1072 f2fs_msg(sb, KERN_INFO,
1073 "Invalid page_cache_size (%lu), supports only 4KB\n",
1074 PAGE_CACHE_SIZE);
1075 return 1;
1076 }
1077
1078 /* Currently, support only 4KB block size */
1079 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1080 if (blocksize != F2FS_BLKSIZE) {
1081 f2fs_msg(sb, KERN_INFO,
1082 "Invalid blocksize (%u), supports only 4KB\n",
1083 blocksize);
1084 return 1;
1085 }
1086
1087 /* check log blocks per segment */
1088 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1089 f2fs_msg(sb, KERN_INFO,
1090 "Invalid log blocks per segment (%u)\n",
1091 le32_to_cpu(raw_super->log_blocks_per_seg));
1092 return 1;
1093 }
1094
1095 /* Currently, support 512/1024/2048/4096 bytes sector size */
1096 if (le32_to_cpu(raw_super->log_sectorsize) >
1097 F2FS_MAX_LOG_SECTOR_SIZE ||
1098 le32_to_cpu(raw_super->log_sectorsize) <
1099 F2FS_MIN_LOG_SECTOR_SIZE) {
1100 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1101 le32_to_cpu(raw_super->log_sectorsize));
1102 return 1;
1103 }
1104 if (le32_to_cpu(raw_super->log_sectors_per_block) +
1105 le32_to_cpu(raw_super->log_sectorsize) !=
1106 F2FS_MAX_LOG_SECTOR_SIZE) {
1107 f2fs_msg(sb, KERN_INFO,
1108 "Invalid log sectors per block(%u) log sectorsize(%u)",
1109 le32_to_cpu(raw_super->log_sectors_per_block),
1110 le32_to_cpu(raw_super->log_sectorsize));
1111 return 1;
1112 }
1113
1114 /* check reserved ino info */
1115 if (le32_to_cpu(raw_super->node_ino) != 1 ||
1116 le32_to_cpu(raw_super->meta_ino) != 2 ||
1117 le32_to_cpu(raw_super->root_ino) != 3) {
1118 f2fs_msg(sb, KERN_INFO,
1119 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1120 le32_to_cpu(raw_super->node_ino),
1121 le32_to_cpu(raw_super->meta_ino),
1122 le32_to_cpu(raw_super->root_ino));
1123 return 1;
1124 }
1125
1126 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1127 if (sanity_check_area_boundary(sb, raw_super))
1128 return 1;
1129
1130 return 0;
1131 }
1132
1133 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1134 {
1135 unsigned int total, fsmeta;
1136 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1137 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1138
1139 total = le32_to_cpu(raw_super->segment_count);
1140 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1141 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1142 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1143 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1144 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1145
1146 if (unlikely(fsmeta >= total))
1147 return 1;
1148
1149 if (unlikely(f2fs_cp_error(sbi))) {
1150 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1151 return 1;
1152 }
1153 return 0;
1154 }
1155
1156 static void init_sb_info(struct f2fs_sb_info *sbi)
1157 {
1158 struct f2fs_super_block *raw_super = sbi->raw_super;
1159 int i;
1160
1161 sbi->log_sectors_per_block =
1162 le32_to_cpu(raw_super->log_sectors_per_block);
1163 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1164 sbi->blocksize = 1 << sbi->log_blocksize;
1165 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1166 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1167 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1168 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1169 sbi->total_sections = le32_to_cpu(raw_super->section_count);
1170 sbi->total_node_count =
1171 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1172 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1173 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1174 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1175 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1176 sbi->cur_victim_sec = NULL_SECNO;
1177 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1178
1179 for (i = 0; i < NR_COUNT_TYPE; i++)
1180 atomic_set(&sbi->nr_pages[i], 0);
1181
1182 sbi->dir_level = DEF_DIR_LEVEL;
1183 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1184 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1185 clear_sbi_flag(sbi, SBI_NEED_FSCK);
1186
1187 INIT_LIST_HEAD(&sbi->s_list);
1188 mutex_init(&sbi->umount_mutex);
1189 }
1190
1191 /*
1192 * Read f2fs raw super block.
1193 * Because we have two copies of super block, so read both of them
1194 * to get the first valid one. If any one of them is broken, we pass
1195 * them recovery flag back to the caller.
1196 */
1197 static int read_raw_super_block(struct super_block *sb,
1198 struct f2fs_super_block **raw_super,
1199 int *valid_super_block, int *recovery)
1200 {
1201 int block;
1202 struct buffer_head *bh;
1203 struct f2fs_super_block *super, *buf;
1204 int err = 0;
1205
1206 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1207 if (!super)
1208 return -ENOMEM;
1209
1210 for (block = 0; block < 2; block++) {
1211 bh = sb_bread(sb, block);
1212 if (!bh) {
1213 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1214 block + 1);
1215 err = -EIO;
1216 continue;
1217 }
1218
1219 buf = (struct f2fs_super_block *)
1220 (bh->b_data + F2FS_SUPER_OFFSET);
1221
1222 /* sanity checking of raw super */
1223 if (sanity_check_raw_super(sb, buf)) {
1224 f2fs_msg(sb, KERN_ERR,
1225 "Can't find valid F2FS filesystem in %dth superblock",
1226 block + 1);
1227 err = -EINVAL;
1228 brelse(bh);
1229 continue;
1230 }
1231
1232 if (!*raw_super) {
1233 memcpy(super, buf, sizeof(*super));
1234 *valid_super_block = block;
1235 *raw_super = super;
1236 }
1237 brelse(bh);
1238 }
1239
1240 /* Fail to read any one of the superblocks*/
1241 if (err < 0)
1242 *recovery = 1;
1243
1244 /* No valid superblock */
1245 if (!*raw_super)
1246 kfree(super);
1247 else
1248 err = 0;
1249
1250 return err;
1251 }
1252
1253 static int __f2fs_commit_super(struct f2fs_sb_info *sbi, int block)
1254 {
1255 struct f2fs_super_block *super = F2FS_RAW_SUPER(sbi);
1256 struct buffer_head *bh;
1257 int err;
1258
1259 bh = sb_getblk(sbi->sb, block);
1260 if (!bh)
1261 return -EIO;
1262
1263 lock_buffer(bh);
1264 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1265 set_buffer_uptodate(bh);
1266 set_buffer_dirty(bh);
1267 unlock_buffer(bh);
1268
1269 /* it's rare case, we can do fua all the time */
1270 err = __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
1271 brelse(bh);
1272
1273 return err;
1274 }
1275
1276 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1277 {
1278 int err;
1279
1280 /* write back-up superblock first */
1281 err = __f2fs_commit_super(sbi, sbi->valid_super_block ? 0 : 1);
1282
1283 /* if we are in recovery path, skip writing valid superblock */
1284 if (recover || err)
1285 return err;
1286
1287 /* write current valid superblock */
1288 return __f2fs_commit_super(sbi, sbi->valid_super_block);
1289 }
1290
1291 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1292 {
1293 struct f2fs_sb_info *sbi;
1294 struct f2fs_super_block *raw_super;
1295 struct inode *root;
1296 long err;
1297 bool retry = true, need_fsck = false;
1298 char *options = NULL;
1299 int recovery, i, valid_super_block;
1300 struct curseg_info *seg_i;
1301
1302 try_onemore:
1303 err = -EINVAL;
1304 raw_super = NULL;
1305 valid_super_block = -1;
1306 recovery = 0;
1307
1308 /* allocate memory for f2fs-specific super block info */
1309 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1310 if (!sbi)
1311 return -ENOMEM;
1312
1313 /* set a block size */
1314 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1315 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1316 goto free_sbi;
1317 }
1318
1319 err = read_raw_super_block(sb, &raw_super, &valid_super_block,
1320 &recovery);
1321 if (err)
1322 goto free_sbi;
1323
1324 sb->s_fs_info = sbi;
1325 default_options(sbi);
1326 /* parse mount options */
1327 options = kstrdup((const char *)data, GFP_KERNEL);
1328 if (data && !options) {
1329 err = -ENOMEM;
1330 goto free_sb_buf;
1331 }
1332
1333 err = parse_options(sb, options);
1334 if (err)
1335 goto free_options;
1336
1337 sbi->max_file_blocks = max_file_blocks();
1338 sb->s_maxbytes = sbi->max_file_blocks <<
1339 le32_to_cpu(raw_super->log_blocksize);
1340 sb->s_max_links = F2FS_LINK_MAX;
1341 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1342
1343 sb->s_op = &f2fs_sops;
1344 sb->s_cop = &f2fs_cryptops;
1345 sb->s_xattr = f2fs_xattr_handlers;
1346 sb->s_export_op = &f2fs_export_ops;
1347 sb->s_magic = F2FS_SUPER_MAGIC;
1348 sb->s_time_gran = 1;
1349 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1350 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1351 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1352
1353 /* init f2fs-specific super block info */
1354 sbi->sb = sb;
1355 sbi->raw_super = raw_super;
1356 sbi->valid_super_block = valid_super_block;
1357 mutex_init(&sbi->gc_mutex);
1358 mutex_init(&sbi->writepages);
1359 mutex_init(&sbi->cp_mutex);
1360 init_rwsem(&sbi->node_write);
1361
1362 /* disallow all the data/node/meta page writes */
1363 set_sbi_flag(sbi, SBI_POR_DOING);
1364 spin_lock_init(&sbi->stat_lock);
1365
1366 init_rwsem(&sbi->read_io.io_rwsem);
1367 sbi->read_io.sbi = sbi;
1368 sbi->read_io.bio = NULL;
1369 for (i = 0; i < NR_PAGE_TYPE; i++) {
1370 init_rwsem(&sbi->write_io[i].io_rwsem);
1371 sbi->write_io[i].sbi = sbi;
1372 sbi->write_io[i].bio = NULL;
1373 }
1374
1375 init_rwsem(&sbi->cp_rwsem);
1376 init_waitqueue_head(&sbi->cp_wait);
1377 init_sb_info(sbi);
1378
1379 /* get an inode for meta space */
1380 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1381 if (IS_ERR(sbi->meta_inode)) {
1382 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1383 err = PTR_ERR(sbi->meta_inode);
1384 goto free_options;
1385 }
1386
1387 err = get_valid_checkpoint(sbi);
1388 if (err) {
1389 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1390 goto free_meta_inode;
1391 }
1392
1393 sbi->total_valid_node_count =
1394 le32_to_cpu(sbi->ckpt->valid_node_count);
1395 sbi->total_valid_inode_count =
1396 le32_to_cpu(sbi->ckpt->valid_inode_count);
1397 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1398 sbi->total_valid_block_count =
1399 le64_to_cpu(sbi->ckpt->valid_block_count);
1400 sbi->last_valid_block_count = sbi->total_valid_block_count;
1401 sbi->alloc_valid_block_count = 0;
1402 for (i = 0; i < NR_INODE_TYPE; i++) {
1403 INIT_LIST_HEAD(&sbi->inode_list[i]);
1404 spin_lock_init(&sbi->inode_lock[i]);
1405 }
1406
1407 init_extent_cache_info(sbi);
1408
1409 init_ino_entry_info(sbi);
1410
1411 /* setup f2fs internal modules */
1412 err = build_segment_manager(sbi);
1413 if (err) {
1414 f2fs_msg(sb, KERN_ERR,
1415 "Failed to initialize F2FS segment manager");
1416 goto free_sm;
1417 }
1418 err = build_node_manager(sbi);
1419 if (err) {
1420 f2fs_msg(sb, KERN_ERR,
1421 "Failed to initialize F2FS node manager");
1422 goto free_nm;
1423 }
1424
1425 /* For write statistics */
1426 if (sb->s_bdev->bd_part)
1427 sbi->sectors_written_start =
1428 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1429
1430 /* Read accumulated write IO statistics if exists */
1431 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1432 if (__exist_node_summaries(sbi))
1433 sbi->kbytes_written =
1434 le64_to_cpu(seg_i->sum_blk->journal.info.kbytes_written);
1435
1436 build_gc_manager(sbi);
1437
1438 /* get an inode for node space */
1439 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1440 if (IS_ERR(sbi->node_inode)) {
1441 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1442 err = PTR_ERR(sbi->node_inode);
1443 goto free_nm;
1444 }
1445
1446 f2fs_join_shrinker(sbi);
1447
1448 /* if there are nt orphan nodes free them */
1449 err = recover_orphan_inodes(sbi);
1450 if (err)
1451 goto free_node_inode;
1452
1453 /* read root inode and dentry */
1454 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1455 if (IS_ERR(root)) {
1456 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1457 err = PTR_ERR(root);
1458 goto free_node_inode;
1459 }
1460 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1461 iput(root);
1462 err = -EINVAL;
1463 goto free_node_inode;
1464 }
1465
1466 sb->s_root = d_make_root(root); /* allocate root dentry */
1467 if (!sb->s_root) {
1468 err = -ENOMEM;
1469 goto free_root_inode;
1470 }
1471
1472 err = f2fs_build_stats(sbi);
1473 if (err)
1474 goto free_root_inode;
1475
1476 if (f2fs_proc_root)
1477 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1478
1479 if (sbi->s_proc)
1480 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1481 &f2fs_seq_segment_info_fops, sb);
1482
1483 sbi->s_kobj.kset = f2fs_kset;
1484 init_completion(&sbi->s_kobj_unregister);
1485 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1486 "%s", sb->s_id);
1487 if (err)
1488 goto free_proc;
1489
1490 /* recover fsynced data */
1491 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1492 /*
1493 * mount should be failed, when device has readonly mode, and
1494 * previous checkpoint was not done by clean system shutdown.
1495 */
1496 if (bdev_read_only(sb->s_bdev) &&
1497 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1498 err = -EROFS;
1499 goto free_kobj;
1500 }
1501
1502 if (need_fsck)
1503 set_sbi_flag(sbi, SBI_NEED_FSCK);
1504
1505 err = recover_fsync_data(sbi);
1506 if (err) {
1507 need_fsck = true;
1508 f2fs_msg(sb, KERN_ERR,
1509 "Cannot recover all fsync data errno=%ld", err);
1510 goto free_kobj;
1511 }
1512 }
1513 /* recover_fsync_data() cleared this already */
1514 clear_sbi_flag(sbi, SBI_POR_DOING);
1515
1516 /*
1517 * If filesystem is not mounted as read-only then
1518 * do start the gc_thread.
1519 */
1520 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1521 /* After POR, we can run background GC thread.*/
1522 err = start_gc_thread(sbi);
1523 if (err)
1524 goto free_kobj;
1525 }
1526 kfree(options);
1527
1528 /* recover broken superblock */
1529 if (recovery && !f2fs_readonly(sb) && !bdev_read_only(sb->s_bdev)) {
1530 err = f2fs_commit_super(sbi, true);
1531 f2fs_msg(sb, KERN_INFO,
1532 "Try to recover %dth superblock, ret: %ld",
1533 sbi->valid_super_block ? 1 : 2, err);
1534 }
1535
1536 f2fs_update_time(sbi, CP_TIME);
1537 f2fs_update_time(sbi, REQ_TIME);
1538 return 0;
1539
1540 free_kobj:
1541 kobject_del(&sbi->s_kobj);
1542 kobject_put(&sbi->s_kobj);
1543 wait_for_completion(&sbi->s_kobj_unregister);
1544 free_proc:
1545 if (sbi->s_proc) {
1546 remove_proc_entry("segment_info", sbi->s_proc);
1547 remove_proc_entry(sb->s_id, f2fs_proc_root);
1548 }
1549 f2fs_destroy_stats(sbi);
1550 free_root_inode:
1551 dput(sb->s_root);
1552 sb->s_root = NULL;
1553 free_node_inode:
1554 mutex_lock(&sbi->umount_mutex);
1555 f2fs_leave_shrinker(sbi);
1556 iput(sbi->node_inode);
1557 mutex_unlock(&sbi->umount_mutex);
1558 free_nm:
1559 destroy_node_manager(sbi);
1560 free_sm:
1561 destroy_segment_manager(sbi);
1562 kfree(sbi->ckpt);
1563 free_meta_inode:
1564 make_bad_inode(sbi->meta_inode);
1565 iput(sbi->meta_inode);
1566 free_options:
1567 kfree(options);
1568 free_sb_buf:
1569 kfree(raw_super);
1570 free_sbi:
1571 kfree(sbi);
1572
1573 /* give only one another chance */
1574 if (retry) {
1575 retry = false;
1576 shrink_dcache_sb(sb);
1577 goto try_onemore;
1578 }
1579 return err;
1580 }
1581
1582 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1583 const char *dev_name, void *data)
1584 {
1585 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1586 }
1587
1588 static void kill_f2fs_super(struct super_block *sb)
1589 {
1590 if (sb->s_root)
1591 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1592 kill_block_super(sb);
1593 }
1594
1595 static struct file_system_type f2fs_fs_type = {
1596 .owner = THIS_MODULE,
1597 .name = "f2fs",
1598 .mount = f2fs_mount,
1599 .kill_sb = kill_f2fs_super,
1600 .fs_flags = FS_REQUIRES_DEV,
1601 };
1602 MODULE_ALIAS_FS("f2fs");
1603
1604 static int __init init_inodecache(void)
1605 {
1606 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1607 sizeof(struct f2fs_inode_info), 0,
1608 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1609 if (!f2fs_inode_cachep)
1610 return -ENOMEM;
1611 return 0;
1612 }
1613
1614 static void destroy_inodecache(void)
1615 {
1616 /*
1617 * Make sure all delayed rcu free inodes are flushed before we
1618 * destroy cache.
1619 */
1620 rcu_barrier();
1621 kmem_cache_destroy(f2fs_inode_cachep);
1622 }
1623
1624 static int __init init_f2fs_fs(void)
1625 {
1626 int err;
1627
1628 f2fs_build_trace_ios();
1629
1630 err = init_inodecache();
1631 if (err)
1632 goto fail;
1633 err = create_node_manager_caches();
1634 if (err)
1635 goto free_inodecache;
1636 err = create_segment_manager_caches();
1637 if (err)
1638 goto free_node_manager_caches;
1639 err = create_checkpoint_caches();
1640 if (err)
1641 goto free_segment_manager_caches;
1642 err = create_extent_cache();
1643 if (err)
1644 goto free_checkpoint_caches;
1645 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1646 if (!f2fs_kset) {
1647 err = -ENOMEM;
1648 goto free_extent_cache;
1649 }
1650 err = register_shrinker(&f2fs_shrinker_info);
1651 if (err)
1652 goto free_kset;
1653
1654 err = register_filesystem(&f2fs_fs_type);
1655 if (err)
1656 goto free_shrinker;
1657 err = f2fs_create_root_stats();
1658 if (err)
1659 goto free_filesystem;
1660 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1661 return 0;
1662
1663 free_filesystem:
1664 unregister_filesystem(&f2fs_fs_type);
1665 free_shrinker:
1666 unregister_shrinker(&f2fs_shrinker_info);
1667 free_kset:
1668 kset_unregister(f2fs_kset);
1669 free_extent_cache:
1670 destroy_extent_cache();
1671 free_checkpoint_caches:
1672 destroy_checkpoint_caches();
1673 free_segment_manager_caches:
1674 destroy_segment_manager_caches();
1675 free_node_manager_caches:
1676 destroy_node_manager_caches();
1677 free_inodecache:
1678 destroy_inodecache();
1679 fail:
1680 return err;
1681 }
1682
1683 static void __exit exit_f2fs_fs(void)
1684 {
1685 remove_proc_entry("fs/f2fs", NULL);
1686 f2fs_destroy_root_stats();
1687 unregister_shrinker(&f2fs_shrinker_info);
1688 unregister_filesystem(&f2fs_fs_type);
1689 destroy_extent_cache();
1690 destroy_checkpoint_caches();
1691 destroy_segment_manager_caches();
1692 destroy_node_manager_caches();
1693 destroy_inodecache();
1694 kset_unregister(f2fs_kset);
1695 f2fs_destroy_trace_ios();
1696 }
1697
1698 module_init(init_f2fs_fs)
1699 module_exit(exit_f2fs_fs)
1700
1701 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1702 MODULE_DESCRIPTION("Flash Friendly File System");
1703 MODULE_LICENSE("GPL");
This page took 0.097494 seconds and 5 git commands to generate.