986d0da84e016b29087ad7250035b80f1221159e
[deliverable/linux.git] / fs / f2fs / super.c
1 /*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 u32 f2fs_fault_rate = 0;
44 atomic_t f2fs_ops;
45
46 char *fault_name[FAULT_MAX] = {
47 [FAULT_KMALLOC] = "kmalloc",
48 [FAULT_PAGE_ALLOC] = "page alloc",
49 };
50 #endif
51
52 /* f2fs-wide shrinker description */
53 static struct shrinker f2fs_shrinker_info = {
54 .scan_objects = f2fs_shrink_scan,
55 .count_objects = f2fs_shrink_count,
56 .seeks = DEFAULT_SEEKS,
57 };
58
59 enum {
60 Opt_gc_background,
61 Opt_disable_roll_forward,
62 Opt_norecovery,
63 Opt_discard,
64 Opt_noheap,
65 Opt_user_xattr,
66 Opt_nouser_xattr,
67 Opt_acl,
68 Opt_noacl,
69 Opt_active_logs,
70 Opt_disable_ext_identify,
71 Opt_inline_xattr,
72 Opt_inline_data,
73 Opt_inline_dentry,
74 Opt_flush_merge,
75 Opt_nobarrier,
76 Opt_fastboot,
77 Opt_extent_cache,
78 Opt_noextent_cache,
79 Opt_noinline_data,
80 Opt_data_flush,
81 Opt_fault_injection,
82 Opt_err,
83 };
84
85 static match_table_t f2fs_tokens = {
86 {Opt_gc_background, "background_gc=%s"},
87 {Opt_disable_roll_forward, "disable_roll_forward"},
88 {Opt_norecovery, "norecovery"},
89 {Opt_discard, "discard"},
90 {Opt_noheap, "no_heap"},
91 {Opt_user_xattr, "user_xattr"},
92 {Opt_nouser_xattr, "nouser_xattr"},
93 {Opt_acl, "acl"},
94 {Opt_noacl, "noacl"},
95 {Opt_active_logs, "active_logs=%u"},
96 {Opt_disable_ext_identify, "disable_ext_identify"},
97 {Opt_inline_xattr, "inline_xattr"},
98 {Opt_inline_data, "inline_data"},
99 {Opt_inline_dentry, "inline_dentry"},
100 {Opt_flush_merge, "flush_merge"},
101 {Opt_nobarrier, "nobarrier"},
102 {Opt_fastboot, "fastboot"},
103 {Opt_extent_cache, "extent_cache"},
104 {Opt_noextent_cache, "noextent_cache"},
105 {Opt_noinline_data, "noinline_data"},
106 {Opt_data_flush, "data_flush"},
107 {Opt_fault_injection, "fault_injection=%u"},
108 {Opt_err, NULL},
109 };
110
111 /* Sysfs support for f2fs */
112 enum {
113 GC_THREAD, /* struct f2fs_gc_thread */
114 SM_INFO, /* struct f2fs_sm_info */
115 NM_INFO, /* struct f2fs_nm_info */
116 F2FS_SBI, /* struct f2fs_sb_info */
117 };
118
119 struct f2fs_attr {
120 struct attribute attr;
121 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
122 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
123 const char *, size_t);
124 int struct_type;
125 int offset;
126 };
127
128 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
129 {
130 if (struct_type == GC_THREAD)
131 return (unsigned char *)sbi->gc_thread;
132 else if (struct_type == SM_INFO)
133 return (unsigned char *)SM_I(sbi);
134 else if (struct_type == NM_INFO)
135 return (unsigned char *)NM_I(sbi);
136 else if (struct_type == F2FS_SBI)
137 return (unsigned char *)sbi;
138 return NULL;
139 }
140
141 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
142 struct f2fs_sb_info *sbi, char *buf)
143 {
144 struct super_block *sb = sbi->sb;
145
146 if (!sb->s_bdev->bd_part)
147 return snprintf(buf, PAGE_SIZE, "0\n");
148
149 return snprintf(buf, PAGE_SIZE, "%llu\n",
150 (unsigned long long)(sbi->kbytes_written +
151 BD_PART_WRITTEN(sbi)));
152 }
153
154 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
155 struct f2fs_sb_info *sbi, char *buf)
156 {
157 unsigned char *ptr = NULL;
158 unsigned int *ui;
159
160 ptr = __struct_ptr(sbi, a->struct_type);
161 if (!ptr)
162 return -EINVAL;
163
164 ui = (unsigned int *)(ptr + a->offset);
165
166 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
167 }
168
169 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
170 struct f2fs_sb_info *sbi,
171 const char *buf, size_t count)
172 {
173 unsigned char *ptr;
174 unsigned long t;
175 unsigned int *ui;
176 ssize_t ret;
177
178 ptr = __struct_ptr(sbi, a->struct_type);
179 if (!ptr)
180 return -EINVAL;
181
182 ui = (unsigned int *)(ptr + a->offset);
183
184 ret = kstrtoul(skip_spaces(buf), 0, &t);
185 if (ret < 0)
186 return ret;
187 *ui = t;
188 return count;
189 }
190
191 static ssize_t f2fs_attr_show(struct kobject *kobj,
192 struct attribute *attr, char *buf)
193 {
194 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
195 s_kobj);
196 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
197
198 return a->show ? a->show(a, sbi, buf) : 0;
199 }
200
201 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
202 const char *buf, size_t len)
203 {
204 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
205 s_kobj);
206 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
207
208 return a->store ? a->store(a, sbi, buf, len) : 0;
209 }
210
211 static void f2fs_sb_release(struct kobject *kobj)
212 {
213 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
214 s_kobj);
215 complete(&sbi->s_kobj_unregister);
216 }
217
218 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
219 static struct f2fs_attr f2fs_attr_##_name = { \
220 .attr = {.name = __stringify(_name), .mode = _mode }, \
221 .show = _show, \
222 .store = _store, \
223 .struct_type = _struct_type, \
224 .offset = _offset \
225 }
226
227 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
228 F2FS_ATTR_OFFSET(struct_type, name, 0644, \
229 f2fs_sbi_show, f2fs_sbi_store, \
230 offsetof(struct struct_name, elname))
231
232 #define F2FS_GENERAL_RO_ATTR(name) \
233 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
234
235 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
236 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
237 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
238 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
239 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
240 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
241 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
242 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
243 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
244 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
245 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
246 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
247 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
248 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
249 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
250 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
251 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
252 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
253
254 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
255 static struct attribute *f2fs_attrs[] = {
256 ATTR_LIST(gc_min_sleep_time),
257 ATTR_LIST(gc_max_sleep_time),
258 ATTR_LIST(gc_no_gc_sleep_time),
259 ATTR_LIST(gc_idle),
260 ATTR_LIST(reclaim_segments),
261 ATTR_LIST(max_small_discards),
262 ATTR_LIST(batched_trim_sections),
263 ATTR_LIST(ipu_policy),
264 ATTR_LIST(min_ipu_util),
265 ATTR_LIST(min_fsync_blocks),
266 ATTR_LIST(max_victim_search),
267 ATTR_LIST(dir_level),
268 ATTR_LIST(ram_thresh),
269 ATTR_LIST(ra_nid_pages),
270 ATTR_LIST(dirty_nats_ratio),
271 ATTR_LIST(cp_interval),
272 ATTR_LIST(idle_interval),
273 ATTR_LIST(lifetime_write_kbytes),
274 NULL,
275 };
276
277 static const struct sysfs_ops f2fs_attr_ops = {
278 .show = f2fs_attr_show,
279 .store = f2fs_attr_store,
280 };
281
282 static struct kobj_type f2fs_ktype = {
283 .default_attrs = f2fs_attrs,
284 .sysfs_ops = &f2fs_attr_ops,
285 .release = f2fs_sb_release,
286 };
287
288 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
289 {
290 struct va_format vaf;
291 va_list args;
292
293 va_start(args, fmt);
294 vaf.fmt = fmt;
295 vaf.va = &args;
296 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
297 va_end(args);
298 }
299
300 static void init_once(void *foo)
301 {
302 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
303
304 inode_init_once(&fi->vfs_inode);
305 }
306
307 static int parse_options(struct super_block *sb, char *options)
308 {
309 struct f2fs_sb_info *sbi = F2FS_SB(sb);
310 struct request_queue *q;
311 substring_t args[MAX_OPT_ARGS];
312 char *p, *name;
313 int arg = 0;
314
315 #ifdef CONFIG_F2FS_FAULT_INJECTION
316 f2fs_fault_rate = 0;
317 #endif
318 if (!options)
319 return 0;
320
321 while ((p = strsep(&options, ",")) != NULL) {
322 int token;
323 if (!*p)
324 continue;
325 /*
326 * Initialize args struct so we know whether arg was
327 * found; some options take optional arguments.
328 */
329 args[0].to = args[0].from = NULL;
330 token = match_token(p, f2fs_tokens, args);
331
332 switch (token) {
333 case Opt_gc_background:
334 name = match_strdup(&args[0]);
335
336 if (!name)
337 return -ENOMEM;
338 if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
339 set_opt(sbi, BG_GC);
340 clear_opt(sbi, FORCE_FG_GC);
341 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
342 clear_opt(sbi, BG_GC);
343 clear_opt(sbi, FORCE_FG_GC);
344 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
345 set_opt(sbi, BG_GC);
346 set_opt(sbi, FORCE_FG_GC);
347 } else {
348 kfree(name);
349 return -EINVAL;
350 }
351 kfree(name);
352 break;
353 case Opt_disable_roll_forward:
354 set_opt(sbi, DISABLE_ROLL_FORWARD);
355 break;
356 case Opt_norecovery:
357 /* this option mounts f2fs with ro */
358 set_opt(sbi, DISABLE_ROLL_FORWARD);
359 if (!f2fs_readonly(sb))
360 return -EINVAL;
361 break;
362 case Opt_discard:
363 q = bdev_get_queue(sb->s_bdev);
364 if (blk_queue_discard(q)) {
365 set_opt(sbi, DISCARD);
366 } else {
367 f2fs_msg(sb, KERN_WARNING,
368 "mounting with \"discard\" option, but "
369 "the device does not support discard");
370 }
371 break;
372 case Opt_noheap:
373 set_opt(sbi, NOHEAP);
374 break;
375 #ifdef CONFIG_F2FS_FS_XATTR
376 case Opt_user_xattr:
377 set_opt(sbi, XATTR_USER);
378 break;
379 case Opt_nouser_xattr:
380 clear_opt(sbi, XATTR_USER);
381 break;
382 case Opt_inline_xattr:
383 set_opt(sbi, INLINE_XATTR);
384 break;
385 #else
386 case Opt_user_xattr:
387 f2fs_msg(sb, KERN_INFO,
388 "user_xattr options not supported");
389 break;
390 case Opt_nouser_xattr:
391 f2fs_msg(sb, KERN_INFO,
392 "nouser_xattr options not supported");
393 break;
394 case Opt_inline_xattr:
395 f2fs_msg(sb, KERN_INFO,
396 "inline_xattr options not supported");
397 break;
398 #endif
399 #ifdef CONFIG_F2FS_FS_POSIX_ACL
400 case Opt_acl:
401 set_opt(sbi, POSIX_ACL);
402 break;
403 case Opt_noacl:
404 clear_opt(sbi, POSIX_ACL);
405 break;
406 #else
407 case Opt_acl:
408 f2fs_msg(sb, KERN_INFO, "acl options not supported");
409 break;
410 case Opt_noacl:
411 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
412 break;
413 #endif
414 case Opt_active_logs:
415 if (args->from && match_int(args, &arg))
416 return -EINVAL;
417 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
418 return -EINVAL;
419 sbi->active_logs = arg;
420 break;
421 case Opt_disable_ext_identify:
422 set_opt(sbi, DISABLE_EXT_IDENTIFY);
423 break;
424 case Opt_inline_data:
425 set_opt(sbi, INLINE_DATA);
426 break;
427 case Opt_inline_dentry:
428 set_opt(sbi, INLINE_DENTRY);
429 break;
430 case Opt_flush_merge:
431 set_opt(sbi, FLUSH_MERGE);
432 break;
433 case Opt_nobarrier:
434 set_opt(sbi, NOBARRIER);
435 break;
436 case Opt_fastboot:
437 set_opt(sbi, FASTBOOT);
438 break;
439 case Opt_extent_cache:
440 set_opt(sbi, EXTENT_CACHE);
441 break;
442 case Opt_noextent_cache:
443 clear_opt(sbi, EXTENT_CACHE);
444 break;
445 case Opt_noinline_data:
446 clear_opt(sbi, INLINE_DATA);
447 break;
448 case Opt_data_flush:
449 set_opt(sbi, DATA_FLUSH);
450 break;
451 case Opt_fault_injection:
452 if (args->from && match_int(args, &arg))
453 return -EINVAL;
454 #ifdef CONFIG_F2FS_FAULT_INJECTION
455 f2fs_fault_rate = arg;
456 atomic_set(&f2fs_ops, 0);
457 #else
458 f2fs_msg(sb, KERN_INFO,
459 "FAULT_INJECTION was not selected");
460 #endif
461 break;
462 default:
463 f2fs_msg(sb, KERN_ERR,
464 "Unrecognized mount option \"%s\" or missing value",
465 p);
466 return -EINVAL;
467 }
468 }
469 return 0;
470 }
471
472 static struct inode *f2fs_alloc_inode(struct super_block *sb)
473 {
474 struct f2fs_inode_info *fi;
475
476 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
477 if (!fi)
478 return NULL;
479
480 init_once((void *) fi);
481
482 /* Initialize f2fs-specific inode info */
483 fi->vfs_inode.i_version = 1;
484 atomic_set(&fi->dirty_pages, 0);
485 fi->i_current_depth = 1;
486 fi->i_advise = 0;
487 init_rwsem(&fi->i_sem);
488 INIT_LIST_HEAD(&fi->dirty_list);
489 INIT_LIST_HEAD(&fi->inmem_pages);
490 mutex_init(&fi->inmem_lock);
491
492 set_inode_flag(fi, FI_NEW_INODE);
493
494 if (test_opt(F2FS_SB(sb), INLINE_XATTR))
495 set_inode_flag(fi, FI_INLINE_XATTR);
496
497 /* Will be used by directory only */
498 fi->i_dir_level = F2FS_SB(sb)->dir_level;
499 return &fi->vfs_inode;
500 }
501
502 static int f2fs_drop_inode(struct inode *inode)
503 {
504 /*
505 * This is to avoid a deadlock condition like below.
506 * writeback_single_inode(inode)
507 * - f2fs_write_data_page
508 * - f2fs_gc -> iput -> evict
509 * - inode_wait_for_writeback(inode)
510 */
511 if (!inode_unhashed(inode) && inode->i_state & I_SYNC) {
512 if (!inode->i_nlink && !is_bad_inode(inode)) {
513 /* to avoid evict_inode call simultaneously */
514 atomic_inc(&inode->i_count);
515 spin_unlock(&inode->i_lock);
516
517 /* some remained atomic pages should discarded */
518 if (f2fs_is_atomic_file(inode))
519 drop_inmem_pages(inode);
520
521 /* should remain fi->extent_tree for writepage */
522 f2fs_destroy_extent_node(inode);
523
524 sb_start_intwrite(inode->i_sb);
525 i_size_write(inode, 0);
526
527 if (F2FS_HAS_BLOCKS(inode))
528 f2fs_truncate(inode, true);
529
530 sb_end_intwrite(inode->i_sb);
531
532 fscrypt_put_encryption_info(inode, NULL);
533 spin_lock(&inode->i_lock);
534 atomic_dec(&inode->i_count);
535 }
536 return 0;
537 }
538 return generic_drop_inode(inode);
539 }
540
541 /*
542 * f2fs_dirty_inode() is called from __mark_inode_dirty()
543 *
544 * We should call set_dirty_inode to write the dirty inode through write_inode.
545 */
546 static void f2fs_dirty_inode(struct inode *inode, int flags)
547 {
548 set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
549 }
550
551 static void f2fs_i_callback(struct rcu_head *head)
552 {
553 struct inode *inode = container_of(head, struct inode, i_rcu);
554 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
555 }
556
557 static void f2fs_destroy_inode(struct inode *inode)
558 {
559 call_rcu(&inode->i_rcu, f2fs_i_callback);
560 }
561
562 static void f2fs_put_super(struct super_block *sb)
563 {
564 struct f2fs_sb_info *sbi = F2FS_SB(sb);
565
566 if (sbi->s_proc) {
567 remove_proc_entry("segment_info", sbi->s_proc);
568 remove_proc_entry("segment_bits", sbi->s_proc);
569 remove_proc_entry(sb->s_id, f2fs_proc_root);
570 }
571 kobject_del(&sbi->s_kobj);
572
573 stop_gc_thread(sbi);
574
575 /* prevent remaining shrinker jobs */
576 mutex_lock(&sbi->umount_mutex);
577
578 /*
579 * We don't need to do checkpoint when superblock is clean.
580 * But, the previous checkpoint was not done by umount, it needs to do
581 * clean checkpoint again.
582 */
583 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
584 !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
585 struct cp_control cpc = {
586 .reason = CP_UMOUNT,
587 };
588 write_checkpoint(sbi, &cpc);
589 }
590
591 /* write_checkpoint can update stat informaion */
592 f2fs_destroy_stats(sbi);
593
594 /*
595 * normally superblock is clean, so we need to release this.
596 * In addition, EIO will skip do checkpoint, we need this as well.
597 */
598 release_ino_entry(sbi);
599 release_discard_addrs(sbi);
600
601 f2fs_leave_shrinker(sbi);
602 mutex_unlock(&sbi->umount_mutex);
603
604 /* our cp_error case, we can wait for any writeback page */
605 if (get_pages(sbi, F2FS_WRITEBACK))
606 f2fs_flush_merged_bios(sbi);
607
608 iput(sbi->node_inode);
609 iput(sbi->meta_inode);
610
611 /* destroy f2fs internal modules */
612 destroy_node_manager(sbi);
613 destroy_segment_manager(sbi);
614
615 kfree(sbi->ckpt);
616 kobject_put(&sbi->s_kobj);
617 wait_for_completion(&sbi->s_kobj_unregister);
618
619 sb->s_fs_info = NULL;
620 if (sbi->s_chksum_driver)
621 crypto_free_shash(sbi->s_chksum_driver);
622 kfree(sbi->raw_super);
623 kfree(sbi);
624 }
625
626 int f2fs_sync_fs(struct super_block *sb, int sync)
627 {
628 struct f2fs_sb_info *sbi = F2FS_SB(sb);
629 int err = 0;
630
631 trace_f2fs_sync_fs(sb, sync);
632
633 if (sync) {
634 struct cp_control cpc;
635
636 cpc.reason = __get_cp_reason(sbi);
637
638 mutex_lock(&sbi->gc_mutex);
639 err = write_checkpoint(sbi, &cpc);
640 mutex_unlock(&sbi->gc_mutex);
641 }
642 f2fs_trace_ios(NULL, 1);
643
644 return err;
645 }
646
647 static int f2fs_freeze(struct super_block *sb)
648 {
649 int err;
650
651 if (f2fs_readonly(sb))
652 return 0;
653
654 err = f2fs_sync_fs(sb, 1);
655 return err;
656 }
657
658 static int f2fs_unfreeze(struct super_block *sb)
659 {
660 return 0;
661 }
662
663 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
664 {
665 struct super_block *sb = dentry->d_sb;
666 struct f2fs_sb_info *sbi = F2FS_SB(sb);
667 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
668 block_t total_count, user_block_count, start_count, ovp_count;
669
670 total_count = le64_to_cpu(sbi->raw_super->block_count);
671 user_block_count = sbi->user_block_count;
672 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
673 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
674 buf->f_type = F2FS_SUPER_MAGIC;
675 buf->f_bsize = sbi->blocksize;
676
677 buf->f_blocks = total_count - start_count;
678 buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
679 buf->f_bavail = user_block_count - valid_user_blocks(sbi);
680
681 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
682 buf->f_ffree = buf->f_files - valid_inode_count(sbi);
683
684 buf->f_namelen = F2FS_NAME_LEN;
685 buf->f_fsid.val[0] = (u32)id;
686 buf->f_fsid.val[1] = (u32)(id >> 32);
687
688 return 0;
689 }
690
691 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
692 {
693 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
694
695 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
696 if (test_opt(sbi, FORCE_FG_GC))
697 seq_printf(seq, ",background_gc=%s", "sync");
698 else
699 seq_printf(seq, ",background_gc=%s", "on");
700 } else {
701 seq_printf(seq, ",background_gc=%s", "off");
702 }
703 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
704 seq_puts(seq, ",disable_roll_forward");
705 if (test_opt(sbi, DISCARD))
706 seq_puts(seq, ",discard");
707 if (test_opt(sbi, NOHEAP))
708 seq_puts(seq, ",no_heap_alloc");
709 #ifdef CONFIG_F2FS_FS_XATTR
710 if (test_opt(sbi, XATTR_USER))
711 seq_puts(seq, ",user_xattr");
712 else
713 seq_puts(seq, ",nouser_xattr");
714 if (test_opt(sbi, INLINE_XATTR))
715 seq_puts(seq, ",inline_xattr");
716 #endif
717 #ifdef CONFIG_F2FS_FS_POSIX_ACL
718 if (test_opt(sbi, POSIX_ACL))
719 seq_puts(seq, ",acl");
720 else
721 seq_puts(seq, ",noacl");
722 #endif
723 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
724 seq_puts(seq, ",disable_ext_identify");
725 if (test_opt(sbi, INLINE_DATA))
726 seq_puts(seq, ",inline_data");
727 else
728 seq_puts(seq, ",noinline_data");
729 if (test_opt(sbi, INLINE_DENTRY))
730 seq_puts(seq, ",inline_dentry");
731 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
732 seq_puts(seq, ",flush_merge");
733 if (test_opt(sbi, NOBARRIER))
734 seq_puts(seq, ",nobarrier");
735 if (test_opt(sbi, FASTBOOT))
736 seq_puts(seq, ",fastboot");
737 if (test_opt(sbi, EXTENT_CACHE))
738 seq_puts(seq, ",extent_cache");
739 else
740 seq_puts(seq, ",noextent_cache");
741 if (test_opt(sbi, DATA_FLUSH))
742 seq_puts(seq, ",data_flush");
743 seq_printf(seq, ",active_logs=%u", sbi->active_logs);
744
745 return 0;
746 }
747
748 static int segment_info_seq_show(struct seq_file *seq, void *offset)
749 {
750 struct super_block *sb = seq->private;
751 struct f2fs_sb_info *sbi = F2FS_SB(sb);
752 unsigned int total_segs =
753 le32_to_cpu(sbi->raw_super->segment_count_main);
754 int i;
755
756 seq_puts(seq, "format: segment_type|valid_blocks\n"
757 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
758
759 for (i = 0; i < total_segs; i++) {
760 struct seg_entry *se = get_seg_entry(sbi, i);
761
762 if ((i % 10) == 0)
763 seq_printf(seq, "%-10d", i);
764 seq_printf(seq, "%d|%-3u", se->type,
765 get_valid_blocks(sbi, i, 1));
766 if ((i % 10) == 9 || i == (total_segs - 1))
767 seq_putc(seq, '\n');
768 else
769 seq_putc(seq, ' ');
770 }
771
772 return 0;
773 }
774
775 static int segment_bits_seq_show(struct seq_file *seq, void *offset)
776 {
777 struct super_block *sb = seq->private;
778 struct f2fs_sb_info *sbi = F2FS_SB(sb);
779 unsigned int total_segs =
780 le32_to_cpu(sbi->raw_super->segment_count_main);
781 int i, j;
782
783 seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
784 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
785
786 for (i = 0; i < total_segs; i++) {
787 struct seg_entry *se = get_seg_entry(sbi, i);
788
789 seq_printf(seq, "%-10d", i);
790 seq_printf(seq, "%d|%-3u|", se->type,
791 get_valid_blocks(sbi, i, 1));
792 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
793 seq_printf(seq, "%x ", se->cur_valid_map[j]);
794 seq_putc(seq, '\n');
795 }
796 return 0;
797 }
798
799 #define F2FS_PROC_FILE_DEF(_name) \
800 static int _name##_open_fs(struct inode *inode, struct file *file) \
801 { \
802 return single_open(file, _name##_seq_show, PDE_DATA(inode)); \
803 } \
804 \
805 static const struct file_operations f2fs_seq_##_name##_fops = { \
806 .owner = THIS_MODULE, \
807 .open = _name##_open_fs, \
808 .read = seq_read, \
809 .llseek = seq_lseek, \
810 .release = single_release, \
811 };
812
813 F2FS_PROC_FILE_DEF(segment_info);
814 F2FS_PROC_FILE_DEF(segment_bits);
815
816 static void default_options(struct f2fs_sb_info *sbi)
817 {
818 /* init some FS parameters */
819 sbi->active_logs = NR_CURSEG_TYPE;
820
821 set_opt(sbi, BG_GC);
822 set_opt(sbi, INLINE_DATA);
823 set_opt(sbi, EXTENT_CACHE);
824
825 #ifdef CONFIG_F2FS_FS_XATTR
826 set_opt(sbi, XATTR_USER);
827 #endif
828 #ifdef CONFIG_F2FS_FS_POSIX_ACL
829 set_opt(sbi, POSIX_ACL);
830 #endif
831 }
832
833 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
834 {
835 struct f2fs_sb_info *sbi = F2FS_SB(sb);
836 struct f2fs_mount_info org_mount_opt;
837 int err, active_logs;
838 bool need_restart_gc = false;
839 bool need_stop_gc = false;
840 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
841
842 /*
843 * Save the old mount options in case we
844 * need to restore them.
845 */
846 org_mount_opt = sbi->mount_opt;
847 active_logs = sbi->active_logs;
848
849 /* recover superblocks we couldn't write due to previous RO mount */
850 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
851 err = f2fs_commit_super(sbi, false);
852 f2fs_msg(sb, KERN_INFO,
853 "Try to recover all the superblocks, ret: %d", err);
854 if (!err)
855 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
856 }
857
858 sbi->mount_opt.opt = 0;
859 default_options(sbi);
860
861 /* parse mount options */
862 err = parse_options(sb, data);
863 if (err)
864 goto restore_opts;
865
866 /*
867 * Previous and new state of filesystem is RO,
868 * so skip checking GC and FLUSH_MERGE conditions.
869 */
870 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
871 goto skip;
872
873 /* disallow enable/disable extent_cache dynamically */
874 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
875 err = -EINVAL;
876 f2fs_msg(sbi->sb, KERN_WARNING,
877 "switch extent_cache option is not allowed");
878 goto restore_opts;
879 }
880
881 /*
882 * We stop the GC thread if FS is mounted as RO
883 * or if background_gc = off is passed in mount
884 * option. Also sync the filesystem.
885 */
886 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
887 if (sbi->gc_thread) {
888 stop_gc_thread(sbi);
889 need_restart_gc = true;
890 }
891 } else if (!sbi->gc_thread) {
892 err = start_gc_thread(sbi);
893 if (err)
894 goto restore_opts;
895 need_stop_gc = true;
896 }
897
898 if (*flags & MS_RDONLY) {
899 writeback_inodes_sb(sb, WB_REASON_SYNC);
900 sync_inodes_sb(sb);
901
902 set_sbi_flag(sbi, SBI_IS_DIRTY);
903 set_sbi_flag(sbi, SBI_IS_CLOSE);
904 f2fs_sync_fs(sb, 1);
905 clear_sbi_flag(sbi, SBI_IS_CLOSE);
906 }
907
908 /*
909 * We stop issue flush thread if FS is mounted as RO
910 * or if flush_merge is not passed in mount option.
911 */
912 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
913 destroy_flush_cmd_control(sbi);
914 } else if (!SM_I(sbi)->cmd_control_info) {
915 err = create_flush_cmd_control(sbi);
916 if (err)
917 goto restore_gc;
918 }
919 skip:
920 /* Update the POSIXACL Flag */
921 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
922 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
923
924 return 0;
925 restore_gc:
926 if (need_restart_gc) {
927 if (start_gc_thread(sbi))
928 f2fs_msg(sbi->sb, KERN_WARNING,
929 "background gc thread has stopped");
930 } else if (need_stop_gc) {
931 stop_gc_thread(sbi);
932 }
933 restore_opts:
934 sbi->mount_opt = org_mount_opt;
935 sbi->active_logs = active_logs;
936 return err;
937 }
938
939 static struct super_operations f2fs_sops = {
940 .alloc_inode = f2fs_alloc_inode,
941 .drop_inode = f2fs_drop_inode,
942 .destroy_inode = f2fs_destroy_inode,
943 .write_inode = f2fs_write_inode,
944 .dirty_inode = f2fs_dirty_inode,
945 .show_options = f2fs_show_options,
946 .evict_inode = f2fs_evict_inode,
947 .put_super = f2fs_put_super,
948 .sync_fs = f2fs_sync_fs,
949 .freeze_fs = f2fs_freeze,
950 .unfreeze_fs = f2fs_unfreeze,
951 .statfs = f2fs_statfs,
952 .remount_fs = f2fs_remount,
953 };
954
955 #ifdef CONFIG_F2FS_FS_ENCRYPTION
956 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
957 {
958 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
959 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
960 ctx, len, NULL);
961 }
962
963 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
964 void *fs_data)
965 {
966 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
967 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
968 ctx, len, fs_data, XATTR_CREATE);
969 }
970
971 static unsigned f2fs_max_namelen(struct inode *inode)
972 {
973 return S_ISLNK(inode->i_mode) ?
974 inode->i_sb->s_blocksize : F2FS_NAME_LEN;
975 }
976
977 static struct fscrypt_operations f2fs_cryptops = {
978 .get_context = f2fs_get_context,
979 .set_context = f2fs_set_context,
980 .is_encrypted = f2fs_encrypted_inode,
981 .empty_dir = f2fs_empty_dir,
982 .max_namelen = f2fs_max_namelen,
983 };
984 #else
985 static struct fscrypt_operations f2fs_cryptops = {
986 .is_encrypted = f2fs_encrypted_inode,
987 };
988 #endif
989
990 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
991 u64 ino, u32 generation)
992 {
993 struct f2fs_sb_info *sbi = F2FS_SB(sb);
994 struct inode *inode;
995
996 if (check_nid_range(sbi, ino))
997 return ERR_PTR(-ESTALE);
998
999 /*
1000 * f2fs_iget isn't quite right if the inode is currently unallocated!
1001 * However f2fs_iget currently does appropriate checks to handle stale
1002 * inodes so everything is OK.
1003 */
1004 inode = f2fs_iget(sb, ino);
1005 if (IS_ERR(inode))
1006 return ERR_CAST(inode);
1007 if (unlikely(generation && inode->i_generation != generation)) {
1008 /* we didn't find the right inode.. */
1009 iput(inode);
1010 return ERR_PTR(-ESTALE);
1011 }
1012 return inode;
1013 }
1014
1015 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1016 int fh_len, int fh_type)
1017 {
1018 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1019 f2fs_nfs_get_inode);
1020 }
1021
1022 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1023 int fh_len, int fh_type)
1024 {
1025 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1026 f2fs_nfs_get_inode);
1027 }
1028
1029 static const struct export_operations f2fs_export_ops = {
1030 .fh_to_dentry = f2fs_fh_to_dentry,
1031 .fh_to_parent = f2fs_fh_to_parent,
1032 .get_parent = f2fs_get_parent,
1033 };
1034
1035 static loff_t max_file_blocks(void)
1036 {
1037 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1038 loff_t leaf_count = ADDRS_PER_BLOCK;
1039
1040 /* two direct node blocks */
1041 result += (leaf_count * 2);
1042
1043 /* two indirect node blocks */
1044 leaf_count *= NIDS_PER_BLOCK;
1045 result += (leaf_count * 2);
1046
1047 /* one double indirect node block */
1048 leaf_count *= NIDS_PER_BLOCK;
1049 result += leaf_count;
1050
1051 return result;
1052 }
1053
1054 static int __f2fs_commit_super(struct buffer_head *bh,
1055 struct f2fs_super_block *super)
1056 {
1057 lock_buffer(bh);
1058 if (super)
1059 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1060 set_buffer_uptodate(bh);
1061 set_buffer_dirty(bh);
1062 unlock_buffer(bh);
1063
1064 /* it's rare case, we can do fua all the time */
1065 return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
1066 }
1067
1068 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1069 struct buffer_head *bh)
1070 {
1071 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1072 (bh->b_data + F2FS_SUPER_OFFSET);
1073 struct super_block *sb = sbi->sb;
1074 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1075 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1076 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1077 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1078 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1079 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1080 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1081 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1082 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1083 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1084 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1085 u32 segment_count = le32_to_cpu(raw_super->segment_count);
1086 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1087 u64 main_end_blkaddr = main_blkaddr +
1088 (segment_count_main << log_blocks_per_seg);
1089 u64 seg_end_blkaddr = segment0_blkaddr +
1090 (segment_count << log_blocks_per_seg);
1091
1092 if (segment0_blkaddr != cp_blkaddr) {
1093 f2fs_msg(sb, KERN_INFO,
1094 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1095 segment0_blkaddr, cp_blkaddr);
1096 return true;
1097 }
1098
1099 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1100 sit_blkaddr) {
1101 f2fs_msg(sb, KERN_INFO,
1102 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1103 cp_blkaddr, sit_blkaddr,
1104 segment_count_ckpt << log_blocks_per_seg);
1105 return true;
1106 }
1107
1108 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1109 nat_blkaddr) {
1110 f2fs_msg(sb, KERN_INFO,
1111 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1112 sit_blkaddr, nat_blkaddr,
1113 segment_count_sit << log_blocks_per_seg);
1114 return true;
1115 }
1116
1117 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1118 ssa_blkaddr) {
1119 f2fs_msg(sb, KERN_INFO,
1120 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1121 nat_blkaddr, ssa_blkaddr,
1122 segment_count_nat << log_blocks_per_seg);
1123 return true;
1124 }
1125
1126 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1127 main_blkaddr) {
1128 f2fs_msg(sb, KERN_INFO,
1129 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1130 ssa_blkaddr, main_blkaddr,
1131 segment_count_ssa << log_blocks_per_seg);
1132 return true;
1133 }
1134
1135 if (main_end_blkaddr > seg_end_blkaddr) {
1136 f2fs_msg(sb, KERN_INFO,
1137 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1138 main_blkaddr,
1139 segment0_blkaddr +
1140 (segment_count << log_blocks_per_seg),
1141 segment_count_main << log_blocks_per_seg);
1142 return true;
1143 } else if (main_end_blkaddr < seg_end_blkaddr) {
1144 int err = 0;
1145 char *res;
1146
1147 /* fix in-memory information all the time */
1148 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1149 segment0_blkaddr) >> log_blocks_per_seg);
1150
1151 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1152 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1153 res = "internally";
1154 } else {
1155 err = __f2fs_commit_super(bh, NULL);
1156 res = err ? "failed" : "done";
1157 }
1158 f2fs_msg(sb, KERN_INFO,
1159 "Fix alignment : %s, start(%u) end(%u) block(%u)",
1160 res, main_blkaddr,
1161 segment0_blkaddr +
1162 (segment_count << log_blocks_per_seg),
1163 segment_count_main << log_blocks_per_seg);
1164 if (err)
1165 return true;
1166 }
1167 return false;
1168 }
1169
1170 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1171 struct buffer_head *bh)
1172 {
1173 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1174 (bh->b_data + F2FS_SUPER_OFFSET);
1175 struct super_block *sb = sbi->sb;
1176 unsigned int blocksize;
1177
1178 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1179 f2fs_msg(sb, KERN_INFO,
1180 "Magic Mismatch, valid(0x%x) - read(0x%x)",
1181 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1182 return 1;
1183 }
1184
1185 /* Currently, support only 4KB page cache size */
1186 if (F2FS_BLKSIZE != PAGE_SIZE) {
1187 f2fs_msg(sb, KERN_INFO,
1188 "Invalid page_cache_size (%lu), supports only 4KB\n",
1189 PAGE_SIZE);
1190 return 1;
1191 }
1192
1193 /* Currently, support only 4KB block size */
1194 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1195 if (blocksize != F2FS_BLKSIZE) {
1196 f2fs_msg(sb, KERN_INFO,
1197 "Invalid blocksize (%u), supports only 4KB\n",
1198 blocksize);
1199 return 1;
1200 }
1201
1202 /* check log blocks per segment */
1203 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1204 f2fs_msg(sb, KERN_INFO,
1205 "Invalid log blocks per segment (%u)\n",
1206 le32_to_cpu(raw_super->log_blocks_per_seg));
1207 return 1;
1208 }
1209
1210 /* Currently, support 512/1024/2048/4096 bytes sector size */
1211 if (le32_to_cpu(raw_super->log_sectorsize) >
1212 F2FS_MAX_LOG_SECTOR_SIZE ||
1213 le32_to_cpu(raw_super->log_sectorsize) <
1214 F2FS_MIN_LOG_SECTOR_SIZE) {
1215 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1216 le32_to_cpu(raw_super->log_sectorsize));
1217 return 1;
1218 }
1219 if (le32_to_cpu(raw_super->log_sectors_per_block) +
1220 le32_to_cpu(raw_super->log_sectorsize) !=
1221 F2FS_MAX_LOG_SECTOR_SIZE) {
1222 f2fs_msg(sb, KERN_INFO,
1223 "Invalid log sectors per block(%u) log sectorsize(%u)",
1224 le32_to_cpu(raw_super->log_sectors_per_block),
1225 le32_to_cpu(raw_super->log_sectorsize));
1226 return 1;
1227 }
1228
1229 /* check reserved ino info */
1230 if (le32_to_cpu(raw_super->node_ino) != 1 ||
1231 le32_to_cpu(raw_super->meta_ino) != 2 ||
1232 le32_to_cpu(raw_super->root_ino) != 3) {
1233 f2fs_msg(sb, KERN_INFO,
1234 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1235 le32_to_cpu(raw_super->node_ino),
1236 le32_to_cpu(raw_super->meta_ino),
1237 le32_to_cpu(raw_super->root_ino));
1238 return 1;
1239 }
1240
1241 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1242 if (sanity_check_area_boundary(sbi, bh))
1243 return 1;
1244
1245 return 0;
1246 }
1247
1248 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1249 {
1250 unsigned int total, fsmeta;
1251 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1252 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1253
1254 total = le32_to_cpu(raw_super->segment_count);
1255 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1256 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1257 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1258 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1259 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1260
1261 if (unlikely(fsmeta >= total))
1262 return 1;
1263
1264 if (unlikely(f2fs_cp_error(sbi))) {
1265 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1266 return 1;
1267 }
1268 return 0;
1269 }
1270
1271 static void init_sb_info(struct f2fs_sb_info *sbi)
1272 {
1273 struct f2fs_super_block *raw_super = sbi->raw_super;
1274 int i;
1275
1276 sbi->log_sectors_per_block =
1277 le32_to_cpu(raw_super->log_sectors_per_block);
1278 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1279 sbi->blocksize = 1 << sbi->log_blocksize;
1280 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1281 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1282 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1283 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1284 sbi->total_sections = le32_to_cpu(raw_super->section_count);
1285 sbi->total_node_count =
1286 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1287 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1288 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1289 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1290 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1291 sbi->cur_victim_sec = NULL_SECNO;
1292 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1293
1294 for (i = 0; i < NR_COUNT_TYPE; i++)
1295 atomic_set(&sbi->nr_pages[i], 0);
1296
1297 sbi->dir_level = DEF_DIR_LEVEL;
1298 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1299 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1300 clear_sbi_flag(sbi, SBI_NEED_FSCK);
1301
1302 INIT_LIST_HEAD(&sbi->s_list);
1303 mutex_init(&sbi->umount_mutex);
1304 }
1305
1306 /*
1307 * Read f2fs raw super block.
1308 * Because we have two copies of super block, so read both of them
1309 * to get the first valid one. If any one of them is broken, we pass
1310 * them recovery flag back to the caller.
1311 */
1312 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1313 struct f2fs_super_block **raw_super,
1314 int *valid_super_block, int *recovery)
1315 {
1316 struct super_block *sb = sbi->sb;
1317 int block;
1318 struct buffer_head *bh;
1319 struct f2fs_super_block *super;
1320 int err = 0;
1321
1322 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1323 if (!super)
1324 return -ENOMEM;
1325
1326 for (block = 0; block < 2; block++) {
1327 bh = sb_bread(sb, block);
1328 if (!bh) {
1329 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1330 block + 1);
1331 err = -EIO;
1332 continue;
1333 }
1334
1335 /* sanity checking of raw super */
1336 if (sanity_check_raw_super(sbi, bh)) {
1337 f2fs_msg(sb, KERN_ERR,
1338 "Can't find valid F2FS filesystem in %dth superblock",
1339 block + 1);
1340 err = -EINVAL;
1341 brelse(bh);
1342 continue;
1343 }
1344
1345 if (!*raw_super) {
1346 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1347 sizeof(*super));
1348 *valid_super_block = block;
1349 *raw_super = super;
1350 }
1351 brelse(bh);
1352 }
1353
1354 /* Fail to read any one of the superblocks*/
1355 if (err < 0)
1356 *recovery = 1;
1357
1358 /* No valid superblock */
1359 if (!*raw_super)
1360 kfree(super);
1361 else
1362 err = 0;
1363
1364 return err;
1365 }
1366
1367 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1368 {
1369 struct buffer_head *bh;
1370 int err;
1371
1372 if ((recover && f2fs_readonly(sbi->sb)) ||
1373 bdev_read_only(sbi->sb->s_bdev)) {
1374 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1375 return -EROFS;
1376 }
1377
1378 /* write back-up superblock first */
1379 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1380 if (!bh)
1381 return -EIO;
1382 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1383 brelse(bh);
1384
1385 /* if we are in recovery path, skip writing valid superblock */
1386 if (recover || err)
1387 return err;
1388
1389 /* write current valid superblock */
1390 bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1391 if (!bh)
1392 return -EIO;
1393 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1394 brelse(bh);
1395 return err;
1396 }
1397
1398 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1399 {
1400 struct f2fs_sb_info *sbi;
1401 struct f2fs_super_block *raw_super;
1402 struct inode *root;
1403 long err;
1404 bool retry = true, need_fsck = false;
1405 char *options = NULL;
1406 int recovery, i, valid_super_block;
1407 struct curseg_info *seg_i;
1408
1409 try_onemore:
1410 err = -EINVAL;
1411 raw_super = NULL;
1412 valid_super_block = -1;
1413 recovery = 0;
1414
1415 /* allocate memory for f2fs-specific super block info */
1416 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1417 if (!sbi)
1418 return -ENOMEM;
1419
1420 sbi->sb = sb;
1421
1422 /* Load the checksum driver */
1423 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1424 if (IS_ERR(sbi->s_chksum_driver)) {
1425 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1426 err = PTR_ERR(sbi->s_chksum_driver);
1427 sbi->s_chksum_driver = NULL;
1428 goto free_sbi;
1429 }
1430
1431 /* set a block size */
1432 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1433 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1434 goto free_sbi;
1435 }
1436
1437 err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1438 &recovery);
1439 if (err)
1440 goto free_sbi;
1441
1442 sb->s_fs_info = sbi;
1443 default_options(sbi);
1444 /* parse mount options */
1445 options = kstrdup((const char *)data, GFP_KERNEL);
1446 if (data && !options) {
1447 err = -ENOMEM;
1448 goto free_sb_buf;
1449 }
1450
1451 err = parse_options(sb, options);
1452 if (err)
1453 goto free_options;
1454
1455 sbi->max_file_blocks = max_file_blocks();
1456 sb->s_maxbytes = sbi->max_file_blocks <<
1457 le32_to_cpu(raw_super->log_blocksize);
1458 sb->s_max_links = F2FS_LINK_MAX;
1459 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1460
1461 sb->s_op = &f2fs_sops;
1462 sb->s_cop = &f2fs_cryptops;
1463 sb->s_xattr = f2fs_xattr_handlers;
1464 sb->s_export_op = &f2fs_export_ops;
1465 sb->s_magic = F2FS_SUPER_MAGIC;
1466 sb->s_time_gran = 1;
1467 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1468 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1469 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1470
1471 /* init f2fs-specific super block info */
1472 sbi->raw_super = raw_super;
1473 sbi->valid_super_block = valid_super_block;
1474 mutex_init(&sbi->gc_mutex);
1475 mutex_init(&sbi->writepages);
1476 mutex_init(&sbi->cp_mutex);
1477 init_rwsem(&sbi->node_write);
1478
1479 /* disallow all the data/node/meta page writes */
1480 set_sbi_flag(sbi, SBI_POR_DOING);
1481 spin_lock_init(&sbi->stat_lock);
1482
1483 init_rwsem(&sbi->read_io.io_rwsem);
1484 sbi->read_io.sbi = sbi;
1485 sbi->read_io.bio = NULL;
1486 for (i = 0; i < NR_PAGE_TYPE; i++) {
1487 init_rwsem(&sbi->write_io[i].io_rwsem);
1488 sbi->write_io[i].sbi = sbi;
1489 sbi->write_io[i].bio = NULL;
1490 }
1491
1492 init_rwsem(&sbi->cp_rwsem);
1493 init_waitqueue_head(&sbi->cp_wait);
1494 init_sb_info(sbi);
1495
1496 /* get an inode for meta space */
1497 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1498 if (IS_ERR(sbi->meta_inode)) {
1499 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1500 err = PTR_ERR(sbi->meta_inode);
1501 goto free_options;
1502 }
1503
1504 err = get_valid_checkpoint(sbi);
1505 if (err) {
1506 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1507 goto free_meta_inode;
1508 }
1509
1510 sbi->total_valid_node_count =
1511 le32_to_cpu(sbi->ckpt->valid_node_count);
1512 sbi->total_valid_inode_count =
1513 le32_to_cpu(sbi->ckpt->valid_inode_count);
1514 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1515 sbi->total_valid_block_count =
1516 le64_to_cpu(sbi->ckpt->valid_block_count);
1517 sbi->last_valid_block_count = sbi->total_valid_block_count;
1518 sbi->alloc_valid_block_count = 0;
1519 for (i = 0; i < NR_INODE_TYPE; i++) {
1520 INIT_LIST_HEAD(&sbi->inode_list[i]);
1521 spin_lock_init(&sbi->inode_lock[i]);
1522 }
1523
1524 init_extent_cache_info(sbi);
1525
1526 init_ino_entry_info(sbi);
1527
1528 /* setup f2fs internal modules */
1529 err = build_segment_manager(sbi);
1530 if (err) {
1531 f2fs_msg(sb, KERN_ERR,
1532 "Failed to initialize F2FS segment manager");
1533 goto free_sm;
1534 }
1535 err = build_node_manager(sbi);
1536 if (err) {
1537 f2fs_msg(sb, KERN_ERR,
1538 "Failed to initialize F2FS node manager");
1539 goto free_nm;
1540 }
1541
1542 /* For write statistics */
1543 if (sb->s_bdev->bd_part)
1544 sbi->sectors_written_start =
1545 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1546
1547 /* Read accumulated write IO statistics if exists */
1548 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1549 if (__exist_node_summaries(sbi))
1550 sbi->kbytes_written =
1551 le64_to_cpu(seg_i->journal->info.kbytes_written);
1552
1553 build_gc_manager(sbi);
1554
1555 /* get an inode for node space */
1556 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1557 if (IS_ERR(sbi->node_inode)) {
1558 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1559 err = PTR_ERR(sbi->node_inode);
1560 goto free_nm;
1561 }
1562
1563 f2fs_join_shrinker(sbi);
1564
1565 /* if there are nt orphan nodes free them */
1566 err = recover_orphan_inodes(sbi);
1567 if (err)
1568 goto free_node_inode;
1569
1570 /* read root inode and dentry */
1571 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1572 if (IS_ERR(root)) {
1573 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1574 err = PTR_ERR(root);
1575 goto free_node_inode;
1576 }
1577 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1578 iput(root);
1579 err = -EINVAL;
1580 goto free_node_inode;
1581 }
1582
1583 sb->s_root = d_make_root(root); /* allocate root dentry */
1584 if (!sb->s_root) {
1585 err = -ENOMEM;
1586 goto free_root_inode;
1587 }
1588
1589 err = f2fs_build_stats(sbi);
1590 if (err)
1591 goto free_root_inode;
1592
1593 if (f2fs_proc_root)
1594 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1595
1596 if (sbi->s_proc) {
1597 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1598 &f2fs_seq_segment_info_fops, sb);
1599 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
1600 &f2fs_seq_segment_bits_fops, sb);
1601 }
1602
1603 sbi->s_kobj.kset = f2fs_kset;
1604 init_completion(&sbi->s_kobj_unregister);
1605 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1606 "%s", sb->s_id);
1607 if (err)
1608 goto free_proc;
1609
1610 /* recover fsynced data */
1611 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1612 /*
1613 * mount should be failed, when device has readonly mode, and
1614 * previous checkpoint was not done by clean system shutdown.
1615 */
1616 if (bdev_read_only(sb->s_bdev) &&
1617 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1618 err = -EROFS;
1619 goto free_kobj;
1620 }
1621
1622 if (need_fsck)
1623 set_sbi_flag(sbi, SBI_NEED_FSCK);
1624
1625 err = recover_fsync_data(sbi, false);
1626 if (err < 0) {
1627 need_fsck = true;
1628 f2fs_msg(sb, KERN_ERR,
1629 "Cannot recover all fsync data errno=%ld", err);
1630 goto free_kobj;
1631 }
1632 } else {
1633 err = recover_fsync_data(sbi, true);
1634
1635 if (!f2fs_readonly(sb) && err > 0) {
1636 err = -EINVAL;
1637 f2fs_msg(sb, KERN_ERR,
1638 "Need to recover fsync data");
1639 goto free_kobj;
1640 }
1641 }
1642
1643 /* recover_fsync_data() cleared this already */
1644 clear_sbi_flag(sbi, SBI_POR_DOING);
1645
1646 /*
1647 * If filesystem is not mounted as read-only then
1648 * do start the gc_thread.
1649 */
1650 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1651 /* After POR, we can run background GC thread.*/
1652 err = start_gc_thread(sbi);
1653 if (err)
1654 goto free_kobj;
1655 }
1656 kfree(options);
1657
1658 /* recover broken superblock */
1659 if (recovery) {
1660 err = f2fs_commit_super(sbi, true);
1661 f2fs_msg(sb, KERN_INFO,
1662 "Try to recover %dth superblock, ret: %ld",
1663 sbi->valid_super_block ? 1 : 2, err);
1664 }
1665
1666 f2fs_update_time(sbi, CP_TIME);
1667 f2fs_update_time(sbi, REQ_TIME);
1668 return 0;
1669
1670 free_kobj:
1671 kobject_del(&sbi->s_kobj);
1672 kobject_put(&sbi->s_kobj);
1673 wait_for_completion(&sbi->s_kobj_unregister);
1674 free_proc:
1675 if (sbi->s_proc) {
1676 remove_proc_entry("segment_info", sbi->s_proc);
1677 remove_proc_entry("segment_bits", sbi->s_proc);
1678 remove_proc_entry(sb->s_id, f2fs_proc_root);
1679 }
1680 f2fs_destroy_stats(sbi);
1681 free_root_inode:
1682 dput(sb->s_root);
1683 sb->s_root = NULL;
1684 free_node_inode:
1685 mutex_lock(&sbi->umount_mutex);
1686 f2fs_leave_shrinker(sbi);
1687 iput(sbi->node_inode);
1688 mutex_unlock(&sbi->umount_mutex);
1689 free_nm:
1690 destroy_node_manager(sbi);
1691 free_sm:
1692 destroy_segment_manager(sbi);
1693 kfree(sbi->ckpt);
1694 free_meta_inode:
1695 make_bad_inode(sbi->meta_inode);
1696 iput(sbi->meta_inode);
1697 free_options:
1698 kfree(options);
1699 free_sb_buf:
1700 kfree(raw_super);
1701 free_sbi:
1702 if (sbi->s_chksum_driver)
1703 crypto_free_shash(sbi->s_chksum_driver);
1704 kfree(sbi);
1705
1706 /* give only one another chance */
1707 if (retry) {
1708 retry = false;
1709 shrink_dcache_sb(sb);
1710 goto try_onemore;
1711 }
1712 return err;
1713 }
1714
1715 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1716 const char *dev_name, void *data)
1717 {
1718 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1719 }
1720
1721 static void kill_f2fs_super(struct super_block *sb)
1722 {
1723 if (sb->s_root)
1724 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1725 kill_block_super(sb);
1726 }
1727
1728 static struct file_system_type f2fs_fs_type = {
1729 .owner = THIS_MODULE,
1730 .name = "f2fs",
1731 .mount = f2fs_mount,
1732 .kill_sb = kill_f2fs_super,
1733 .fs_flags = FS_REQUIRES_DEV,
1734 };
1735 MODULE_ALIAS_FS("f2fs");
1736
1737 static int __init init_inodecache(void)
1738 {
1739 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1740 sizeof(struct f2fs_inode_info), 0,
1741 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1742 if (!f2fs_inode_cachep)
1743 return -ENOMEM;
1744 return 0;
1745 }
1746
1747 static void destroy_inodecache(void)
1748 {
1749 /*
1750 * Make sure all delayed rcu free inodes are flushed before we
1751 * destroy cache.
1752 */
1753 rcu_barrier();
1754 kmem_cache_destroy(f2fs_inode_cachep);
1755 }
1756
1757 static int __init init_f2fs_fs(void)
1758 {
1759 int err;
1760
1761 f2fs_build_trace_ios();
1762
1763 err = init_inodecache();
1764 if (err)
1765 goto fail;
1766 err = create_node_manager_caches();
1767 if (err)
1768 goto free_inodecache;
1769 err = create_segment_manager_caches();
1770 if (err)
1771 goto free_node_manager_caches;
1772 err = create_checkpoint_caches();
1773 if (err)
1774 goto free_segment_manager_caches;
1775 err = create_extent_cache();
1776 if (err)
1777 goto free_checkpoint_caches;
1778 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1779 if (!f2fs_kset) {
1780 err = -ENOMEM;
1781 goto free_extent_cache;
1782 }
1783 err = register_shrinker(&f2fs_shrinker_info);
1784 if (err)
1785 goto free_kset;
1786
1787 err = register_filesystem(&f2fs_fs_type);
1788 if (err)
1789 goto free_shrinker;
1790 err = f2fs_create_root_stats();
1791 if (err)
1792 goto free_filesystem;
1793 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1794 return 0;
1795
1796 free_filesystem:
1797 unregister_filesystem(&f2fs_fs_type);
1798 free_shrinker:
1799 unregister_shrinker(&f2fs_shrinker_info);
1800 free_kset:
1801 kset_unregister(f2fs_kset);
1802 free_extent_cache:
1803 destroy_extent_cache();
1804 free_checkpoint_caches:
1805 destroy_checkpoint_caches();
1806 free_segment_manager_caches:
1807 destroy_segment_manager_caches();
1808 free_node_manager_caches:
1809 destroy_node_manager_caches();
1810 free_inodecache:
1811 destroy_inodecache();
1812 fail:
1813 return err;
1814 }
1815
1816 static void __exit exit_f2fs_fs(void)
1817 {
1818 remove_proc_entry("fs/f2fs", NULL);
1819 f2fs_destroy_root_stats();
1820 unregister_shrinker(&f2fs_shrinker_info);
1821 unregister_filesystem(&f2fs_fs_type);
1822 destroy_extent_cache();
1823 destroy_checkpoint_caches();
1824 destroy_segment_manager_caches();
1825 destroy_node_manager_caches();
1826 destroy_inodecache();
1827 kset_unregister(f2fs_kset);
1828 f2fs_destroy_trace_ios();
1829 }
1830
1831 module_init(init_f2fs_fs)
1832 module_exit(exit_f2fs_fs)
1833
1834 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1835 MODULE_DESCRIPTION("Flash Friendly File System");
1836 MODULE_LICENSE("GPL");
This page took 0.071552 seconds and 5 git commands to generate.