b5144b81e4c40cdd319bb3b9468414a09b30fb01
[deliverable/linux.git] / fs / f2fs / super.c
1 /*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 struct f2fs_fault_info f2fs_fault;
44
45 char *fault_name[FAULT_MAX] = {
46 [FAULT_KMALLOC] = "kmalloc",
47 [FAULT_PAGE_ALLOC] = "page alloc",
48 [FAULT_ALLOC_NID] = "alloc nid",
49 [FAULT_ORPHAN] = "orphan",
50 [FAULT_BLOCK] = "no more block",
51 [FAULT_DIR_DEPTH] = "too big dir depth",
52 };
53
54 static void f2fs_build_fault_attr(unsigned int rate)
55 {
56 if (rate) {
57 atomic_set(&f2fs_fault.inject_ops, 0);
58 f2fs_fault.inject_rate = rate;
59 f2fs_fault.inject_type = (1 << FAULT_MAX) - 1;
60 } else {
61 memset(&f2fs_fault, 0, sizeof(struct f2fs_fault_info));
62 }
63 }
64 #endif
65
66 /* f2fs-wide shrinker description */
67 static struct shrinker f2fs_shrinker_info = {
68 .scan_objects = f2fs_shrink_scan,
69 .count_objects = f2fs_shrink_count,
70 .seeks = DEFAULT_SEEKS,
71 };
72
73 enum {
74 Opt_gc_background,
75 Opt_disable_roll_forward,
76 Opt_norecovery,
77 Opt_discard,
78 Opt_noheap,
79 Opt_user_xattr,
80 Opt_nouser_xattr,
81 Opt_acl,
82 Opt_noacl,
83 Opt_active_logs,
84 Opt_disable_ext_identify,
85 Opt_inline_xattr,
86 Opt_inline_data,
87 Opt_inline_dentry,
88 Opt_flush_merge,
89 Opt_nobarrier,
90 Opt_fastboot,
91 Opt_extent_cache,
92 Opt_noextent_cache,
93 Opt_noinline_data,
94 Opt_data_flush,
95 Opt_fault_injection,
96 Opt_err,
97 };
98
99 static match_table_t f2fs_tokens = {
100 {Opt_gc_background, "background_gc=%s"},
101 {Opt_disable_roll_forward, "disable_roll_forward"},
102 {Opt_norecovery, "norecovery"},
103 {Opt_discard, "discard"},
104 {Opt_noheap, "no_heap"},
105 {Opt_user_xattr, "user_xattr"},
106 {Opt_nouser_xattr, "nouser_xattr"},
107 {Opt_acl, "acl"},
108 {Opt_noacl, "noacl"},
109 {Opt_active_logs, "active_logs=%u"},
110 {Opt_disable_ext_identify, "disable_ext_identify"},
111 {Opt_inline_xattr, "inline_xattr"},
112 {Opt_inline_data, "inline_data"},
113 {Opt_inline_dentry, "inline_dentry"},
114 {Opt_flush_merge, "flush_merge"},
115 {Opt_nobarrier, "nobarrier"},
116 {Opt_fastboot, "fastboot"},
117 {Opt_extent_cache, "extent_cache"},
118 {Opt_noextent_cache, "noextent_cache"},
119 {Opt_noinline_data, "noinline_data"},
120 {Opt_data_flush, "data_flush"},
121 {Opt_fault_injection, "fault_injection=%u"},
122 {Opt_err, NULL},
123 };
124
125 /* Sysfs support for f2fs */
126 enum {
127 GC_THREAD, /* struct f2fs_gc_thread */
128 SM_INFO, /* struct f2fs_sm_info */
129 NM_INFO, /* struct f2fs_nm_info */
130 F2FS_SBI, /* struct f2fs_sb_info */
131 #ifdef CONFIG_F2FS_FAULT_INJECTION
132 FAULT_INFO_RATE, /* struct f2fs_fault_info */
133 FAULT_INFO_TYPE, /* struct f2fs_fault_info */
134 #endif
135 };
136
137 struct f2fs_attr {
138 struct attribute attr;
139 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
140 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
141 const char *, size_t);
142 int struct_type;
143 int offset;
144 };
145
146 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
147 {
148 if (struct_type == GC_THREAD)
149 return (unsigned char *)sbi->gc_thread;
150 else if (struct_type == SM_INFO)
151 return (unsigned char *)SM_I(sbi);
152 else if (struct_type == NM_INFO)
153 return (unsigned char *)NM_I(sbi);
154 else if (struct_type == F2FS_SBI)
155 return (unsigned char *)sbi;
156 #ifdef CONFIG_F2FS_FAULT_INJECTION
157 else if (struct_type == FAULT_INFO_RATE ||
158 struct_type == FAULT_INFO_TYPE)
159 return (unsigned char *)&f2fs_fault;
160 #endif
161 return NULL;
162 }
163
164 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
165 struct f2fs_sb_info *sbi, char *buf)
166 {
167 struct super_block *sb = sbi->sb;
168
169 if (!sb->s_bdev->bd_part)
170 return snprintf(buf, PAGE_SIZE, "0\n");
171
172 return snprintf(buf, PAGE_SIZE, "%llu\n",
173 (unsigned long long)(sbi->kbytes_written +
174 BD_PART_WRITTEN(sbi)));
175 }
176
177 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
178 struct f2fs_sb_info *sbi, char *buf)
179 {
180 unsigned char *ptr = NULL;
181 unsigned int *ui;
182
183 ptr = __struct_ptr(sbi, a->struct_type);
184 if (!ptr)
185 return -EINVAL;
186
187 ui = (unsigned int *)(ptr + a->offset);
188
189 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
190 }
191
192 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
193 struct f2fs_sb_info *sbi,
194 const char *buf, size_t count)
195 {
196 unsigned char *ptr;
197 unsigned long t;
198 unsigned int *ui;
199 ssize_t ret;
200
201 ptr = __struct_ptr(sbi, a->struct_type);
202 if (!ptr)
203 return -EINVAL;
204
205 ui = (unsigned int *)(ptr + a->offset);
206
207 ret = kstrtoul(skip_spaces(buf), 0, &t);
208 if (ret < 0)
209 return ret;
210 #ifdef CONFIG_F2FS_FAULT_INJECTION
211 if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
212 return -EINVAL;
213 #endif
214 *ui = t;
215 return count;
216 }
217
218 static ssize_t f2fs_attr_show(struct kobject *kobj,
219 struct attribute *attr, char *buf)
220 {
221 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
222 s_kobj);
223 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
224
225 return a->show ? a->show(a, sbi, buf) : 0;
226 }
227
228 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
229 const char *buf, size_t len)
230 {
231 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
232 s_kobj);
233 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
234
235 return a->store ? a->store(a, sbi, buf, len) : 0;
236 }
237
238 static void f2fs_sb_release(struct kobject *kobj)
239 {
240 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
241 s_kobj);
242 complete(&sbi->s_kobj_unregister);
243 }
244
245 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
246 static struct f2fs_attr f2fs_attr_##_name = { \
247 .attr = {.name = __stringify(_name), .mode = _mode }, \
248 .show = _show, \
249 .store = _store, \
250 .struct_type = _struct_type, \
251 .offset = _offset \
252 }
253
254 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
255 F2FS_ATTR_OFFSET(struct_type, name, 0644, \
256 f2fs_sbi_show, f2fs_sbi_store, \
257 offsetof(struct struct_name, elname))
258
259 #define F2FS_GENERAL_RO_ATTR(name) \
260 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
261
262 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
263 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
264 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
265 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
266 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
267 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
268 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
269 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
270 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
271 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
272 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
273 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
274 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
275 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
276 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
277 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
278 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
279 #ifdef CONFIG_F2FS_FAULT_INJECTION
280 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
281 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
282 #endif
283 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
284
285 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
286 static struct attribute *f2fs_attrs[] = {
287 ATTR_LIST(gc_min_sleep_time),
288 ATTR_LIST(gc_max_sleep_time),
289 ATTR_LIST(gc_no_gc_sleep_time),
290 ATTR_LIST(gc_idle),
291 ATTR_LIST(reclaim_segments),
292 ATTR_LIST(max_small_discards),
293 ATTR_LIST(batched_trim_sections),
294 ATTR_LIST(ipu_policy),
295 ATTR_LIST(min_ipu_util),
296 ATTR_LIST(min_fsync_blocks),
297 ATTR_LIST(max_victim_search),
298 ATTR_LIST(dir_level),
299 ATTR_LIST(ram_thresh),
300 ATTR_LIST(ra_nid_pages),
301 ATTR_LIST(dirty_nats_ratio),
302 ATTR_LIST(cp_interval),
303 ATTR_LIST(idle_interval),
304 ATTR_LIST(lifetime_write_kbytes),
305 NULL,
306 };
307
308 static const struct sysfs_ops f2fs_attr_ops = {
309 .show = f2fs_attr_show,
310 .store = f2fs_attr_store,
311 };
312
313 static struct kobj_type f2fs_ktype = {
314 .default_attrs = f2fs_attrs,
315 .sysfs_ops = &f2fs_attr_ops,
316 .release = f2fs_sb_release,
317 };
318
319 #ifdef CONFIG_F2FS_FAULT_INJECTION
320 /* sysfs for f2fs fault injection */
321 static struct kobject f2fs_fault_inject;
322
323 static struct attribute *f2fs_fault_attrs[] = {
324 ATTR_LIST(inject_rate),
325 ATTR_LIST(inject_type),
326 NULL
327 };
328
329 static struct kobj_type f2fs_fault_ktype = {
330 .default_attrs = f2fs_fault_attrs,
331 .sysfs_ops = &f2fs_attr_ops,
332 };
333 #endif
334
335 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
336 {
337 struct va_format vaf;
338 va_list args;
339
340 va_start(args, fmt);
341 vaf.fmt = fmt;
342 vaf.va = &args;
343 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
344 va_end(args);
345 }
346
347 static void init_once(void *foo)
348 {
349 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
350
351 inode_init_once(&fi->vfs_inode);
352 }
353
354 static int parse_options(struct super_block *sb, char *options)
355 {
356 struct f2fs_sb_info *sbi = F2FS_SB(sb);
357 struct request_queue *q;
358 substring_t args[MAX_OPT_ARGS];
359 char *p, *name;
360 int arg = 0;
361
362 #ifdef CONFIG_F2FS_FAULT_INJECTION
363 f2fs_build_fault_attr(0);
364 #endif
365
366 if (!options)
367 return 0;
368
369 while ((p = strsep(&options, ",")) != NULL) {
370 int token;
371 if (!*p)
372 continue;
373 /*
374 * Initialize args struct so we know whether arg was
375 * found; some options take optional arguments.
376 */
377 args[0].to = args[0].from = NULL;
378 token = match_token(p, f2fs_tokens, args);
379
380 switch (token) {
381 case Opt_gc_background:
382 name = match_strdup(&args[0]);
383
384 if (!name)
385 return -ENOMEM;
386 if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
387 set_opt(sbi, BG_GC);
388 clear_opt(sbi, FORCE_FG_GC);
389 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
390 clear_opt(sbi, BG_GC);
391 clear_opt(sbi, FORCE_FG_GC);
392 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
393 set_opt(sbi, BG_GC);
394 set_opt(sbi, FORCE_FG_GC);
395 } else {
396 kfree(name);
397 return -EINVAL;
398 }
399 kfree(name);
400 break;
401 case Opt_disable_roll_forward:
402 set_opt(sbi, DISABLE_ROLL_FORWARD);
403 break;
404 case Opt_norecovery:
405 /* this option mounts f2fs with ro */
406 set_opt(sbi, DISABLE_ROLL_FORWARD);
407 if (!f2fs_readonly(sb))
408 return -EINVAL;
409 break;
410 case Opt_discard:
411 q = bdev_get_queue(sb->s_bdev);
412 if (blk_queue_discard(q)) {
413 set_opt(sbi, DISCARD);
414 } else {
415 f2fs_msg(sb, KERN_WARNING,
416 "mounting with \"discard\" option, but "
417 "the device does not support discard");
418 }
419 break;
420 case Opt_noheap:
421 set_opt(sbi, NOHEAP);
422 break;
423 #ifdef CONFIG_F2FS_FS_XATTR
424 case Opt_user_xattr:
425 set_opt(sbi, XATTR_USER);
426 break;
427 case Opt_nouser_xattr:
428 clear_opt(sbi, XATTR_USER);
429 break;
430 case Opt_inline_xattr:
431 set_opt(sbi, INLINE_XATTR);
432 break;
433 #else
434 case Opt_user_xattr:
435 f2fs_msg(sb, KERN_INFO,
436 "user_xattr options not supported");
437 break;
438 case Opt_nouser_xattr:
439 f2fs_msg(sb, KERN_INFO,
440 "nouser_xattr options not supported");
441 break;
442 case Opt_inline_xattr:
443 f2fs_msg(sb, KERN_INFO,
444 "inline_xattr options not supported");
445 break;
446 #endif
447 #ifdef CONFIG_F2FS_FS_POSIX_ACL
448 case Opt_acl:
449 set_opt(sbi, POSIX_ACL);
450 break;
451 case Opt_noacl:
452 clear_opt(sbi, POSIX_ACL);
453 break;
454 #else
455 case Opt_acl:
456 f2fs_msg(sb, KERN_INFO, "acl options not supported");
457 break;
458 case Opt_noacl:
459 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
460 break;
461 #endif
462 case Opt_active_logs:
463 if (args->from && match_int(args, &arg))
464 return -EINVAL;
465 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
466 return -EINVAL;
467 sbi->active_logs = arg;
468 break;
469 case Opt_disable_ext_identify:
470 set_opt(sbi, DISABLE_EXT_IDENTIFY);
471 break;
472 case Opt_inline_data:
473 set_opt(sbi, INLINE_DATA);
474 break;
475 case Opt_inline_dentry:
476 set_opt(sbi, INLINE_DENTRY);
477 break;
478 case Opt_flush_merge:
479 set_opt(sbi, FLUSH_MERGE);
480 break;
481 case Opt_nobarrier:
482 set_opt(sbi, NOBARRIER);
483 break;
484 case Opt_fastboot:
485 set_opt(sbi, FASTBOOT);
486 break;
487 case Opt_extent_cache:
488 set_opt(sbi, EXTENT_CACHE);
489 break;
490 case Opt_noextent_cache:
491 clear_opt(sbi, EXTENT_CACHE);
492 break;
493 case Opt_noinline_data:
494 clear_opt(sbi, INLINE_DATA);
495 break;
496 case Opt_data_flush:
497 set_opt(sbi, DATA_FLUSH);
498 break;
499 case Opt_fault_injection:
500 if (args->from && match_int(args, &arg))
501 return -EINVAL;
502 #ifdef CONFIG_F2FS_FAULT_INJECTION
503 f2fs_build_fault_attr(arg);
504 #else
505 f2fs_msg(sb, KERN_INFO,
506 "FAULT_INJECTION was not selected");
507 #endif
508 break;
509 default:
510 f2fs_msg(sb, KERN_ERR,
511 "Unrecognized mount option \"%s\" or missing value",
512 p);
513 return -EINVAL;
514 }
515 }
516 return 0;
517 }
518
519 static struct inode *f2fs_alloc_inode(struct super_block *sb)
520 {
521 struct f2fs_inode_info *fi;
522
523 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
524 if (!fi)
525 return NULL;
526
527 init_once((void *) fi);
528
529 if (percpu_counter_init(&fi->dirty_pages, 0, GFP_NOFS)) {
530 kmem_cache_free(f2fs_inode_cachep, fi);
531 return NULL;
532 }
533
534 /* Initialize f2fs-specific inode info */
535 fi->vfs_inode.i_version = 1;
536 fi->i_current_depth = 1;
537 fi->i_advise = 0;
538 init_rwsem(&fi->i_sem);
539 INIT_LIST_HEAD(&fi->dirty_list);
540 INIT_LIST_HEAD(&fi->gdirty_list);
541 INIT_LIST_HEAD(&fi->inmem_pages);
542 mutex_init(&fi->inmem_lock);
543
544 /* Will be used by directory only */
545 fi->i_dir_level = F2FS_SB(sb)->dir_level;
546 return &fi->vfs_inode;
547 }
548
549 static int f2fs_drop_inode(struct inode *inode)
550 {
551 int ret;
552
553 /*
554 * This is to avoid a deadlock condition like below.
555 * writeback_single_inode(inode)
556 * - f2fs_write_data_page
557 * - f2fs_gc -> iput -> evict
558 * - inode_wait_for_writeback(inode)
559 */
560 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
561 if (!inode->i_nlink && !is_bad_inode(inode)) {
562 /* to avoid evict_inode call simultaneously */
563 atomic_inc(&inode->i_count);
564 spin_unlock(&inode->i_lock);
565
566 /* some remained atomic pages should discarded */
567 if (f2fs_is_atomic_file(inode))
568 drop_inmem_pages(inode);
569
570 /* should remain fi->extent_tree for writepage */
571 f2fs_destroy_extent_node(inode);
572
573 sb_start_intwrite(inode->i_sb);
574 f2fs_i_size_write(inode, 0);
575
576 if (F2FS_HAS_BLOCKS(inode))
577 f2fs_truncate(inode, true);
578
579 sb_end_intwrite(inode->i_sb);
580
581 fscrypt_put_encryption_info(inode, NULL);
582 spin_lock(&inode->i_lock);
583 atomic_dec(&inode->i_count);
584 }
585 return 0;
586 }
587
588 ret = generic_drop_inode(inode);
589 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
590 if (ret)
591 inode->i_state |= I_WILL_FREE;
592 spin_unlock(&inode->i_lock);
593
594 update_inode_page(inode);
595
596 spin_lock(&inode->i_lock);
597 if (ret)
598 inode->i_state &= ~I_WILL_FREE;
599 }
600 return ret;
601 }
602
603 /*
604 * f2fs_dirty_inode() is called from __mark_inode_dirty()
605 *
606 * We should call set_dirty_inode to write the dirty inode through write_inode.
607 */
608 static void f2fs_dirty_inode(struct inode *inode, int flags)
609 {
610 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
611
612 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
613 inode->i_ino == F2FS_META_INO(sbi))
614 return;
615
616 spin_lock(&sbi->inode_lock[DIRTY_META]);
617 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
618 spin_unlock(&sbi->inode_lock[DIRTY_META]);
619 return;
620 }
621
622 set_inode_flag(inode, FI_DIRTY_INODE);
623 list_add_tail(&F2FS_I(inode)->gdirty_list,
624 &sbi->inode_list[DIRTY_META]);
625 inc_page_count(sbi, F2FS_DIRTY_IMETA);
626 spin_unlock(&sbi->inode_lock[DIRTY_META]);
627 stat_inc_dirty_inode(sbi, DIRTY_META);
628 }
629
630 void f2fs_inode_synced(struct inode *inode)
631 {
632 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
633
634 spin_lock(&sbi->inode_lock[DIRTY_META]);
635 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
636 spin_unlock(&sbi->inode_lock[DIRTY_META]);
637 return;
638 }
639 list_del_init(&F2FS_I(inode)->gdirty_list);
640 clear_inode_flag(inode, FI_DIRTY_INODE);
641 dec_page_count(sbi, F2FS_DIRTY_IMETA);
642 spin_unlock(&sbi->inode_lock[DIRTY_META]);
643 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
644 }
645
646 static void f2fs_i_callback(struct rcu_head *head)
647 {
648 struct inode *inode = container_of(head, struct inode, i_rcu);
649 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
650 }
651
652 static void f2fs_destroy_inode(struct inode *inode)
653 {
654 percpu_counter_destroy(&F2FS_I(inode)->dirty_pages);
655 call_rcu(&inode->i_rcu, f2fs_i_callback);
656 }
657
658 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
659 {
660 int i;
661
662 for (i = 0; i < NR_COUNT_TYPE; i++)
663 percpu_counter_destroy(&sbi->nr_pages[i]);
664 percpu_counter_destroy(&sbi->alloc_valid_block_count);
665 percpu_counter_destroy(&sbi->total_valid_inode_count);
666 }
667
668 static void f2fs_put_super(struct super_block *sb)
669 {
670 struct f2fs_sb_info *sbi = F2FS_SB(sb);
671
672 if (sbi->s_proc) {
673 remove_proc_entry("segment_info", sbi->s_proc);
674 remove_proc_entry("segment_bits", sbi->s_proc);
675 remove_proc_entry(sb->s_id, f2fs_proc_root);
676 }
677 kobject_del(&sbi->s_kobj);
678
679 stop_gc_thread(sbi);
680
681 /* prevent remaining shrinker jobs */
682 mutex_lock(&sbi->umount_mutex);
683
684 /*
685 * We don't need to do checkpoint when superblock is clean.
686 * But, the previous checkpoint was not done by umount, it needs to do
687 * clean checkpoint again.
688 */
689 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
690 !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
691 struct cp_control cpc = {
692 .reason = CP_UMOUNT,
693 };
694 write_checkpoint(sbi, &cpc);
695 }
696
697 /* write_checkpoint can update stat informaion */
698 f2fs_destroy_stats(sbi);
699
700 /*
701 * normally superblock is clean, so we need to release this.
702 * In addition, EIO will skip do checkpoint, we need this as well.
703 */
704 release_ino_entry(sbi, true);
705 release_discard_addrs(sbi);
706
707 f2fs_leave_shrinker(sbi);
708 mutex_unlock(&sbi->umount_mutex);
709
710 /* our cp_error case, we can wait for any writeback page */
711 f2fs_flush_merged_bios(sbi);
712
713 iput(sbi->node_inode);
714 iput(sbi->meta_inode);
715
716 /* destroy f2fs internal modules */
717 destroy_node_manager(sbi);
718 destroy_segment_manager(sbi);
719
720 kfree(sbi->ckpt);
721 kobject_put(&sbi->s_kobj);
722 wait_for_completion(&sbi->s_kobj_unregister);
723
724 sb->s_fs_info = NULL;
725 if (sbi->s_chksum_driver)
726 crypto_free_shash(sbi->s_chksum_driver);
727 kfree(sbi->raw_super);
728
729 destroy_percpu_info(sbi);
730 kfree(sbi);
731 }
732
733 int f2fs_sync_fs(struct super_block *sb, int sync)
734 {
735 struct f2fs_sb_info *sbi = F2FS_SB(sb);
736 int err = 0;
737
738 trace_f2fs_sync_fs(sb, sync);
739
740 if (sync) {
741 struct cp_control cpc;
742
743 cpc.reason = __get_cp_reason(sbi);
744
745 mutex_lock(&sbi->gc_mutex);
746 err = write_checkpoint(sbi, &cpc);
747 mutex_unlock(&sbi->gc_mutex);
748 }
749 f2fs_trace_ios(NULL, 1);
750
751 return err;
752 }
753
754 static int f2fs_freeze(struct super_block *sb)
755 {
756 int err;
757
758 if (f2fs_readonly(sb))
759 return 0;
760
761 err = f2fs_sync_fs(sb, 1);
762 return err;
763 }
764
765 static int f2fs_unfreeze(struct super_block *sb)
766 {
767 return 0;
768 }
769
770 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
771 {
772 struct super_block *sb = dentry->d_sb;
773 struct f2fs_sb_info *sbi = F2FS_SB(sb);
774 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
775 block_t total_count, user_block_count, start_count, ovp_count;
776
777 total_count = le64_to_cpu(sbi->raw_super->block_count);
778 user_block_count = sbi->user_block_count;
779 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
780 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
781 buf->f_type = F2FS_SUPER_MAGIC;
782 buf->f_bsize = sbi->blocksize;
783
784 buf->f_blocks = total_count - start_count;
785 buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
786 buf->f_bavail = user_block_count - valid_user_blocks(sbi);
787
788 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
789 buf->f_ffree = buf->f_files - valid_inode_count(sbi);
790
791 buf->f_namelen = F2FS_NAME_LEN;
792 buf->f_fsid.val[0] = (u32)id;
793 buf->f_fsid.val[1] = (u32)(id >> 32);
794
795 return 0;
796 }
797
798 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
799 {
800 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
801
802 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
803 if (test_opt(sbi, FORCE_FG_GC))
804 seq_printf(seq, ",background_gc=%s", "sync");
805 else
806 seq_printf(seq, ",background_gc=%s", "on");
807 } else {
808 seq_printf(seq, ",background_gc=%s", "off");
809 }
810 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
811 seq_puts(seq, ",disable_roll_forward");
812 if (test_opt(sbi, DISCARD))
813 seq_puts(seq, ",discard");
814 if (test_opt(sbi, NOHEAP))
815 seq_puts(seq, ",no_heap_alloc");
816 #ifdef CONFIG_F2FS_FS_XATTR
817 if (test_opt(sbi, XATTR_USER))
818 seq_puts(seq, ",user_xattr");
819 else
820 seq_puts(seq, ",nouser_xattr");
821 if (test_opt(sbi, INLINE_XATTR))
822 seq_puts(seq, ",inline_xattr");
823 #endif
824 #ifdef CONFIG_F2FS_FS_POSIX_ACL
825 if (test_opt(sbi, POSIX_ACL))
826 seq_puts(seq, ",acl");
827 else
828 seq_puts(seq, ",noacl");
829 #endif
830 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
831 seq_puts(seq, ",disable_ext_identify");
832 if (test_opt(sbi, INLINE_DATA))
833 seq_puts(seq, ",inline_data");
834 else
835 seq_puts(seq, ",noinline_data");
836 if (test_opt(sbi, INLINE_DENTRY))
837 seq_puts(seq, ",inline_dentry");
838 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
839 seq_puts(seq, ",flush_merge");
840 if (test_opt(sbi, NOBARRIER))
841 seq_puts(seq, ",nobarrier");
842 if (test_opt(sbi, FASTBOOT))
843 seq_puts(seq, ",fastboot");
844 if (test_opt(sbi, EXTENT_CACHE))
845 seq_puts(seq, ",extent_cache");
846 else
847 seq_puts(seq, ",noextent_cache");
848 if (test_opt(sbi, DATA_FLUSH))
849 seq_puts(seq, ",data_flush");
850 seq_printf(seq, ",active_logs=%u", sbi->active_logs);
851
852 return 0;
853 }
854
855 static int segment_info_seq_show(struct seq_file *seq, void *offset)
856 {
857 struct super_block *sb = seq->private;
858 struct f2fs_sb_info *sbi = F2FS_SB(sb);
859 unsigned int total_segs =
860 le32_to_cpu(sbi->raw_super->segment_count_main);
861 int i;
862
863 seq_puts(seq, "format: segment_type|valid_blocks\n"
864 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
865
866 for (i = 0; i < total_segs; i++) {
867 struct seg_entry *se = get_seg_entry(sbi, i);
868
869 if ((i % 10) == 0)
870 seq_printf(seq, "%-10d", i);
871 seq_printf(seq, "%d|%-3u", se->type,
872 get_valid_blocks(sbi, i, 1));
873 if ((i % 10) == 9 || i == (total_segs - 1))
874 seq_putc(seq, '\n');
875 else
876 seq_putc(seq, ' ');
877 }
878
879 return 0;
880 }
881
882 static int segment_bits_seq_show(struct seq_file *seq, void *offset)
883 {
884 struct super_block *sb = seq->private;
885 struct f2fs_sb_info *sbi = F2FS_SB(sb);
886 unsigned int total_segs =
887 le32_to_cpu(sbi->raw_super->segment_count_main);
888 int i, j;
889
890 seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
891 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
892
893 for (i = 0; i < total_segs; i++) {
894 struct seg_entry *se = get_seg_entry(sbi, i);
895
896 seq_printf(seq, "%-10d", i);
897 seq_printf(seq, "%d|%-3u|", se->type,
898 get_valid_blocks(sbi, i, 1));
899 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
900 seq_printf(seq, "%x ", se->cur_valid_map[j]);
901 seq_putc(seq, '\n');
902 }
903 return 0;
904 }
905
906 #define F2FS_PROC_FILE_DEF(_name) \
907 static int _name##_open_fs(struct inode *inode, struct file *file) \
908 { \
909 return single_open(file, _name##_seq_show, PDE_DATA(inode)); \
910 } \
911 \
912 static const struct file_operations f2fs_seq_##_name##_fops = { \
913 .owner = THIS_MODULE, \
914 .open = _name##_open_fs, \
915 .read = seq_read, \
916 .llseek = seq_lseek, \
917 .release = single_release, \
918 };
919
920 F2FS_PROC_FILE_DEF(segment_info);
921 F2FS_PROC_FILE_DEF(segment_bits);
922
923 static void default_options(struct f2fs_sb_info *sbi)
924 {
925 /* init some FS parameters */
926 sbi->active_logs = NR_CURSEG_TYPE;
927
928 set_opt(sbi, BG_GC);
929 set_opt(sbi, INLINE_DATA);
930 set_opt(sbi, EXTENT_CACHE);
931
932 #ifdef CONFIG_F2FS_FS_XATTR
933 set_opt(sbi, XATTR_USER);
934 #endif
935 #ifdef CONFIG_F2FS_FS_POSIX_ACL
936 set_opt(sbi, POSIX_ACL);
937 #endif
938 }
939
940 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
941 {
942 struct f2fs_sb_info *sbi = F2FS_SB(sb);
943 struct f2fs_mount_info org_mount_opt;
944 int err, active_logs;
945 bool need_restart_gc = false;
946 bool need_stop_gc = false;
947 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
948
949 /*
950 * Save the old mount options in case we
951 * need to restore them.
952 */
953 org_mount_opt = sbi->mount_opt;
954 active_logs = sbi->active_logs;
955
956 /* recover superblocks we couldn't write due to previous RO mount */
957 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
958 err = f2fs_commit_super(sbi, false);
959 f2fs_msg(sb, KERN_INFO,
960 "Try to recover all the superblocks, ret: %d", err);
961 if (!err)
962 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
963 }
964
965 sbi->mount_opt.opt = 0;
966 default_options(sbi);
967
968 /* parse mount options */
969 err = parse_options(sb, data);
970 if (err)
971 goto restore_opts;
972
973 /*
974 * Previous and new state of filesystem is RO,
975 * so skip checking GC and FLUSH_MERGE conditions.
976 */
977 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
978 goto skip;
979
980 /* disallow enable/disable extent_cache dynamically */
981 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
982 err = -EINVAL;
983 f2fs_msg(sbi->sb, KERN_WARNING,
984 "switch extent_cache option is not allowed");
985 goto restore_opts;
986 }
987
988 /*
989 * We stop the GC thread if FS is mounted as RO
990 * or if background_gc = off is passed in mount
991 * option. Also sync the filesystem.
992 */
993 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
994 if (sbi->gc_thread) {
995 stop_gc_thread(sbi);
996 need_restart_gc = true;
997 }
998 } else if (!sbi->gc_thread) {
999 err = start_gc_thread(sbi);
1000 if (err)
1001 goto restore_opts;
1002 need_stop_gc = true;
1003 }
1004
1005 if (*flags & MS_RDONLY) {
1006 writeback_inodes_sb(sb, WB_REASON_SYNC);
1007 sync_inodes_sb(sb);
1008
1009 set_sbi_flag(sbi, SBI_IS_DIRTY);
1010 set_sbi_flag(sbi, SBI_IS_CLOSE);
1011 f2fs_sync_fs(sb, 1);
1012 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1013 }
1014
1015 /*
1016 * We stop issue flush thread if FS is mounted as RO
1017 * or if flush_merge is not passed in mount option.
1018 */
1019 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1020 destroy_flush_cmd_control(sbi);
1021 } else if (!SM_I(sbi)->cmd_control_info) {
1022 err = create_flush_cmd_control(sbi);
1023 if (err)
1024 goto restore_gc;
1025 }
1026 skip:
1027 /* Update the POSIXACL Flag */
1028 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1029 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1030
1031 return 0;
1032 restore_gc:
1033 if (need_restart_gc) {
1034 if (start_gc_thread(sbi))
1035 f2fs_msg(sbi->sb, KERN_WARNING,
1036 "background gc thread has stopped");
1037 } else if (need_stop_gc) {
1038 stop_gc_thread(sbi);
1039 }
1040 restore_opts:
1041 sbi->mount_opt = org_mount_opt;
1042 sbi->active_logs = active_logs;
1043 return err;
1044 }
1045
1046 static struct super_operations f2fs_sops = {
1047 .alloc_inode = f2fs_alloc_inode,
1048 .drop_inode = f2fs_drop_inode,
1049 .destroy_inode = f2fs_destroy_inode,
1050 .write_inode = f2fs_write_inode,
1051 .dirty_inode = f2fs_dirty_inode,
1052 .show_options = f2fs_show_options,
1053 .evict_inode = f2fs_evict_inode,
1054 .put_super = f2fs_put_super,
1055 .sync_fs = f2fs_sync_fs,
1056 .freeze_fs = f2fs_freeze,
1057 .unfreeze_fs = f2fs_unfreeze,
1058 .statfs = f2fs_statfs,
1059 .remount_fs = f2fs_remount,
1060 };
1061
1062 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1063 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1064 {
1065 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1066 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1067 ctx, len, NULL);
1068 }
1069
1070 static int f2fs_key_prefix(struct inode *inode, u8 **key)
1071 {
1072 *key = F2FS_I_SB(inode)->key_prefix;
1073 return F2FS_I_SB(inode)->key_prefix_size;
1074 }
1075
1076 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1077 void *fs_data)
1078 {
1079 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1080 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1081 ctx, len, fs_data, XATTR_CREATE);
1082 }
1083
1084 static unsigned f2fs_max_namelen(struct inode *inode)
1085 {
1086 return S_ISLNK(inode->i_mode) ?
1087 inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1088 }
1089
1090 static struct fscrypt_operations f2fs_cryptops = {
1091 .get_context = f2fs_get_context,
1092 .key_prefix = f2fs_key_prefix,
1093 .set_context = f2fs_set_context,
1094 .is_encrypted = f2fs_encrypted_inode,
1095 .empty_dir = f2fs_empty_dir,
1096 .max_namelen = f2fs_max_namelen,
1097 };
1098 #else
1099 static struct fscrypt_operations f2fs_cryptops = {
1100 .is_encrypted = f2fs_encrypted_inode,
1101 };
1102 #endif
1103
1104 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1105 u64 ino, u32 generation)
1106 {
1107 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1108 struct inode *inode;
1109
1110 if (check_nid_range(sbi, ino))
1111 return ERR_PTR(-ESTALE);
1112
1113 /*
1114 * f2fs_iget isn't quite right if the inode is currently unallocated!
1115 * However f2fs_iget currently does appropriate checks to handle stale
1116 * inodes so everything is OK.
1117 */
1118 inode = f2fs_iget(sb, ino);
1119 if (IS_ERR(inode))
1120 return ERR_CAST(inode);
1121 if (unlikely(generation && inode->i_generation != generation)) {
1122 /* we didn't find the right inode.. */
1123 iput(inode);
1124 return ERR_PTR(-ESTALE);
1125 }
1126 return inode;
1127 }
1128
1129 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1130 int fh_len, int fh_type)
1131 {
1132 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1133 f2fs_nfs_get_inode);
1134 }
1135
1136 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1137 int fh_len, int fh_type)
1138 {
1139 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1140 f2fs_nfs_get_inode);
1141 }
1142
1143 static const struct export_operations f2fs_export_ops = {
1144 .fh_to_dentry = f2fs_fh_to_dentry,
1145 .fh_to_parent = f2fs_fh_to_parent,
1146 .get_parent = f2fs_get_parent,
1147 };
1148
1149 static loff_t max_file_blocks(void)
1150 {
1151 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1152 loff_t leaf_count = ADDRS_PER_BLOCK;
1153
1154 /* two direct node blocks */
1155 result += (leaf_count * 2);
1156
1157 /* two indirect node blocks */
1158 leaf_count *= NIDS_PER_BLOCK;
1159 result += (leaf_count * 2);
1160
1161 /* one double indirect node block */
1162 leaf_count *= NIDS_PER_BLOCK;
1163 result += leaf_count;
1164
1165 return result;
1166 }
1167
1168 static int __f2fs_commit_super(struct buffer_head *bh,
1169 struct f2fs_super_block *super)
1170 {
1171 lock_buffer(bh);
1172 if (super)
1173 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1174 set_buffer_uptodate(bh);
1175 set_buffer_dirty(bh);
1176 unlock_buffer(bh);
1177
1178 /* it's rare case, we can do fua all the time */
1179 return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
1180 }
1181
1182 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1183 struct buffer_head *bh)
1184 {
1185 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1186 (bh->b_data + F2FS_SUPER_OFFSET);
1187 struct super_block *sb = sbi->sb;
1188 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1189 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1190 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1191 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1192 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1193 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1194 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1195 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1196 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1197 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1198 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1199 u32 segment_count = le32_to_cpu(raw_super->segment_count);
1200 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1201 u64 main_end_blkaddr = main_blkaddr +
1202 (segment_count_main << log_blocks_per_seg);
1203 u64 seg_end_blkaddr = segment0_blkaddr +
1204 (segment_count << log_blocks_per_seg);
1205
1206 if (segment0_blkaddr != cp_blkaddr) {
1207 f2fs_msg(sb, KERN_INFO,
1208 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1209 segment0_blkaddr, cp_blkaddr);
1210 return true;
1211 }
1212
1213 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1214 sit_blkaddr) {
1215 f2fs_msg(sb, KERN_INFO,
1216 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1217 cp_blkaddr, sit_blkaddr,
1218 segment_count_ckpt << log_blocks_per_seg);
1219 return true;
1220 }
1221
1222 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1223 nat_blkaddr) {
1224 f2fs_msg(sb, KERN_INFO,
1225 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1226 sit_blkaddr, nat_blkaddr,
1227 segment_count_sit << log_blocks_per_seg);
1228 return true;
1229 }
1230
1231 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1232 ssa_blkaddr) {
1233 f2fs_msg(sb, KERN_INFO,
1234 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1235 nat_blkaddr, ssa_blkaddr,
1236 segment_count_nat << log_blocks_per_seg);
1237 return true;
1238 }
1239
1240 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1241 main_blkaddr) {
1242 f2fs_msg(sb, KERN_INFO,
1243 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1244 ssa_blkaddr, main_blkaddr,
1245 segment_count_ssa << log_blocks_per_seg);
1246 return true;
1247 }
1248
1249 if (main_end_blkaddr > seg_end_blkaddr) {
1250 f2fs_msg(sb, KERN_INFO,
1251 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1252 main_blkaddr,
1253 segment0_blkaddr +
1254 (segment_count << log_blocks_per_seg),
1255 segment_count_main << log_blocks_per_seg);
1256 return true;
1257 } else if (main_end_blkaddr < seg_end_blkaddr) {
1258 int err = 0;
1259 char *res;
1260
1261 /* fix in-memory information all the time */
1262 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1263 segment0_blkaddr) >> log_blocks_per_seg);
1264
1265 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1266 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1267 res = "internally";
1268 } else {
1269 err = __f2fs_commit_super(bh, NULL);
1270 res = err ? "failed" : "done";
1271 }
1272 f2fs_msg(sb, KERN_INFO,
1273 "Fix alignment : %s, start(%u) end(%u) block(%u)",
1274 res, main_blkaddr,
1275 segment0_blkaddr +
1276 (segment_count << log_blocks_per_seg),
1277 segment_count_main << log_blocks_per_seg);
1278 if (err)
1279 return true;
1280 }
1281 return false;
1282 }
1283
1284 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1285 struct buffer_head *bh)
1286 {
1287 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1288 (bh->b_data + F2FS_SUPER_OFFSET);
1289 struct super_block *sb = sbi->sb;
1290 unsigned int blocksize;
1291
1292 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1293 f2fs_msg(sb, KERN_INFO,
1294 "Magic Mismatch, valid(0x%x) - read(0x%x)",
1295 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1296 return 1;
1297 }
1298
1299 /* Currently, support only 4KB page cache size */
1300 if (F2FS_BLKSIZE != PAGE_SIZE) {
1301 f2fs_msg(sb, KERN_INFO,
1302 "Invalid page_cache_size (%lu), supports only 4KB\n",
1303 PAGE_SIZE);
1304 return 1;
1305 }
1306
1307 /* Currently, support only 4KB block size */
1308 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1309 if (blocksize != F2FS_BLKSIZE) {
1310 f2fs_msg(sb, KERN_INFO,
1311 "Invalid blocksize (%u), supports only 4KB\n",
1312 blocksize);
1313 return 1;
1314 }
1315
1316 /* check log blocks per segment */
1317 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1318 f2fs_msg(sb, KERN_INFO,
1319 "Invalid log blocks per segment (%u)\n",
1320 le32_to_cpu(raw_super->log_blocks_per_seg));
1321 return 1;
1322 }
1323
1324 /* Currently, support 512/1024/2048/4096 bytes sector size */
1325 if (le32_to_cpu(raw_super->log_sectorsize) >
1326 F2FS_MAX_LOG_SECTOR_SIZE ||
1327 le32_to_cpu(raw_super->log_sectorsize) <
1328 F2FS_MIN_LOG_SECTOR_SIZE) {
1329 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1330 le32_to_cpu(raw_super->log_sectorsize));
1331 return 1;
1332 }
1333 if (le32_to_cpu(raw_super->log_sectors_per_block) +
1334 le32_to_cpu(raw_super->log_sectorsize) !=
1335 F2FS_MAX_LOG_SECTOR_SIZE) {
1336 f2fs_msg(sb, KERN_INFO,
1337 "Invalid log sectors per block(%u) log sectorsize(%u)",
1338 le32_to_cpu(raw_super->log_sectors_per_block),
1339 le32_to_cpu(raw_super->log_sectorsize));
1340 return 1;
1341 }
1342
1343 /* check reserved ino info */
1344 if (le32_to_cpu(raw_super->node_ino) != 1 ||
1345 le32_to_cpu(raw_super->meta_ino) != 2 ||
1346 le32_to_cpu(raw_super->root_ino) != 3) {
1347 f2fs_msg(sb, KERN_INFO,
1348 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1349 le32_to_cpu(raw_super->node_ino),
1350 le32_to_cpu(raw_super->meta_ino),
1351 le32_to_cpu(raw_super->root_ino));
1352 return 1;
1353 }
1354
1355 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1356 if (sanity_check_area_boundary(sbi, bh))
1357 return 1;
1358
1359 return 0;
1360 }
1361
1362 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1363 {
1364 unsigned int total, fsmeta;
1365 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1366 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1367
1368 total = le32_to_cpu(raw_super->segment_count);
1369 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1370 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1371 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1372 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1373 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1374
1375 if (unlikely(fsmeta >= total))
1376 return 1;
1377
1378 if (unlikely(f2fs_cp_error(sbi))) {
1379 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1380 return 1;
1381 }
1382 return 0;
1383 }
1384
1385 static void init_sb_info(struct f2fs_sb_info *sbi)
1386 {
1387 struct f2fs_super_block *raw_super = sbi->raw_super;
1388
1389 sbi->log_sectors_per_block =
1390 le32_to_cpu(raw_super->log_sectors_per_block);
1391 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1392 sbi->blocksize = 1 << sbi->log_blocksize;
1393 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1394 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1395 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1396 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1397 sbi->total_sections = le32_to_cpu(raw_super->section_count);
1398 sbi->total_node_count =
1399 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1400 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1401 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1402 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1403 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1404 sbi->cur_victim_sec = NULL_SECNO;
1405 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1406
1407 sbi->dir_level = DEF_DIR_LEVEL;
1408 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1409 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1410 clear_sbi_flag(sbi, SBI_NEED_FSCK);
1411
1412 INIT_LIST_HEAD(&sbi->s_list);
1413 mutex_init(&sbi->umount_mutex);
1414
1415 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1416 memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX,
1417 F2FS_KEY_DESC_PREFIX_SIZE);
1418 sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE;
1419 #endif
1420 }
1421
1422 static int init_percpu_info(struct f2fs_sb_info *sbi)
1423 {
1424 int i, err;
1425
1426 for (i = 0; i < NR_COUNT_TYPE; i++) {
1427 err = percpu_counter_init(&sbi->nr_pages[i], 0, GFP_KERNEL);
1428 if (err)
1429 return err;
1430 }
1431
1432 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1433 if (err)
1434 return err;
1435
1436 return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1437 GFP_KERNEL);
1438 }
1439
1440 /*
1441 * Read f2fs raw super block.
1442 * Because we have two copies of super block, so read both of them
1443 * to get the first valid one. If any one of them is broken, we pass
1444 * them recovery flag back to the caller.
1445 */
1446 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1447 struct f2fs_super_block **raw_super,
1448 int *valid_super_block, int *recovery)
1449 {
1450 struct super_block *sb = sbi->sb;
1451 int block;
1452 struct buffer_head *bh;
1453 struct f2fs_super_block *super;
1454 int err = 0;
1455
1456 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1457 if (!super)
1458 return -ENOMEM;
1459
1460 for (block = 0; block < 2; block++) {
1461 bh = sb_bread(sb, block);
1462 if (!bh) {
1463 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1464 block + 1);
1465 err = -EIO;
1466 continue;
1467 }
1468
1469 /* sanity checking of raw super */
1470 if (sanity_check_raw_super(sbi, bh)) {
1471 f2fs_msg(sb, KERN_ERR,
1472 "Can't find valid F2FS filesystem in %dth superblock",
1473 block + 1);
1474 err = -EINVAL;
1475 brelse(bh);
1476 continue;
1477 }
1478
1479 if (!*raw_super) {
1480 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1481 sizeof(*super));
1482 *valid_super_block = block;
1483 *raw_super = super;
1484 }
1485 brelse(bh);
1486 }
1487
1488 /* Fail to read any one of the superblocks*/
1489 if (err < 0)
1490 *recovery = 1;
1491
1492 /* No valid superblock */
1493 if (!*raw_super)
1494 kfree(super);
1495 else
1496 err = 0;
1497
1498 return err;
1499 }
1500
1501 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1502 {
1503 struct buffer_head *bh;
1504 int err;
1505
1506 if ((recover && f2fs_readonly(sbi->sb)) ||
1507 bdev_read_only(sbi->sb->s_bdev)) {
1508 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1509 return -EROFS;
1510 }
1511
1512 /* write back-up superblock first */
1513 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1514 if (!bh)
1515 return -EIO;
1516 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1517 brelse(bh);
1518
1519 /* if we are in recovery path, skip writing valid superblock */
1520 if (recover || err)
1521 return err;
1522
1523 /* write current valid superblock */
1524 bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1525 if (!bh)
1526 return -EIO;
1527 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1528 brelse(bh);
1529 return err;
1530 }
1531
1532 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1533 {
1534 struct f2fs_sb_info *sbi;
1535 struct f2fs_super_block *raw_super;
1536 struct inode *root;
1537 int err;
1538 bool retry = true, need_fsck = false;
1539 char *options = NULL;
1540 int recovery, i, valid_super_block;
1541 struct curseg_info *seg_i;
1542
1543 try_onemore:
1544 err = -EINVAL;
1545 raw_super = NULL;
1546 valid_super_block = -1;
1547 recovery = 0;
1548
1549 /* allocate memory for f2fs-specific super block info */
1550 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1551 if (!sbi)
1552 return -ENOMEM;
1553
1554 sbi->sb = sb;
1555
1556 /* Load the checksum driver */
1557 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1558 if (IS_ERR(sbi->s_chksum_driver)) {
1559 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1560 err = PTR_ERR(sbi->s_chksum_driver);
1561 sbi->s_chksum_driver = NULL;
1562 goto free_sbi;
1563 }
1564
1565 /* set a block size */
1566 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1567 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1568 goto free_sbi;
1569 }
1570
1571 err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1572 &recovery);
1573 if (err)
1574 goto free_sbi;
1575
1576 sb->s_fs_info = sbi;
1577 default_options(sbi);
1578 /* parse mount options */
1579 options = kstrdup((const char *)data, GFP_KERNEL);
1580 if (data && !options) {
1581 err = -ENOMEM;
1582 goto free_sb_buf;
1583 }
1584
1585 err = parse_options(sb, options);
1586 if (err)
1587 goto free_options;
1588
1589 sbi->max_file_blocks = max_file_blocks();
1590 sb->s_maxbytes = sbi->max_file_blocks <<
1591 le32_to_cpu(raw_super->log_blocksize);
1592 sb->s_max_links = F2FS_LINK_MAX;
1593 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1594
1595 sb->s_op = &f2fs_sops;
1596 sb->s_cop = &f2fs_cryptops;
1597 sb->s_xattr = f2fs_xattr_handlers;
1598 sb->s_export_op = &f2fs_export_ops;
1599 sb->s_magic = F2FS_SUPER_MAGIC;
1600 sb->s_time_gran = 1;
1601 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1602 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1603 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1604
1605 /* init f2fs-specific super block info */
1606 sbi->raw_super = raw_super;
1607 sbi->valid_super_block = valid_super_block;
1608 mutex_init(&sbi->gc_mutex);
1609 mutex_init(&sbi->writepages);
1610 mutex_init(&sbi->cp_mutex);
1611 init_rwsem(&sbi->node_write);
1612
1613 /* disallow all the data/node/meta page writes */
1614 set_sbi_flag(sbi, SBI_POR_DOING);
1615 spin_lock_init(&sbi->stat_lock);
1616
1617 init_rwsem(&sbi->read_io.io_rwsem);
1618 sbi->read_io.sbi = sbi;
1619 sbi->read_io.bio = NULL;
1620 for (i = 0; i < NR_PAGE_TYPE; i++) {
1621 init_rwsem(&sbi->write_io[i].io_rwsem);
1622 sbi->write_io[i].sbi = sbi;
1623 sbi->write_io[i].bio = NULL;
1624 }
1625
1626 init_rwsem(&sbi->cp_rwsem);
1627 init_waitqueue_head(&sbi->cp_wait);
1628 init_sb_info(sbi);
1629
1630 err = init_percpu_info(sbi);
1631 if (err)
1632 goto free_options;
1633
1634 /* get an inode for meta space */
1635 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1636 if (IS_ERR(sbi->meta_inode)) {
1637 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1638 err = PTR_ERR(sbi->meta_inode);
1639 goto free_options;
1640 }
1641
1642 err = get_valid_checkpoint(sbi);
1643 if (err) {
1644 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1645 goto free_meta_inode;
1646 }
1647
1648 sbi->total_valid_node_count =
1649 le32_to_cpu(sbi->ckpt->valid_node_count);
1650 percpu_counter_set(&sbi->total_valid_inode_count,
1651 le32_to_cpu(sbi->ckpt->valid_inode_count));
1652 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1653 sbi->total_valid_block_count =
1654 le64_to_cpu(sbi->ckpt->valid_block_count);
1655 sbi->last_valid_block_count = sbi->total_valid_block_count;
1656
1657 for (i = 0; i < NR_INODE_TYPE; i++) {
1658 INIT_LIST_HEAD(&sbi->inode_list[i]);
1659 spin_lock_init(&sbi->inode_lock[i]);
1660 }
1661
1662 init_extent_cache_info(sbi);
1663
1664 init_ino_entry_info(sbi);
1665
1666 /* setup f2fs internal modules */
1667 err = build_segment_manager(sbi);
1668 if (err) {
1669 f2fs_msg(sb, KERN_ERR,
1670 "Failed to initialize F2FS segment manager");
1671 goto free_sm;
1672 }
1673 err = build_node_manager(sbi);
1674 if (err) {
1675 f2fs_msg(sb, KERN_ERR,
1676 "Failed to initialize F2FS node manager");
1677 goto free_nm;
1678 }
1679
1680 /* For write statistics */
1681 if (sb->s_bdev->bd_part)
1682 sbi->sectors_written_start =
1683 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1684
1685 /* Read accumulated write IO statistics if exists */
1686 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1687 if (__exist_node_summaries(sbi))
1688 sbi->kbytes_written =
1689 le64_to_cpu(seg_i->journal->info.kbytes_written);
1690
1691 build_gc_manager(sbi);
1692
1693 /* get an inode for node space */
1694 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1695 if (IS_ERR(sbi->node_inode)) {
1696 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1697 err = PTR_ERR(sbi->node_inode);
1698 goto free_nm;
1699 }
1700
1701 f2fs_join_shrinker(sbi);
1702
1703 /* if there are nt orphan nodes free them */
1704 err = recover_orphan_inodes(sbi);
1705 if (err)
1706 goto free_node_inode;
1707
1708 /* read root inode and dentry */
1709 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1710 if (IS_ERR(root)) {
1711 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1712 err = PTR_ERR(root);
1713 goto free_node_inode;
1714 }
1715 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1716 iput(root);
1717 err = -EINVAL;
1718 goto free_node_inode;
1719 }
1720
1721 sb->s_root = d_make_root(root); /* allocate root dentry */
1722 if (!sb->s_root) {
1723 err = -ENOMEM;
1724 goto free_root_inode;
1725 }
1726
1727 err = f2fs_build_stats(sbi);
1728 if (err)
1729 goto free_root_inode;
1730
1731 if (f2fs_proc_root)
1732 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1733
1734 if (sbi->s_proc) {
1735 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1736 &f2fs_seq_segment_info_fops, sb);
1737 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
1738 &f2fs_seq_segment_bits_fops, sb);
1739 }
1740
1741 sbi->s_kobj.kset = f2fs_kset;
1742 init_completion(&sbi->s_kobj_unregister);
1743 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1744 "%s", sb->s_id);
1745 if (err)
1746 goto free_proc;
1747
1748 /* recover fsynced data */
1749 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1750 /*
1751 * mount should be failed, when device has readonly mode, and
1752 * previous checkpoint was not done by clean system shutdown.
1753 */
1754 if (bdev_read_only(sb->s_bdev) &&
1755 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1756 err = -EROFS;
1757 goto free_kobj;
1758 }
1759
1760 if (need_fsck)
1761 set_sbi_flag(sbi, SBI_NEED_FSCK);
1762
1763 err = recover_fsync_data(sbi, false);
1764 if (err < 0) {
1765 need_fsck = true;
1766 f2fs_msg(sb, KERN_ERR,
1767 "Cannot recover all fsync data errno=%d", err);
1768 goto free_kobj;
1769 }
1770 } else {
1771 err = recover_fsync_data(sbi, true);
1772
1773 if (!f2fs_readonly(sb) && err > 0) {
1774 err = -EINVAL;
1775 f2fs_msg(sb, KERN_ERR,
1776 "Need to recover fsync data");
1777 goto free_kobj;
1778 }
1779 }
1780
1781 /* recover_fsync_data() cleared this already */
1782 clear_sbi_flag(sbi, SBI_POR_DOING);
1783
1784 /*
1785 * If filesystem is not mounted as read-only then
1786 * do start the gc_thread.
1787 */
1788 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1789 /* After POR, we can run background GC thread.*/
1790 err = start_gc_thread(sbi);
1791 if (err)
1792 goto free_kobj;
1793 }
1794 kfree(options);
1795
1796 /* recover broken superblock */
1797 if (recovery) {
1798 err = f2fs_commit_super(sbi, true);
1799 f2fs_msg(sb, KERN_INFO,
1800 "Try to recover %dth superblock, ret: %d",
1801 sbi->valid_super_block ? 1 : 2, err);
1802 }
1803
1804 f2fs_update_time(sbi, CP_TIME);
1805 f2fs_update_time(sbi, REQ_TIME);
1806 return 0;
1807
1808 free_kobj:
1809 f2fs_sync_inode_meta(sbi);
1810 kobject_del(&sbi->s_kobj);
1811 kobject_put(&sbi->s_kobj);
1812 wait_for_completion(&sbi->s_kobj_unregister);
1813 free_proc:
1814 if (sbi->s_proc) {
1815 remove_proc_entry("segment_info", sbi->s_proc);
1816 remove_proc_entry("segment_bits", sbi->s_proc);
1817 remove_proc_entry(sb->s_id, f2fs_proc_root);
1818 }
1819 f2fs_destroy_stats(sbi);
1820 free_root_inode:
1821 dput(sb->s_root);
1822 sb->s_root = NULL;
1823 free_node_inode:
1824 mutex_lock(&sbi->umount_mutex);
1825 f2fs_leave_shrinker(sbi);
1826 iput(sbi->node_inode);
1827 mutex_unlock(&sbi->umount_mutex);
1828 free_nm:
1829 destroy_node_manager(sbi);
1830 free_sm:
1831 destroy_segment_manager(sbi);
1832 kfree(sbi->ckpt);
1833 free_meta_inode:
1834 make_bad_inode(sbi->meta_inode);
1835 iput(sbi->meta_inode);
1836 free_options:
1837 destroy_percpu_info(sbi);
1838 kfree(options);
1839 free_sb_buf:
1840 kfree(raw_super);
1841 free_sbi:
1842 if (sbi->s_chksum_driver)
1843 crypto_free_shash(sbi->s_chksum_driver);
1844 kfree(sbi);
1845
1846 /* give only one another chance */
1847 if (retry) {
1848 retry = false;
1849 shrink_dcache_sb(sb);
1850 goto try_onemore;
1851 }
1852 return err;
1853 }
1854
1855 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1856 const char *dev_name, void *data)
1857 {
1858 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1859 }
1860
1861 static void kill_f2fs_super(struct super_block *sb)
1862 {
1863 if (sb->s_root)
1864 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1865 kill_block_super(sb);
1866 }
1867
1868 static struct file_system_type f2fs_fs_type = {
1869 .owner = THIS_MODULE,
1870 .name = "f2fs",
1871 .mount = f2fs_mount,
1872 .kill_sb = kill_f2fs_super,
1873 .fs_flags = FS_REQUIRES_DEV,
1874 };
1875 MODULE_ALIAS_FS("f2fs");
1876
1877 static int __init init_inodecache(void)
1878 {
1879 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1880 sizeof(struct f2fs_inode_info), 0,
1881 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1882 if (!f2fs_inode_cachep)
1883 return -ENOMEM;
1884 return 0;
1885 }
1886
1887 static void destroy_inodecache(void)
1888 {
1889 /*
1890 * Make sure all delayed rcu free inodes are flushed before we
1891 * destroy cache.
1892 */
1893 rcu_barrier();
1894 kmem_cache_destroy(f2fs_inode_cachep);
1895 }
1896
1897 static int __init init_f2fs_fs(void)
1898 {
1899 int err;
1900
1901 f2fs_build_trace_ios();
1902
1903 err = init_inodecache();
1904 if (err)
1905 goto fail;
1906 err = create_node_manager_caches();
1907 if (err)
1908 goto free_inodecache;
1909 err = create_segment_manager_caches();
1910 if (err)
1911 goto free_node_manager_caches;
1912 err = create_checkpoint_caches();
1913 if (err)
1914 goto free_segment_manager_caches;
1915 err = create_extent_cache();
1916 if (err)
1917 goto free_checkpoint_caches;
1918 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1919 if (!f2fs_kset) {
1920 err = -ENOMEM;
1921 goto free_extent_cache;
1922 }
1923 #ifdef CONFIG_F2FS_FAULT_INJECTION
1924 f2fs_fault_inject.kset = f2fs_kset;
1925 f2fs_build_fault_attr(0);
1926 err = kobject_init_and_add(&f2fs_fault_inject, &f2fs_fault_ktype,
1927 NULL, "fault_injection");
1928 if (err) {
1929 f2fs_fault_inject.kset = NULL;
1930 goto free_kset;
1931 }
1932 #endif
1933 err = register_shrinker(&f2fs_shrinker_info);
1934 if (err)
1935 goto free_kset;
1936
1937 err = register_filesystem(&f2fs_fs_type);
1938 if (err)
1939 goto free_shrinker;
1940 err = f2fs_create_root_stats();
1941 if (err)
1942 goto free_filesystem;
1943 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1944 return 0;
1945
1946 free_filesystem:
1947 unregister_filesystem(&f2fs_fs_type);
1948 free_shrinker:
1949 unregister_shrinker(&f2fs_shrinker_info);
1950 free_kset:
1951 #ifdef CONFIG_F2FS_FAULT_INJECTION
1952 if (f2fs_fault_inject.kset)
1953 kobject_put(&f2fs_fault_inject);
1954 #endif
1955 kset_unregister(f2fs_kset);
1956 free_extent_cache:
1957 destroy_extent_cache();
1958 free_checkpoint_caches:
1959 destroy_checkpoint_caches();
1960 free_segment_manager_caches:
1961 destroy_segment_manager_caches();
1962 free_node_manager_caches:
1963 destroy_node_manager_caches();
1964 free_inodecache:
1965 destroy_inodecache();
1966 fail:
1967 return err;
1968 }
1969
1970 static void __exit exit_f2fs_fs(void)
1971 {
1972 remove_proc_entry("fs/f2fs", NULL);
1973 f2fs_destroy_root_stats();
1974 unregister_filesystem(&f2fs_fs_type);
1975 unregister_shrinker(&f2fs_shrinker_info);
1976 #ifdef CONFIG_F2FS_FAULT_INJECTION
1977 kobject_put(&f2fs_fault_inject);
1978 #endif
1979 kset_unregister(f2fs_kset);
1980 destroy_extent_cache();
1981 destroy_checkpoint_caches();
1982 destroy_segment_manager_caches();
1983 destroy_node_manager_caches();
1984 destroy_inodecache();
1985 f2fs_destroy_trace_ios();
1986 }
1987
1988 module_init(init_f2fs_fs)
1989 module_exit(exit_f2fs_fs)
1990
1991 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1992 MODULE_DESCRIPTION("Flash Friendly File System");
1993 MODULE_LICENSE("GPL");
This page took 0.071856 seconds and 5 git commands to generate.