e0a975dc6fc66ffc579ee522f5f7807b1e201a2e
[deliverable/linux.git] / fs / f2fs / super.c
1 /*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 struct f2fs_fault_info f2fs_fault;
44
45 char *fault_name[FAULT_MAX] = {
46 [FAULT_KMALLOC] = "kmalloc",
47 [FAULT_PAGE_ALLOC] = "page alloc",
48 [FAULT_ALLOC_NID] = "alloc nid",
49 [FAULT_ORPHAN] = "orphan",
50 [FAULT_BLOCK] = "no more block",
51 [FAULT_DIR_DEPTH] = "too big dir depth",
52 [FAULT_EVICT_INODE] = "evict_inode fail",
53 };
54
55 static void f2fs_build_fault_attr(unsigned int rate)
56 {
57 if (rate) {
58 atomic_set(&f2fs_fault.inject_ops, 0);
59 f2fs_fault.inject_rate = rate;
60 f2fs_fault.inject_type = (1 << FAULT_MAX) - 1;
61 } else {
62 memset(&f2fs_fault, 0, sizeof(struct f2fs_fault_info));
63 }
64 }
65 #endif
66
67 /* f2fs-wide shrinker description */
68 static struct shrinker f2fs_shrinker_info = {
69 .scan_objects = f2fs_shrink_scan,
70 .count_objects = f2fs_shrink_count,
71 .seeks = DEFAULT_SEEKS,
72 };
73
74 enum {
75 Opt_gc_background,
76 Opt_disable_roll_forward,
77 Opt_norecovery,
78 Opt_discard,
79 Opt_nodiscard,
80 Opt_noheap,
81 Opt_user_xattr,
82 Opt_nouser_xattr,
83 Opt_acl,
84 Opt_noacl,
85 Opt_active_logs,
86 Opt_disable_ext_identify,
87 Opt_inline_xattr,
88 Opt_inline_data,
89 Opt_inline_dentry,
90 Opt_flush_merge,
91 Opt_noflush_merge,
92 Opt_nobarrier,
93 Opt_fastboot,
94 Opt_extent_cache,
95 Opt_noextent_cache,
96 Opt_noinline_data,
97 Opt_data_flush,
98 Opt_mode,
99 Opt_fault_injection,
100 Opt_lazytime,
101 Opt_nolazytime,
102 Opt_err,
103 };
104
105 static match_table_t f2fs_tokens = {
106 {Opt_gc_background, "background_gc=%s"},
107 {Opt_disable_roll_forward, "disable_roll_forward"},
108 {Opt_norecovery, "norecovery"},
109 {Opt_discard, "discard"},
110 {Opt_nodiscard, "nodiscard"},
111 {Opt_noheap, "no_heap"},
112 {Opt_user_xattr, "user_xattr"},
113 {Opt_nouser_xattr, "nouser_xattr"},
114 {Opt_acl, "acl"},
115 {Opt_noacl, "noacl"},
116 {Opt_active_logs, "active_logs=%u"},
117 {Opt_disable_ext_identify, "disable_ext_identify"},
118 {Opt_inline_xattr, "inline_xattr"},
119 {Opt_inline_data, "inline_data"},
120 {Opt_inline_dentry, "inline_dentry"},
121 {Opt_flush_merge, "flush_merge"},
122 {Opt_noflush_merge, "noflush_merge"},
123 {Opt_nobarrier, "nobarrier"},
124 {Opt_fastboot, "fastboot"},
125 {Opt_extent_cache, "extent_cache"},
126 {Opt_noextent_cache, "noextent_cache"},
127 {Opt_noinline_data, "noinline_data"},
128 {Opt_data_flush, "data_flush"},
129 {Opt_mode, "mode=%s"},
130 {Opt_fault_injection, "fault_injection=%u"},
131 {Opt_lazytime, "lazytime"},
132 {Opt_nolazytime, "nolazytime"},
133 {Opt_err, NULL},
134 };
135
136 /* Sysfs support for f2fs */
137 enum {
138 GC_THREAD, /* struct f2fs_gc_thread */
139 SM_INFO, /* struct f2fs_sm_info */
140 NM_INFO, /* struct f2fs_nm_info */
141 F2FS_SBI, /* struct f2fs_sb_info */
142 #ifdef CONFIG_F2FS_FAULT_INJECTION
143 FAULT_INFO_RATE, /* struct f2fs_fault_info */
144 FAULT_INFO_TYPE, /* struct f2fs_fault_info */
145 #endif
146 };
147
148 struct f2fs_attr {
149 struct attribute attr;
150 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
151 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
152 const char *, size_t);
153 int struct_type;
154 int offset;
155 };
156
157 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
158 {
159 if (struct_type == GC_THREAD)
160 return (unsigned char *)sbi->gc_thread;
161 else if (struct_type == SM_INFO)
162 return (unsigned char *)SM_I(sbi);
163 else if (struct_type == NM_INFO)
164 return (unsigned char *)NM_I(sbi);
165 else if (struct_type == F2FS_SBI)
166 return (unsigned char *)sbi;
167 #ifdef CONFIG_F2FS_FAULT_INJECTION
168 else if (struct_type == FAULT_INFO_RATE ||
169 struct_type == FAULT_INFO_TYPE)
170 return (unsigned char *)&f2fs_fault;
171 #endif
172 return NULL;
173 }
174
175 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
176 struct f2fs_sb_info *sbi, char *buf)
177 {
178 struct super_block *sb = sbi->sb;
179
180 if (!sb->s_bdev->bd_part)
181 return snprintf(buf, PAGE_SIZE, "0\n");
182
183 return snprintf(buf, PAGE_SIZE, "%llu\n",
184 (unsigned long long)(sbi->kbytes_written +
185 BD_PART_WRITTEN(sbi)));
186 }
187
188 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
189 struct f2fs_sb_info *sbi, char *buf)
190 {
191 unsigned char *ptr = NULL;
192 unsigned int *ui;
193
194 ptr = __struct_ptr(sbi, a->struct_type);
195 if (!ptr)
196 return -EINVAL;
197
198 ui = (unsigned int *)(ptr + a->offset);
199
200 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
201 }
202
203 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
204 struct f2fs_sb_info *sbi,
205 const char *buf, size_t count)
206 {
207 unsigned char *ptr;
208 unsigned long t;
209 unsigned int *ui;
210 ssize_t ret;
211
212 ptr = __struct_ptr(sbi, a->struct_type);
213 if (!ptr)
214 return -EINVAL;
215
216 ui = (unsigned int *)(ptr + a->offset);
217
218 ret = kstrtoul(skip_spaces(buf), 0, &t);
219 if (ret < 0)
220 return ret;
221 #ifdef CONFIG_F2FS_FAULT_INJECTION
222 if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
223 return -EINVAL;
224 #endif
225 *ui = t;
226 return count;
227 }
228
229 static ssize_t f2fs_attr_show(struct kobject *kobj,
230 struct attribute *attr, char *buf)
231 {
232 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
233 s_kobj);
234 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
235
236 return a->show ? a->show(a, sbi, buf) : 0;
237 }
238
239 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
240 const char *buf, size_t len)
241 {
242 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
243 s_kobj);
244 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
245
246 return a->store ? a->store(a, sbi, buf, len) : 0;
247 }
248
249 static void f2fs_sb_release(struct kobject *kobj)
250 {
251 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
252 s_kobj);
253 complete(&sbi->s_kobj_unregister);
254 }
255
256 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
257 static struct f2fs_attr f2fs_attr_##_name = { \
258 .attr = {.name = __stringify(_name), .mode = _mode }, \
259 .show = _show, \
260 .store = _store, \
261 .struct_type = _struct_type, \
262 .offset = _offset \
263 }
264
265 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
266 F2FS_ATTR_OFFSET(struct_type, name, 0644, \
267 f2fs_sbi_show, f2fs_sbi_store, \
268 offsetof(struct struct_name, elname))
269
270 #define F2FS_GENERAL_RO_ATTR(name) \
271 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
272
273 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
274 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
275 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
276 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
277 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
278 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
279 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
280 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
281 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
282 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
283 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
284 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
285 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
286 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
287 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
288 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
289 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
290 #ifdef CONFIG_F2FS_FAULT_INJECTION
291 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
292 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
293 #endif
294 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
295
296 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
297 static struct attribute *f2fs_attrs[] = {
298 ATTR_LIST(gc_min_sleep_time),
299 ATTR_LIST(gc_max_sleep_time),
300 ATTR_LIST(gc_no_gc_sleep_time),
301 ATTR_LIST(gc_idle),
302 ATTR_LIST(reclaim_segments),
303 ATTR_LIST(max_small_discards),
304 ATTR_LIST(batched_trim_sections),
305 ATTR_LIST(ipu_policy),
306 ATTR_LIST(min_ipu_util),
307 ATTR_LIST(min_fsync_blocks),
308 ATTR_LIST(max_victim_search),
309 ATTR_LIST(dir_level),
310 ATTR_LIST(ram_thresh),
311 ATTR_LIST(ra_nid_pages),
312 ATTR_LIST(dirty_nats_ratio),
313 ATTR_LIST(cp_interval),
314 ATTR_LIST(idle_interval),
315 ATTR_LIST(lifetime_write_kbytes),
316 NULL,
317 };
318
319 static const struct sysfs_ops f2fs_attr_ops = {
320 .show = f2fs_attr_show,
321 .store = f2fs_attr_store,
322 };
323
324 static struct kobj_type f2fs_ktype = {
325 .default_attrs = f2fs_attrs,
326 .sysfs_ops = &f2fs_attr_ops,
327 .release = f2fs_sb_release,
328 };
329
330 #ifdef CONFIG_F2FS_FAULT_INJECTION
331 /* sysfs for f2fs fault injection */
332 static struct kobject f2fs_fault_inject;
333
334 static struct attribute *f2fs_fault_attrs[] = {
335 ATTR_LIST(inject_rate),
336 ATTR_LIST(inject_type),
337 NULL
338 };
339
340 static struct kobj_type f2fs_fault_ktype = {
341 .default_attrs = f2fs_fault_attrs,
342 .sysfs_ops = &f2fs_attr_ops,
343 };
344 #endif
345
346 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
347 {
348 struct va_format vaf;
349 va_list args;
350
351 va_start(args, fmt);
352 vaf.fmt = fmt;
353 vaf.va = &args;
354 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
355 va_end(args);
356 }
357
358 static void init_once(void *foo)
359 {
360 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
361
362 inode_init_once(&fi->vfs_inode);
363 }
364
365 static int parse_options(struct super_block *sb, char *options)
366 {
367 struct f2fs_sb_info *sbi = F2FS_SB(sb);
368 struct request_queue *q;
369 substring_t args[MAX_OPT_ARGS];
370 char *p, *name;
371 int arg = 0;
372
373 #ifdef CONFIG_F2FS_FAULT_INJECTION
374 f2fs_build_fault_attr(0);
375 #endif
376
377 if (!options)
378 return 0;
379
380 while ((p = strsep(&options, ",")) != NULL) {
381 int token;
382 if (!*p)
383 continue;
384 /*
385 * Initialize args struct so we know whether arg was
386 * found; some options take optional arguments.
387 */
388 args[0].to = args[0].from = NULL;
389 token = match_token(p, f2fs_tokens, args);
390
391 switch (token) {
392 case Opt_gc_background:
393 name = match_strdup(&args[0]);
394
395 if (!name)
396 return -ENOMEM;
397 if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
398 set_opt(sbi, BG_GC);
399 clear_opt(sbi, FORCE_FG_GC);
400 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
401 clear_opt(sbi, BG_GC);
402 clear_opt(sbi, FORCE_FG_GC);
403 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
404 set_opt(sbi, BG_GC);
405 set_opt(sbi, FORCE_FG_GC);
406 } else {
407 kfree(name);
408 return -EINVAL;
409 }
410 kfree(name);
411 break;
412 case Opt_disable_roll_forward:
413 set_opt(sbi, DISABLE_ROLL_FORWARD);
414 break;
415 case Opt_norecovery:
416 /* this option mounts f2fs with ro */
417 set_opt(sbi, DISABLE_ROLL_FORWARD);
418 if (!f2fs_readonly(sb))
419 return -EINVAL;
420 break;
421 case Opt_discard:
422 q = bdev_get_queue(sb->s_bdev);
423 if (blk_queue_discard(q)) {
424 set_opt(sbi, DISCARD);
425 } else {
426 f2fs_msg(sb, KERN_WARNING,
427 "mounting with \"discard\" option, but "
428 "the device does not support discard");
429 }
430 break;
431 case Opt_nodiscard:
432 clear_opt(sbi, DISCARD);
433 case Opt_noheap:
434 set_opt(sbi, NOHEAP);
435 break;
436 #ifdef CONFIG_F2FS_FS_XATTR
437 case Opt_user_xattr:
438 set_opt(sbi, XATTR_USER);
439 break;
440 case Opt_nouser_xattr:
441 clear_opt(sbi, XATTR_USER);
442 break;
443 case Opt_inline_xattr:
444 set_opt(sbi, INLINE_XATTR);
445 break;
446 #else
447 case Opt_user_xattr:
448 f2fs_msg(sb, KERN_INFO,
449 "user_xattr options not supported");
450 break;
451 case Opt_nouser_xattr:
452 f2fs_msg(sb, KERN_INFO,
453 "nouser_xattr options not supported");
454 break;
455 case Opt_inline_xattr:
456 f2fs_msg(sb, KERN_INFO,
457 "inline_xattr options not supported");
458 break;
459 #endif
460 #ifdef CONFIG_F2FS_FS_POSIX_ACL
461 case Opt_acl:
462 set_opt(sbi, POSIX_ACL);
463 break;
464 case Opt_noacl:
465 clear_opt(sbi, POSIX_ACL);
466 break;
467 #else
468 case Opt_acl:
469 f2fs_msg(sb, KERN_INFO, "acl options not supported");
470 break;
471 case Opt_noacl:
472 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
473 break;
474 #endif
475 case Opt_active_logs:
476 if (args->from && match_int(args, &arg))
477 return -EINVAL;
478 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
479 return -EINVAL;
480 sbi->active_logs = arg;
481 break;
482 case Opt_disable_ext_identify:
483 set_opt(sbi, DISABLE_EXT_IDENTIFY);
484 break;
485 case Opt_inline_data:
486 set_opt(sbi, INLINE_DATA);
487 break;
488 case Opt_inline_dentry:
489 set_opt(sbi, INLINE_DENTRY);
490 break;
491 case Opt_flush_merge:
492 set_opt(sbi, FLUSH_MERGE);
493 break;
494 case Opt_noflush_merge:
495 clear_opt(sbi, FLUSH_MERGE);
496 break;
497 case Opt_nobarrier:
498 set_opt(sbi, NOBARRIER);
499 break;
500 case Opt_fastboot:
501 set_opt(sbi, FASTBOOT);
502 break;
503 case Opt_extent_cache:
504 set_opt(sbi, EXTENT_CACHE);
505 break;
506 case Opt_noextent_cache:
507 clear_opt(sbi, EXTENT_CACHE);
508 break;
509 case Opt_noinline_data:
510 clear_opt(sbi, INLINE_DATA);
511 break;
512 case Opt_data_flush:
513 set_opt(sbi, DATA_FLUSH);
514 break;
515 case Opt_mode:
516 name = match_strdup(&args[0]);
517
518 if (!name)
519 return -ENOMEM;
520 if (strlen(name) == 8 &&
521 !strncmp(name, "adaptive", 8)) {
522 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
523 } else if (strlen(name) == 3 &&
524 !strncmp(name, "lfs", 3)) {
525 set_opt_mode(sbi, F2FS_MOUNT_LFS);
526 } else {
527 kfree(name);
528 return -EINVAL;
529 }
530 kfree(name);
531 break;
532 case Opt_fault_injection:
533 if (args->from && match_int(args, &arg))
534 return -EINVAL;
535 #ifdef CONFIG_F2FS_FAULT_INJECTION
536 f2fs_build_fault_attr(arg);
537 #else
538 f2fs_msg(sb, KERN_INFO,
539 "FAULT_INJECTION was not selected");
540 #endif
541 break;
542 case Opt_lazytime:
543 sb->s_flags |= MS_LAZYTIME;
544 break;
545 case Opt_nolazytime:
546 sb->s_flags &= ~MS_LAZYTIME;
547 break;
548 default:
549 f2fs_msg(sb, KERN_ERR,
550 "Unrecognized mount option \"%s\" or missing value",
551 p);
552 return -EINVAL;
553 }
554 }
555 return 0;
556 }
557
558 static struct inode *f2fs_alloc_inode(struct super_block *sb)
559 {
560 struct f2fs_inode_info *fi;
561
562 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
563 if (!fi)
564 return NULL;
565
566 init_once((void *) fi);
567
568 if (percpu_counter_init(&fi->dirty_pages, 0, GFP_NOFS)) {
569 kmem_cache_free(f2fs_inode_cachep, fi);
570 return NULL;
571 }
572
573 /* Initialize f2fs-specific inode info */
574 fi->vfs_inode.i_version = 1;
575 fi->i_current_depth = 1;
576 fi->i_advise = 0;
577 init_rwsem(&fi->i_sem);
578 INIT_LIST_HEAD(&fi->dirty_list);
579 INIT_LIST_HEAD(&fi->gdirty_list);
580 INIT_LIST_HEAD(&fi->inmem_pages);
581 mutex_init(&fi->inmem_lock);
582
583 /* Will be used by directory only */
584 fi->i_dir_level = F2FS_SB(sb)->dir_level;
585 return &fi->vfs_inode;
586 }
587
588 static int f2fs_drop_inode(struct inode *inode)
589 {
590 /*
591 * This is to avoid a deadlock condition like below.
592 * writeback_single_inode(inode)
593 * - f2fs_write_data_page
594 * - f2fs_gc -> iput -> evict
595 * - inode_wait_for_writeback(inode)
596 */
597 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
598 if (!inode->i_nlink && !is_bad_inode(inode)) {
599 /* to avoid evict_inode call simultaneously */
600 atomic_inc(&inode->i_count);
601 spin_unlock(&inode->i_lock);
602
603 /* some remained atomic pages should discarded */
604 if (f2fs_is_atomic_file(inode))
605 drop_inmem_pages(inode);
606
607 /* should remain fi->extent_tree for writepage */
608 f2fs_destroy_extent_node(inode);
609
610 sb_start_intwrite(inode->i_sb);
611 f2fs_i_size_write(inode, 0);
612
613 if (F2FS_HAS_BLOCKS(inode))
614 f2fs_truncate(inode);
615
616 sb_end_intwrite(inode->i_sb);
617
618 fscrypt_put_encryption_info(inode, NULL);
619 spin_lock(&inode->i_lock);
620 atomic_dec(&inode->i_count);
621 }
622 return 0;
623 }
624
625 return generic_drop_inode(inode);
626 }
627
628 /*
629 * f2fs_dirty_inode() is called from __mark_inode_dirty()
630 *
631 * We should call set_dirty_inode to write the dirty inode through write_inode.
632 */
633 static void f2fs_dirty_inode(struct inode *inode, int flags)
634 {
635 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
636
637 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
638 inode->i_ino == F2FS_META_INO(sbi))
639 return;
640
641 if (flags == I_DIRTY_TIME)
642 return;
643
644 if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
645 clear_inode_flag(inode, FI_AUTO_RECOVER);
646
647 spin_lock(&sbi->inode_lock[DIRTY_META]);
648 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
649 spin_unlock(&sbi->inode_lock[DIRTY_META]);
650 return;
651 }
652
653 set_inode_flag(inode, FI_DIRTY_INODE);
654 list_add_tail(&F2FS_I(inode)->gdirty_list,
655 &sbi->inode_list[DIRTY_META]);
656 inc_page_count(sbi, F2FS_DIRTY_IMETA);
657 stat_inc_dirty_inode(sbi, DIRTY_META);
658 spin_unlock(&sbi->inode_lock[DIRTY_META]);
659 }
660
661 void f2fs_inode_synced(struct inode *inode)
662 {
663 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
664
665 spin_lock(&sbi->inode_lock[DIRTY_META]);
666 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
667 spin_unlock(&sbi->inode_lock[DIRTY_META]);
668 return;
669 }
670 list_del_init(&F2FS_I(inode)->gdirty_list);
671 clear_inode_flag(inode, FI_DIRTY_INODE);
672 clear_inode_flag(inode, FI_AUTO_RECOVER);
673 dec_page_count(sbi, F2FS_DIRTY_IMETA);
674 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
675 spin_unlock(&sbi->inode_lock[DIRTY_META]);
676 }
677
678 static void f2fs_i_callback(struct rcu_head *head)
679 {
680 struct inode *inode = container_of(head, struct inode, i_rcu);
681 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
682 }
683
684 static void f2fs_destroy_inode(struct inode *inode)
685 {
686 percpu_counter_destroy(&F2FS_I(inode)->dirty_pages);
687 call_rcu(&inode->i_rcu, f2fs_i_callback);
688 }
689
690 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
691 {
692 int i;
693
694 for (i = 0; i < NR_COUNT_TYPE; i++)
695 percpu_counter_destroy(&sbi->nr_pages[i]);
696 percpu_counter_destroy(&sbi->alloc_valid_block_count);
697 percpu_counter_destroy(&sbi->total_valid_inode_count);
698 }
699
700 static void f2fs_put_super(struct super_block *sb)
701 {
702 struct f2fs_sb_info *sbi = F2FS_SB(sb);
703
704 if (sbi->s_proc) {
705 remove_proc_entry("segment_info", sbi->s_proc);
706 remove_proc_entry("segment_bits", sbi->s_proc);
707 remove_proc_entry(sb->s_id, f2fs_proc_root);
708 }
709 kobject_del(&sbi->s_kobj);
710
711 stop_gc_thread(sbi);
712
713 /* prevent remaining shrinker jobs */
714 mutex_lock(&sbi->umount_mutex);
715
716 /*
717 * We don't need to do checkpoint when superblock is clean.
718 * But, the previous checkpoint was not done by umount, it needs to do
719 * clean checkpoint again.
720 */
721 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
722 !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
723 struct cp_control cpc = {
724 .reason = CP_UMOUNT,
725 };
726 write_checkpoint(sbi, &cpc);
727 }
728
729 /* write_checkpoint can update stat informaion */
730 f2fs_destroy_stats(sbi);
731
732 /*
733 * normally superblock is clean, so we need to release this.
734 * In addition, EIO will skip do checkpoint, we need this as well.
735 */
736 release_ino_entry(sbi, true);
737 release_discard_addrs(sbi);
738
739 f2fs_leave_shrinker(sbi);
740 mutex_unlock(&sbi->umount_mutex);
741
742 /* our cp_error case, we can wait for any writeback page */
743 f2fs_flush_merged_bios(sbi);
744
745 iput(sbi->node_inode);
746 iput(sbi->meta_inode);
747
748 /* destroy f2fs internal modules */
749 destroy_node_manager(sbi);
750 destroy_segment_manager(sbi);
751
752 kfree(sbi->ckpt);
753 kobject_put(&sbi->s_kobj);
754 wait_for_completion(&sbi->s_kobj_unregister);
755
756 sb->s_fs_info = NULL;
757 if (sbi->s_chksum_driver)
758 crypto_free_shash(sbi->s_chksum_driver);
759 kfree(sbi->raw_super);
760
761 destroy_percpu_info(sbi);
762 kfree(sbi);
763 }
764
765 int f2fs_sync_fs(struct super_block *sb, int sync)
766 {
767 struct f2fs_sb_info *sbi = F2FS_SB(sb);
768 int err = 0;
769
770 trace_f2fs_sync_fs(sb, sync);
771
772 if (sync) {
773 struct cp_control cpc;
774
775 cpc.reason = __get_cp_reason(sbi);
776
777 mutex_lock(&sbi->gc_mutex);
778 err = write_checkpoint(sbi, &cpc);
779 mutex_unlock(&sbi->gc_mutex);
780 }
781 f2fs_trace_ios(NULL, 1);
782
783 return err;
784 }
785
786 static int f2fs_freeze(struct super_block *sb)
787 {
788 int err;
789
790 if (f2fs_readonly(sb))
791 return 0;
792
793 err = f2fs_sync_fs(sb, 1);
794 return err;
795 }
796
797 static int f2fs_unfreeze(struct super_block *sb)
798 {
799 return 0;
800 }
801
802 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
803 {
804 struct super_block *sb = dentry->d_sb;
805 struct f2fs_sb_info *sbi = F2FS_SB(sb);
806 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
807 block_t total_count, user_block_count, start_count, ovp_count;
808
809 total_count = le64_to_cpu(sbi->raw_super->block_count);
810 user_block_count = sbi->user_block_count;
811 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
812 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
813 buf->f_type = F2FS_SUPER_MAGIC;
814 buf->f_bsize = sbi->blocksize;
815
816 buf->f_blocks = total_count - start_count;
817 buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
818 buf->f_bavail = user_block_count - valid_user_blocks(sbi);
819
820 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
821 buf->f_ffree = buf->f_files - valid_inode_count(sbi);
822
823 buf->f_namelen = F2FS_NAME_LEN;
824 buf->f_fsid.val[0] = (u32)id;
825 buf->f_fsid.val[1] = (u32)(id >> 32);
826
827 return 0;
828 }
829
830 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
831 {
832 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
833
834 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
835 if (test_opt(sbi, FORCE_FG_GC))
836 seq_printf(seq, ",background_gc=%s", "sync");
837 else
838 seq_printf(seq, ",background_gc=%s", "on");
839 } else {
840 seq_printf(seq, ",background_gc=%s", "off");
841 }
842 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
843 seq_puts(seq, ",disable_roll_forward");
844 if (test_opt(sbi, DISCARD))
845 seq_puts(seq, ",discard");
846 if (test_opt(sbi, NOHEAP))
847 seq_puts(seq, ",no_heap_alloc");
848 #ifdef CONFIG_F2FS_FS_XATTR
849 if (test_opt(sbi, XATTR_USER))
850 seq_puts(seq, ",user_xattr");
851 else
852 seq_puts(seq, ",nouser_xattr");
853 if (test_opt(sbi, INLINE_XATTR))
854 seq_puts(seq, ",inline_xattr");
855 #endif
856 #ifdef CONFIG_F2FS_FS_POSIX_ACL
857 if (test_opt(sbi, POSIX_ACL))
858 seq_puts(seq, ",acl");
859 else
860 seq_puts(seq, ",noacl");
861 #endif
862 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
863 seq_puts(seq, ",disable_ext_identify");
864 if (test_opt(sbi, INLINE_DATA))
865 seq_puts(seq, ",inline_data");
866 else
867 seq_puts(seq, ",noinline_data");
868 if (test_opt(sbi, INLINE_DENTRY))
869 seq_puts(seq, ",inline_dentry");
870 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
871 seq_puts(seq, ",flush_merge");
872 if (test_opt(sbi, NOBARRIER))
873 seq_puts(seq, ",nobarrier");
874 if (test_opt(sbi, FASTBOOT))
875 seq_puts(seq, ",fastboot");
876 if (test_opt(sbi, EXTENT_CACHE))
877 seq_puts(seq, ",extent_cache");
878 else
879 seq_puts(seq, ",noextent_cache");
880 if (test_opt(sbi, DATA_FLUSH))
881 seq_puts(seq, ",data_flush");
882
883 seq_puts(seq, ",mode=");
884 if (test_opt(sbi, ADAPTIVE))
885 seq_puts(seq, "adaptive");
886 else if (test_opt(sbi, LFS))
887 seq_puts(seq, "lfs");
888 seq_printf(seq, ",active_logs=%u", sbi->active_logs);
889
890 return 0;
891 }
892
893 static int segment_info_seq_show(struct seq_file *seq, void *offset)
894 {
895 struct super_block *sb = seq->private;
896 struct f2fs_sb_info *sbi = F2FS_SB(sb);
897 unsigned int total_segs =
898 le32_to_cpu(sbi->raw_super->segment_count_main);
899 int i;
900
901 seq_puts(seq, "format: segment_type|valid_blocks\n"
902 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
903
904 for (i = 0; i < total_segs; i++) {
905 struct seg_entry *se = get_seg_entry(sbi, i);
906
907 if ((i % 10) == 0)
908 seq_printf(seq, "%-10d", i);
909 seq_printf(seq, "%d|%-3u", se->type,
910 get_valid_blocks(sbi, i, 1));
911 if ((i % 10) == 9 || i == (total_segs - 1))
912 seq_putc(seq, '\n');
913 else
914 seq_putc(seq, ' ');
915 }
916
917 return 0;
918 }
919
920 static int segment_bits_seq_show(struct seq_file *seq, void *offset)
921 {
922 struct super_block *sb = seq->private;
923 struct f2fs_sb_info *sbi = F2FS_SB(sb);
924 unsigned int total_segs =
925 le32_to_cpu(sbi->raw_super->segment_count_main);
926 int i, j;
927
928 seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
929 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
930
931 for (i = 0; i < total_segs; i++) {
932 struct seg_entry *se = get_seg_entry(sbi, i);
933
934 seq_printf(seq, "%-10d", i);
935 seq_printf(seq, "%d|%-3u|", se->type,
936 get_valid_blocks(sbi, i, 1));
937 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
938 seq_printf(seq, "%x ", se->cur_valid_map[j]);
939 seq_putc(seq, '\n');
940 }
941 return 0;
942 }
943
944 #define F2FS_PROC_FILE_DEF(_name) \
945 static int _name##_open_fs(struct inode *inode, struct file *file) \
946 { \
947 return single_open(file, _name##_seq_show, PDE_DATA(inode)); \
948 } \
949 \
950 static const struct file_operations f2fs_seq_##_name##_fops = { \
951 .owner = THIS_MODULE, \
952 .open = _name##_open_fs, \
953 .read = seq_read, \
954 .llseek = seq_lseek, \
955 .release = single_release, \
956 };
957
958 F2FS_PROC_FILE_DEF(segment_info);
959 F2FS_PROC_FILE_DEF(segment_bits);
960
961 static void default_options(struct f2fs_sb_info *sbi)
962 {
963 /* init some FS parameters */
964 sbi->active_logs = NR_CURSEG_TYPE;
965
966 set_opt(sbi, BG_GC);
967 set_opt(sbi, INLINE_DATA);
968 set_opt(sbi, EXTENT_CACHE);
969 sbi->sb->s_flags |= MS_LAZYTIME;
970 set_opt(sbi, FLUSH_MERGE);
971 if (f2fs_sb_mounted_hmsmr(sbi->sb)) {
972 set_opt_mode(sbi, F2FS_MOUNT_LFS);
973 set_opt(sbi, DISCARD);
974 } else {
975 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
976 }
977
978 #ifdef CONFIG_F2FS_FS_XATTR
979 set_opt(sbi, XATTR_USER);
980 #endif
981 #ifdef CONFIG_F2FS_FS_POSIX_ACL
982 set_opt(sbi, POSIX_ACL);
983 #endif
984 }
985
986 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
987 {
988 struct f2fs_sb_info *sbi = F2FS_SB(sb);
989 struct f2fs_mount_info org_mount_opt;
990 int err, active_logs;
991 bool need_restart_gc = false;
992 bool need_stop_gc = false;
993 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
994
995 /*
996 * Save the old mount options in case we
997 * need to restore them.
998 */
999 org_mount_opt = sbi->mount_opt;
1000 active_logs = sbi->active_logs;
1001
1002 /* recover superblocks we couldn't write due to previous RO mount */
1003 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1004 err = f2fs_commit_super(sbi, false);
1005 f2fs_msg(sb, KERN_INFO,
1006 "Try to recover all the superblocks, ret: %d", err);
1007 if (!err)
1008 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1009 }
1010
1011 sbi->mount_opt.opt = 0;
1012 default_options(sbi);
1013
1014 /* parse mount options */
1015 err = parse_options(sb, data);
1016 if (err)
1017 goto restore_opts;
1018
1019 /*
1020 * Previous and new state of filesystem is RO,
1021 * so skip checking GC and FLUSH_MERGE conditions.
1022 */
1023 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1024 goto skip;
1025
1026 /* disallow enable/disable extent_cache dynamically */
1027 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1028 err = -EINVAL;
1029 f2fs_msg(sbi->sb, KERN_WARNING,
1030 "switch extent_cache option is not allowed");
1031 goto restore_opts;
1032 }
1033
1034 /*
1035 * We stop the GC thread if FS is mounted as RO
1036 * or if background_gc = off is passed in mount
1037 * option. Also sync the filesystem.
1038 */
1039 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1040 if (sbi->gc_thread) {
1041 stop_gc_thread(sbi);
1042 need_restart_gc = true;
1043 }
1044 } else if (!sbi->gc_thread) {
1045 err = start_gc_thread(sbi);
1046 if (err)
1047 goto restore_opts;
1048 need_stop_gc = true;
1049 }
1050
1051 if (*flags & MS_RDONLY) {
1052 writeback_inodes_sb(sb, WB_REASON_SYNC);
1053 sync_inodes_sb(sb);
1054
1055 set_sbi_flag(sbi, SBI_IS_DIRTY);
1056 set_sbi_flag(sbi, SBI_IS_CLOSE);
1057 f2fs_sync_fs(sb, 1);
1058 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1059 }
1060
1061 /*
1062 * We stop issue flush thread if FS is mounted as RO
1063 * or if flush_merge is not passed in mount option.
1064 */
1065 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1066 destroy_flush_cmd_control(sbi);
1067 } else if (!SM_I(sbi)->cmd_control_info) {
1068 err = create_flush_cmd_control(sbi);
1069 if (err)
1070 goto restore_gc;
1071 }
1072 skip:
1073 /* Update the POSIXACL Flag */
1074 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1075 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1076
1077 return 0;
1078 restore_gc:
1079 if (need_restart_gc) {
1080 if (start_gc_thread(sbi))
1081 f2fs_msg(sbi->sb, KERN_WARNING,
1082 "background gc thread has stopped");
1083 } else if (need_stop_gc) {
1084 stop_gc_thread(sbi);
1085 }
1086 restore_opts:
1087 sbi->mount_opt = org_mount_opt;
1088 sbi->active_logs = active_logs;
1089 return err;
1090 }
1091
1092 static struct super_operations f2fs_sops = {
1093 .alloc_inode = f2fs_alloc_inode,
1094 .drop_inode = f2fs_drop_inode,
1095 .destroy_inode = f2fs_destroy_inode,
1096 .write_inode = f2fs_write_inode,
1097 .dirty_inode = f2fs_dirty_inode,
1098 .show_options = f2fs_show_options,
1099 .evict_inode = f2fs_evict_inode,
1100 .put_super = f2fs_put_super,
1101 .sync_fs = f2fs_sync_fs,
1102 .freeze_fs = f2fs_freeze,
1103 .unfreeze_fs = f2fs_unfreeze,
1104 .statfs = f2fs_statfs,
1105 .remount_fs = f2fs_remount,
1106 };
1107
1108 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1109 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1110 {
1111 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1112 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1113 ctx, len, NULL);
1114 }
1115
1116 static int f2fs_key_prefix(struct inode *inode, u8 **key)
1117 {
1118 *key = F2FS_I_SB(inode)->key_prefix;
1119 return F2FS_I_SB(inode)->key_prefix_size;
1120 }
1121
1122 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1123 void *fs_data)
1124 {
1125 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1126 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1127 ctx, len, fs_data, XATTR_CREATE);
1128 }
1129
1130 static unsigned f2fs_max_namelen(struct inode *inode)
1131 {
1132 return S_ISLNK(inode->i_mode) ?
1133 inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1134 }
1135
1136 static struct fscrypt_operations f2fs_cryptops = {
1137 .get_context = f2fs_get_context,
1138 .key_prefix = f2fs_key_prefix,
1139 .set_context = f2fs_set_context,
1140 .is_encrypted = f2fs_encrypted_inode,
1141 .empty_dir = f2fs_empty_dir,
1142 .max_namelen = f2fs_max_namelen,
1143 };
1144 #else
1145 static struct fscrypt_operations f2fs_cryptops = {
1146 .is_encrypted = f2fs_encrypted_inode,
1147 };
1148 #endif
1149
1150 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1151 u64 ino, u32 generation)
1152 {
1153 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1154 struct inode *inode;
1155
1156 if (check_nid_range(sbi, ino))
1157 return ERR_PTR(-ESTALE);
1158
1159 /*
1160 * f2fs_iget isn't quite right if the inode is currently unallocated!
1161 * However f2fs_iget currently does appropriate checks to handle stale
1162 * inodes so everything is OK.
1163 */
1164 inode = f2fs_iget(sb, ino);
1165 if (IS_ERR(inode))
1166 return ERR_CAST(inode);
1167 if (unlikely(generation && inode->i_generation != generation)) {
1168 /* we didn't find the right inode.. */
1169 iput(inode);
1170 return ERR_PTR(-ESTALE);
1171 }
1172 return inode;
1173 }
1174
1175 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1176 int fh_len, int fh_type)
1177 {
1178 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1179 f2fs_nfs_get_inode);
1180 }
1181
1182 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1183 int fh_len, int fh_type)
1184 {
1185 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1186 f2fs_nfs_get_inode);
1187 }
1188
1189 static const struct export_operations f2fs_export_ops = {
1190 .fh_to_dentry = f2fs_fh_to_dentry,
1191 .fh_to_parent = f2fs_fh_to_parent,
1192 .get_parent = f2fs_get_parent,
1193 };
1194
1195 static loff_t max_file_blocks(void)
1196 {
1197 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1198 loff_t leaf_count = ADDRS_PER_BLOCK;
1199
1200 /* two direct node blocks */
1201 result += (leaf_count * 2);
1202
1203 /* two indirect node blocks */
1204 leaf_count *= NIDS_PER_BLOCK;
1205 result += (leaf_count * 2);
1206
1207 /* one double indirect node block */
1208 leaf_count *= NIDS_PER_BLOCK;
1209 result += leaf_count;
1210
1211 return result;
1212 }
1213
1214 static int __f2fs_commit_super(struct buffer_head *bh,
1215 struct f2fs_super_block *super)
1216 {
1217 lock_buffer(bh);
1218 if (super)
1219 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1220 set_buffer_uptodate(bh);
1221 set_buffer_dirty(bh);
1222 unlock_buffer(bh);
1223
1224 /* it's rare case, we can do fua all the time */
1225 return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
1226 }
1227
1228 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1229 struct buffer_head *bh)
1230 {
1231 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1232 (bh->b_data + F2FS_SUPER_OFFSET);
1233 struct super_block *sb = sbi->sb;
1234 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1235 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1236 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1237 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1238 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1239 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1240 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1241 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1242 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1243 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1244 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1245 u32 segment_count = le32_to_cpu(raw_super->segment_count);
1246 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1247 u64 main_end_blkaddr = main_blkaddr +
1248 (segment_count_main << log_blocks_per_seg);
1249 u64 seg_end_blkaddr = segment0_blkaddr +
1250 (segment_count << log_blocks_per_seg);
1251
1252 if (segment0_blkaddr != cp_blkaddr) {
1253 f2fs_msg(sb, KERN_INFO,
1254 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1255 segment0_blkaddr, cp_blkaddr);
1256 return true;
1257 }
1258
1259 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1260 sit_blkaddr) {
1261 f2fs_msg(sb, KERN_INFO,
1262 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1263 cp_blkaddr, sit_blkaddr,
1264 segment_count_ckpt << log_blocks_per_seg);
1265 return true;
1266 }
1267
1268 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1269 nat_blkaddr) {
1270 f2fs_msg(sb, KERN_INFO,
1271 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1272 sit_blkaddr, nat_blkaddr,
1273 segment_count_sit << log_blocks_per_seg);
1274 return true;
1275 }
1276
1277 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1278 ssa_blkaddr) {
1279 f2fs_msg(sb, KERN_INFO,
1280 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1281 nat_blkaddr, ssa_blkaddr,
1282 segment_count_nat << log_blocks_per_seg);
1283 return true;
1284 }
1285
1286 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1287 main_blkaddr) {
1288 f2fs_msg(sb, KERN_INFO,
1289 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1290 ssa_blkaddr, main_blkaddr,
1291 segment_count_ssa << log_blocks_per_seg);
1292 return true;
1293 }
1294
1295 if (main_end_blkaddr > seg_end_blkaddr) {
1296 f2fs_msg(sb, KERN_INFO,
1297 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1298 main_blkaddr,
1299 segment0_blkaddr +
1300 (segment_count << log_blocks_per_seg),
1301 segment_count_main << log_blocks_per_seg);
1302 return true;
1303 } else if (main_end_blkaddr < seg_end_blkaddr) {
1304 int err = 0;
1305 char *res;
1306
1307 /* fix in-memory information all the time */
1308 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1309 segment0_blkaddr) >> log_blocks_per_seg);
1310
1311 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1312 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1313 res = "internally";
1314 } else {
1315 err = __f2fs_commit_super(bh, NULL);
1316 res = err ? "failed" : "done";
1317 }
1318 f2fs_msg(sb, KERN_INFO,
1319 "Fix alignment : %s, start(%u) end(%u) block(%u)",
1320 res, main_blkaddr,
1321 segment0_blkaddr +
1322 (segment_count << log_blocks_per_seg),
1323 segment_count_main << log_blocks_per_seg);
1324 if (err)
1325 return true;
1326 }
1327 return false;
1328 }
1329
1330 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1331 struct buffer_head *bh)
1332 {
1333 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1334 (bh->b_data + F2FS_SUPER_OFFSET);
1335 struct super_block *sb = sbi->sb;
1336 unsigned int blocksize;
1337
1338 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1339 f2fs_msg(sb, KERN_INFO,
1340 "Magic Mismatch, valid(0x%x) - read(0x%x)",
1341 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1342 return 1;
1343 }
1344
1345 /* Currently, support only 4KB page cache size */
1346 if (F2FS_BLKSIZE != PAGE_SIZE) {
1347 f2fs_msg(sb, KERN_INFO,
1348 "Invalid page_cache_size (%lu), supports only 4KB\n",
1349 PAGE_SIZE);
1350 return 1;
1351 }
1352
1353 /* Currently, support only 4KB block size */
1354 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1355 if (blocksize != F2FS_BLKSIZE) {
1356 f2fs_msg(sb, KERN_INFO,
1357 "Invalid blocksize (%u), supports only 4KB\n",
1358 blocksize);
1359 return 1;
1360 }
1361
1362 /* check log blocks per segment */
1363 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1364 f2fs_msg(sb, KERN_INFO,
1365 "Invalid log blocks per segment (%u)\n",
1366 le32_to_cpu(raw_super->log_blocks_per_seg));
1367 return 1;
1368 }
1369
1370 /* Currently, support 512/1024/2048/4096 bytes sector size */
1371 if (le32_to_cpu(raw_super->log_sectorsize) >
1372 F2FS_MAX_LOG_SECTOR_SIZE ||
1373 le32_to_cpu(raw_super->log_sectorsize) <
1374 F2FS_MIN_LOG_SECTOR_SIZE) {
1375 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1376 le32_to_cpu(raw_super->log_sectorsize));
1377 return 1;
1378 }
1379 if (le32_to_cpu(raw_super->log_sectors_per_block) +
1380 le32_to_cpu(raw_super->log_sectorsize) !=
1381 F2FS_MAX_LOG_SECTOR_SIZE) {
1382 f2fs_msg(sb, KERN_INFO,
1383 "Invalid log sectors per block(%u) log sectorsize(%u)",
1384 le32_to_cpu(raw_super->log_sectors_per_block),
1385 le32_to_cpu(raw_super->log_sectorsize));
1386 return 1;
1387 }
1388
1389 /* check reserved ino info */
1390 if (le32_to_cpu(raw_super->node_ino) != 1 ||
1391 le32_to_cpu(raw_super->meta_ino) != 2 ||
1392 le32_to_cpu(raw_super->root_ino) != 3) {
1393 f2fs_msg(sb, KERN_INFO,
1394 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1395 le32_to_cpu(raw_super->node_ino),
1396 le32_to_cpu(raw_super->meta_ino),
1397 le32_to_cpu(raw_super->root_ino));
1398 return 1;
1399 }
1400
1401 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1402 if (sanity_check_area_boundary(sbi, bh))
1403 return 1;
1404
1405 return 0;
1406 }
1407
1408 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1409 {
1410 unsigned int total, fsmeta;
1411 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1412 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1413
1414 total = le32_to_cpu(raw_super->segment_count);
1415 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1416 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1417 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1418 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1419 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1420
1421 if (unlikely(fsmeta >= total))
1422 return 1;
1423
1424 if (unlikely(f2fs_cp_error(sbi))) {
1425 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1426 return 1;
1427 }
1428 return 0;
1429 }
1430
1431 static void init_sb_info(struct f2fs_sb_info *sbi)
1432 {
1433 struct f2fs_super_block *raw_super = sbi->raw_super;
1434
1435 sbi->log_sectors_per_block =
1436 le32_to_cpu(raw_super->log_sectors_per_block);
1437 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1438 sbi->blocksize = 1 << sbi->log_blocksize;
1439 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1440 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1441 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1442 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1443 sbi->total_sections = le32_to_cpu(raw_super->section_count);
1444 sbi->total_node_count =
1445 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1446 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1447 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1448 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1449 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1450 sbi->cur_victim_sec = NULL_SECNO;
1451 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1452
1453 sbi->dir_level = DEF_DIR_LEVEL;
1454 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1455 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1456 clear_sbi_flag(sbi, SBI_NEED_FSCK);
1457
1458 INIT_LIST_HEAD(&sbi->s_list);
1459 mutex_init(&sbi->umount_mutex);
1460 mutex_init(&sbi->wio_mutex[NODE]);
1461 mutex_init(&sbi->wio_mutex[DATA]);
1462
1463 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1464 memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX,
1465 F2FS_KEY_DESC_PREFIX_SIZE);
1466 sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE;
1467 #endif
1468 }
1469
1470 static int init_percpu_info(struct f2fs_sb_info *sbi)
1471 {
1472 int i, err;
1473
1474 for (i = 0; i < NR_COUNT_TYPE; i++) {
1475 err = percpu_counter_init(&sbi->nr_pages[i], 0, GFP_KERNEL);
1476 if (err)
1477 return err;
1478 }
1479
1480 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1481 if (err)
1482 return err;
1483
1484 return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1485 GFP_KERNEL);
1486 }
1487
1488 /*
1489 * Read f2fs raw super block.
1490 * Because we have two copies of super block, so read both of them
1491 * to get the first valid one. If any one of them is broken, we pass
1492 * them recovery flag back to the caller.
1493 */
1494 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1495 struct f2fs_super_block **raw_super,
1496 int *valid_super_block, int *recovery)
1497 {
1498 struct super_block *sb = sbi->sb;
1499 int block;
1500 struct buffer_head *bh;
1501 struct f2fs_super_block *super;
1502 int err = 0;
1503
1504 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1505 if (!super)
1506 return -ENOMEM;
1507
1508 for (block = 0; block < 2; block++) {
1509 bh = sb_bread(sb, block);
1510 if (!bh) {
1511 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1512 block + 1);
1513 err = -EIO;
1514 continue;
1515 }
1516
1517 /* sanity checking of raw super */
1518 if (sanity_check_raw_super(sbi, bh)) {
1519 f2fs_msg(sb, KERN_ERR,
1520 "Can't find valid F2FS filesystem in %dth superblock",
1521 block + 1);
1522 err = -EINVAL;
1523 brelse(bh);
1524 continue;
1525 }
1526
1527 if (!*raw_super) {
1528 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1529 sizeof(*super));
1530 *valid_super_block = block;
1531 *raw_super = super;
1532 }
1533 brelse(bh);
1534 }
1535
1536 /* Fail to read any one of the superblocks*/
1537 if (err < 0)
1538 *recovery = 1;
1539
1540 /* No valid superblock */
1541 if (!*raw_super)
1542 kfree(super);
1543 else
1544 err = 0;
1545
1546 return err;
1547 }
1548
1549 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1550 {
1551 struct buffer_head *bh;
1552 int err;
1553
1554 if ((recover && f2fs_readonly(sbi->sb)) ||
1555 bdev_read_only(sbi->sb->s_bdev)) {
1556 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1557 return -EROFS;
1558 }
1559
1560 /* write back-up superblock first */
1561 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1562 if (!bh)
1563 return -EIO;
1564 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1565 brelse(bh);
1566
1567 /* if we are in recovery path, skip writing valid superblock */
1568 if (recover || err)
1569 return err;
1570
1571 /* write current valid superblock */
1572 bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1573 if (!bh)
1574 return -EIO;
1575 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1576 brelse(bh);
1577 return err;
1578 }
1579
1580 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1581 {
1582 struct f2fs_sb_info *sbi;
1583 struct f2fs_super_block *raw_super;
1584 struct inode *root;
1585 int err;
1586 bool retry = true, need_fsck = false;
1587 char *options = NULL;
1588 int recovery, i, valid_super_block;
1589 struct curseg_info *seg_i;
1590
1591 try_onemore:
1592 err = -EINVAL;
1593 raw_super = NULL;
1594 valid_super_block = -1;
1595 recovery = 0;
1596
1597 /* allocate memory for f2fs-specific super block info */
1598 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1599 if (!sbi)
1600 return -ENOMEM;
1601
1602 sbi->sb = sb;
1603
1604 /* Load the checksum driver */
1605 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1606 if (IS_ERR(sbi->s_chksum_driver)) {
1607 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1608 err = PTR_ERR(sbi->s_chksum_driver);
1609 sbi->s_chksum_driver = NULL;
1610 goto free_sbi;
1611 }
1612
1613 /* set a block size */
1614 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1615 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1616 goto free_sbi;
1617 }
1618
1619 err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1620 &recovery);
1621 if (err)
1622 goto free_sbi;
1623
1624 sb->s_fs_info = sbi;
1625 sbi->raw_super = raw_super;
1626
1627 default_options(sbi);
1628 /* parse mount options */
1629 options = kstrdup((const char *)data, GFP_KERNEL);
1630 if (data && !options) {
1631 err = -ENOMEM;
1632 goto free_sb_buf;
1633 }
1634
1635 err = parse_options(sb, options);
1636 if (err)
1637 goto free_options;
1638
1639 sbi->max_file_blocks = max_file_blocks();
1640 sb->s_maxbytes = sbi->max_file_blocks <<
1641 le32_to_cpu(raw_super->log_blocksize);
1642 sb->s_max_links = F2FS_LINK_MAX;
1643 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1644
1645 sb->s_op = &f2fs_sops;
1646 sb->s_cop = &f2fs_cryptops;
1647 sb->s_xattr = f2fs_xattr_handlers;
1648 sb->s_export_op = &f2fs_export_ops;
1649 sb->s_magic = F2FS_SUPER_MAGIC;
1650 sb->s_time_gran = 1;
1651 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1652 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1653 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1654
1655 /* init f2fs-specific super block info */
1656 sbi->valid_super_block = valid_super_block;
1657 mutex_init(&sbi->gc_mutex);
1658 mutex_init(&sbi->cp_mutex);
1659 init_rwsem(&sbi->node_write);
1660
1661 /* disallow all the data/node/meta page writes */
1662 set_sbi_flag(sbi, SBI_POR_DOING);
1663 spin_lock_init(&sbi->stat_lock);
1664
1665 init_rwsem(&sbi->read_io.io_rwsem);
1666 sbi->read_io.sbi = sbi;
1667 sbi->read_io.bio = NULL;
1668 for (i = 0; i < NR_PAGE_TYPE; i++) {
1669 init_rwsem(&sbi->write_io[i].io_rwsem);
1670 sbi->write_io[i].sbi = sbi;
1671 sbi->write_io[i].bio = NULL;
1672 }
1673
1674 init_rwsem(&sbi->cp_rwsem);
1675 init_waitqueue_head(&sbi->cp_wait);
1676 init_sb_info(sbi);
1677
1678 err = init_percpu_info(sbi);
1679 if (err)
1680 goto free_options;
1681
1682 /* get an inode for meta space */
1683 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1684 if (IS_ERR(sbi->meta_inode)) {
1685 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1686 err = PTR_ERR(sbi->meta_inode);
1687 goto free_options;
1688 }
1689
1690 err = get_valid_checkpoint(sbi);
1691 if (err) {
1692 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1693 goto free_meta_inode;
1694 }
1695
1696 sbi->total_valid_node_count =
1697 le32_to_cpu(sbi->ckpt->valid_node_count);
1698 percpu_counter_set(&sbi->total_valid_inode_count,
1699 le32_to_cpu(sbi->ckpt->valid_inode_count));
1700 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1701 sbi->total_valid_block_count =
1702 le64_to_cpu(sbi->ckpt->valid_block_count);
1703 sbi->last_valid_block_count = sbi->total_valid_block_count;
1704
1705 for (i = 0; i < NR_INODE_TYPE; i++) {
1706 INIT_LIST_HEAD(&sbi->inode_list[i]);
1707 spin_lock_init(&sbi->inode_lock[i]);
1708 }
1709
1710 init_extent_cache_info(sbi);
1711
1712 init_ino_entry_info(sbi);
1713
1714 /* setup f2fs internal modules */
1715 err = build_segment_manager(sbi);
1716 if (err) {
1717 f2fs_msg(sb, KERN_ERR,
1718 "Failed to initialize F2FS segment manager");
1719 goto free_sm;
1720 }
1721 err = build_node_manager(sbi);
1722 if (err) {
1723 f2fs_msg(sb, KERN_ERR,
1724 "Failed to initialize F2FS node manager");
1725 goto free_nm;
1726 }
1727
1728 /* For write statistics */
1729 if (sb->s_bdev->bd_part)
1730 sbi->sectors_written_start =
1731 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1732
1733 /* Read accumulated write IO statistics if exists */
1734 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1735 if (__exist_node_summaries(sbi))
1736 sbi->kbytes_written =
1737 le64_to_cpu(seg_i->journal->info.kbytes_written);
1738
1739 build_gc_manager(sbi);
1740
1741 /* get an inode for node space */
1742 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1743 if (IS_ERR(sbi->node_inode)) {
1744 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1745 err = PTR_ERR(sbi->node_inode);
1746 goto free_nm;
1747 }
1748
1749 f2fs_join_shrinker(sbi);
1750
1751 /* if there are nt orphan nodes free them */
1752 err = recover_orphan_inodes(sbi);
1753 if (err)
1754 goto free_node_inode;
1755
1756 /* read root inode and dentry */
1757 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1758 if (IS_ERR(root)) {
1759 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1760 err = PTR_ERR(root);
1761 goto free_node_inode;
1762 }
1763 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1764 iput(root);
1765 err = -EINVAL;
1766 goto free_node_inode;
1767 }
1768
1769 sb->s_root = d_make_root(root); /* allocate root dentry */
1770 if (!sb->s_root) {
1771 err = -ENOMEM;
1772 goto free_root_inode;
1773 }
1774
1775 err = f2fs_build_stats(sbi);
1776 if (err)
1777 goto free_root_inode;
1778
1779 if (f2fs_proc_root)
1780 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1781
1782 if (sbi->s_proc) {
1783 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1784 &f2fs_seq_segment_info_fops, sb);
1785 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
1786 &f2fs_seq_segment_bits_fops, sb);
1787 }
1788
1789 sbi->s_kobj.kset = f2fs_kset;
1790 init_completion(&sbi->s_kobj_unregister);
1791 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1792 "%s", sb->s_id);
1793 if (err)
1794 goto free_proc;
1795
1796 /* recover fsynced data */
1797 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1798 /*
1799 * mount should be failed, when device has readonly mode, and
1800 * previous checkpoint was not done by clean system shutdown.
1801 */
1802 if (bdev_read_only(sb->s_bdev) &&
1803 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1804 err = -EROFS;
1805 goto free_kobj;
1806 }
1807
1808 if (need_fsck)
1809 set_sbi_flag(sbi, SBI_NEED_FSCK);
1810
1811 err = recover_fsync_data(sbi, false);
1812 if (err < 0) {
1813 need_fsck = true;
1814 f2fs_msg(sb, KERN_ERR,
1815 "Cannot recover all fsync data errno=%d", err);
1816 goto free_kobj;
1817 }
1818 } else {
1819 err = recover_fsync_data(sbi, true);
1820
1821 if (!f2fs_readonly(sb) && err > 0) {
1822 err = -EINVAL;
1823 f2fs_msg(sb, KERN_ERR,
1824 "Need to recover fsync data");
1825 goto free_kobj;
1826 }
1827 }
1828
1829 /* recover_fsync_data() cleared this already */
1830 clear_sbi_flag(sbi, SBI_POR_DOING);
1831
1832 /*
1833 * If filesystem is not mounted as read-only then
1834 * do start the gc_thread.
1835 */
1836 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1837 /* After POR, we can run background GC thread.*/
1838 err = start_gc_thread(sbi);
1839 if (err)
1840 goto free_kobj;
1841 }
1842 kfree(options);
1843
1844 /* recover broken superblock */
1845 if (recovery) {
1846 err = f2fs_commit_super(sbi, true);
1847 f2fs_msg(sb, KERN_INFO,
1848 "Try to recover %dth superblock, ret: %d",
1849 sbi->valid_super_block ? 1 : 2, err);
1850 }
1851
1852 f2fs_update_time(sbi, CP_TIME);
1853 f2fs_update_time(sbi, REQ_TIME);
1854 return 0;
1855
1856 free_kobj:
1857 f2fs_sync_inode_meta(sbi);
1858 kobject_del(&sbi->s_kobj);
1859 kobject_put(&sbi->s_kobj);
1860 wait_for_completion(&sbi->s_kobj_unregister);
1861 free_proc:
1862 if (sbi->s_proc) {
1863 remove_proc_entry("segment_info", sbi->s_proc);
1864 remove_proc_entry("segment_bits", sbi->s_proc);
1865 remove_proc_entry(sb->s_id, f2fs_proc_root);
1866 }
1867 f2fs_destroy_stats(sbi);
1868 free_root_inode:
1869 dput(sb->s_root);
1870 sb->s_root = NULL;
1871 free_node_inode:
1872 mutex_lock(&sbi->umount_mutex);
1873 f2fs_leave_shrinker(sbi);
1874 iput(sbi->node_inode);
1875 mutex_unlock(&sbi->umount_mutex);
1876 free_nm:
1877 destroy_node_manager(sbi);
1878 free_sm:
1879 destroy_segment_manager(sbi);
1880 kfree(sbi->ckpt);
1881 free_meta_inode:
1882 make_bad_inode(sbi->meta_inode);
1883 iput(sbi->meta_inode);
1884 free_options:
1885 destroy_percpu_info(sbi);
1886 kfree(options);
1887 free_sb_buf:
1888 kfree(raw_super);
1889 free_sbi:
1890 if (sbi->s_chksum_driver)
1891 crypto_free_shash(sbi->s_chksum_driver);
1892 kfree(sbi);
1893
1894 /* give only one another chance */
1895 if (retry) {
1896 retry = false;
1897 shrink_dcache_sb(sb);
1898 goto try_onemore;
1899 }
1900 return err;
1901 }
1902
1903 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1904 const char *dev_name, void *data)
1905 {
1906 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1907 }
1908
1909 static void kill_f2fs_super(struct super_block *sb)
1910 {
1911 if (sb->s_root)
1912 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1913 kill_block_super(sb);
1914 }
1915
1916 static struct file_system_type f2fs_fs_type = {
1917 .owner = THIS_MODULE,
1918 .name = "f2fs",
1919 .mount = f2fs_mount,
1920 .kill_sb = kill_f2fs_super,
1921 .fs_flags = FS_REQUIRES_DEV,
1922 };
1923 MODULE_ALIAS_FS("f2fs");
1924
1925 static int __init init_inodecache(void)
1926 {
1927 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1928 sizeof(struct f2fs_inode_info), 0,
1929 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1930 if (!f2fs_inode_cachep)
1931 return -ENOMEM;
1932 return 0;
1933 }
1934
1935 static void destroy_inodecache(void)
1936 {
1937 /*
1938 * Make sure all delayed rcu free inodes are flushed before we
1939 * destroy cache.
1940 */
1941 rcu_barrier();
1942 kmem_cache_destroy(f2fs_inode_cachep);
1943 }
1944
1945 static int __init init_f2fs_fs(void)
1946 {
1947 int err;
1948
1949 f2fs_build_trace_ios();
1950
1951 err = init_inodecache();
1952 if (err)
1953 goto fail;
1954 err = create_node_manager_caches();
1955 if (err)
1956 goto free_inodecache;
1957 err = create_segment_manager_caches();
1958 if (err)
1959 goto free_node_manager_caches;
1960 err = create_checkpoint_caches();
1961 if (err)
1962 goto free_segment_manager_caches;
1963 err = create_extent_cache();
1964 if (err)
1965 goto free_checkpoint_caches;
1966 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1967 if (!f2fs_kset) {
1968 err = -ENOMEM;
1969 goto free_extent_cache;
1970 }
1971 #ifdef CONFIG_F2FS_FAULT_INJECTION
1972 f2fs_fault_inject.kset = f2fs_kset;
1973 f2fs_build_fault_attr(0);
1974 err = kobject_init_and_add(&f2fs_fault_inject, &f2fs_fault_ktype,
1975 NULL, "fault_injection");
1976 if (err) {
1977 f2fs_fault_inject.kset = NULL;
1978 goto free_kset;
1979 }
1980 #endif
1981 err = register_shrinker(&f2fs_shrinker_info);
1982 if (err)
1983 goto free_kset;
1984
1985 err = register_filesystem(&f2fs_fs_type);
1986 if (err)
1987 goto free_shrinker;
1988 err = f2fs_create_root_stats();
1989 if (err)
1990 goto free_filesystem;
1991 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1992 return 0;
1993
1994 free_filesystem:
1995 unregister_filesystem(&f2fs_fs_type);
1996 free_shrinker:
1997 unregister_shrinker(&f2fs_shrinker_info);
1998 free_kset:
1999 #ifdef CONFIG_F2FS_FAULT_INJECTION
2000 if (f2fs_fault_inject.kset)
2001 kobject_put(&f2fs_fault_inject);
2002 #endif
2003 kset_unregister(f2fs_kset);
2004 free_extent_cache:
2005 destroy_extent_cache();
2006 free_checkpoint_caches:
2007 destroy_checkpoint_caches();
2008 free_segment_manager_caches:
2009 destroy_segment_manager_caches();
2010 free_node_manager_caches:
2011 destroy_node_manager_caches();
2012 free_inodecache:
2013 destroy_inodecache();
2014 fail:
2015 return err;
2016 }
2017
2018 static void __exit exit_f2fs_fs(void)
2019 {
2020 remove_proc_entry("fs/f2fs", NULL);
2021 f2fs_destroy_root_stats();
2022 unregister_filesystem(&f2fs_fs_type);
2023 unregister_shrinker(&f2fs_shrinker_info);
2024 #ifdef CONFIG_F2FS_FAULT_INJECTION
2025 kobject_put(&f2fs_fault_inject);
2026 #endif
2027 kset_unregister(f2fs_kset);
2028 destroy_extent_cache();
2029 destroy_checkpoint_caches();
2030 destroy_segment_manager_caches();
2031 destroy_node_manager_caches();
2032 destroy_inodecache();
2033 f2fs_destroy_trace_ios();
2034 }
2035
2036 module_init(init_f2fs_fs)
2037 module_exit(exit_f2fs_fs)
2038
2039 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2040 MODULE_DESCRIPTION("Flash Friendly File System");
2041 MODULE_LICENSE("GPL");
This page took 0.082555 seconds and 4 git commands to generate.