f2fs: introduce a shrinker for mounted fs
[deliverable/linux.git] / fs / f2fs / super.c
1 /*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 /* f2fs-wide shrinker description */
43 static struct shrinker f2fs_shrinker_info = {
44 .scan_objects = f2fs_shrink_scan,
45 .count_objects = f2fs_shrink_count,
46 .seeks = DEFAULT_SEEKS,
47 };
48
49 enum {
50 Opt_gc_background,
51 Opt_disable_roll_forward,
52 Opt_norecovery,
53 Opt_discard,
54 Opt_noheap,
55 Opt_user_xattr,
56 Opt_nouser_xattr,
57 Opt_acl,
58 Opt_noacl,
59 Opt_active_logs,
60 Opt_disable_ext_identify,
61 Opt_inline_xattr,
62 Opt_inline_data,
63 Opt_inline_dentry,
64 Opt_flush_merge,
65 Opt_nobarrier,
66 Opt_fastboot,
67 Opt_extent_cache,
68 Opt_noinline_data,
69 Opt_err,
70 };
71
72 static match_table_t f2fs_tokens = {
73 {Opt_gc_background, "background_gc=%s"},
74 {Opt_disable_roll_forward, "disable_roll_forward"},
75 {Opt_norecovery, "norecovery"},
76 {Opt_discard, "discard"},
77 {Opt_noheap, "no_heap"},
78 {Opt_user_xattr, "user_xattr"},
79 {Opt_nouser_xattr, "nouser_xattr"},
80 {Opt_acl, "acl"},
81 {Opt_noacl, "noacl"},
82 {Opt_active_logs, "active_logs=%u"},
83 {Opt_disable_ext_identify, "disable_ext_identify"},
84 {Opt_inline_xattr, "inline_xattr"},
85 {Opt_inline_data, "inline_data"},
86 {Opt_inline_dentry, "inline_dentry"},
87 {Opt_flush_merge, "flush_merge"},
88 {Opt_nobarrier, "nobarrier"},
89 {Opt_fastboot, "fastboot"},
90 {Opt_extent_cache, "extent_cache"},
91 {Opt_noinline_data, "noinline_data"},
92 {Opt_err, NULL},
93 };
94
95 /* Sysfs support for f2fs */
96 enum {
97 GC_THREAD, /* struct f2fs_gc_thread */
98 SM_INFO, /* struct f2fs_sm_info */
99 NM_INFO, /* struct f2fs_nm_info */
100 F2FS_SBI, /* struct f2fs_sb_info */
101 };
102
103 struct f2fs_attr {
104 struct attribute attr;
105 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
106 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
107 const char *, size_t);
108 int struct_type;
109 int offset;
110 };
111
112 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
113 {
114 if (struct_type == GC_THREAD)
115 return (unsigned char *)sbi->gc_thread;
116 else if (struct_type == SM_INFO)
117 return (unsigned char *)SM_I(sbi);
118 else if (struct_type == NM_INFO)
119 return (unsigned char *)NM_I(sbi);
120 else if (struct_type == F2FS_SBI)
121 return (unsigned char *)sbi;
122 return NULL;
123 }
124
125 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
126 struct f2fs_sb_info *sbi, char *buf)
127 {
128 unsigned char *ptr = NULL;
129 unsigned int *ui;
130
131 ptr = __struct_ptr(sbi, a->struct_type);
132 if (!ptr)
133 return -EINVAL;
134
135 ui = (unsigned int *)(ptr + a->offset);
136
137 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
138 }
139
140 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
141 struct f2fs_sb_info *sbi,
142 const char *buf, size_t count)
143 {
144 unsigned char *ptr;
145 unsigned long t;
146 unsigned int *ui;
147 ssize_t ret;
148
149 ptr = __struct_ptr(sbi, a->struct_type);
150 if (!ptr)
151 return -EINVAL;
152
153 ui = (unsigned int *)(ptr + a->offset);
154
155 ret = kstrtoul(skip_spaces(buf), 0, &t);
156 if (ret < 0)
157 return ret;
158 *ui = t;
159 return count;
160 }
161
162 static ssize_t f2fs_attr_show(struct kobject *kobj,
163 struct attribute *attr, char *buf)
164 {
165 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
166 s_kobj);
167 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
168
169 return a->show ? a->show(a, sbi, buf) : 0;
170 }
171
172 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
173 const char *buf, size_t len)
174 {
175 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
176 s_kobj);
177 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
178
179 return a->store ? a->store(a, sbi, buf, len) : 0;
180 }
181
182 static void f2fs_sb_release(struct kobject *kobj)
183 {
184 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
185 s_kobj);
186 complete(&sbi->s_kobj_unregister);
187 }
188
189 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
190 static struct f2fs_attr f2fs_attr_##_name = { \
191 .attr = {.name = __stringify(_name), .mode = _mode }, \
192 .show = _show, \
193 .store = _store, \
194 .struct_type = _struct_type, \
195 .offset = _offset \
196 }
197
198 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
199 F2FS_ATTR_OFFSET(struct_type, name, 0644, \
200 f2fs_sbi_show, f2fs_sbi_store, \
201 offsetof(struct struct_name, elname))
202
203 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
204 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
205 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
206 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
207 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
208 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
209 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
210 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
211 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
212 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
213 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
214 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
215 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
216
217 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
218 static struct attribute *f2fs_attrs[] = {
219 ATTR_LIST(gc_min_sleep_time),
220 ATTR_LIST(gc_max_sleep_time),
221 ATTR_LIST(gc_no_gc_sleep_time),
222 ATTR_LIST(gc_idle),
223 ATTR_LIST(reclaim_segments),
224 ATTR_LIST(max_small_discards),
225 ATTR_LIST(batched_trim_sections),
226 ATTR_LIST(ipu_policy),
227 ATTR_LIST(min_ipu_util),
228 ATTR_LIST(min_fsync_blocks),
229 ATTR_LIST(max_victim_search),
230 ATTR_LIST(dir_level),
231 ATTR_LIST(ram_thresh),
232 NULL,
233 };
234
235 static const struct sysfs_ops f2fs_attr_ops = {
236 .show = f2fs_attr_show,
237 .store = f2fs_attr_store,
238 };
239
240 static struct kobj_type f2fs_ktype = {
241 .default_attrs = f2fs_attrs,
242 .sysfs_ops = &f2fs_attr_ops,
243 .release = f2fs_sb_release,
244 };
245
246 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
247 {
248 struct va_format vaf;
249 va_list args;
250
251 va_start(args, fmt);
252 vaf.fmt = fmt;
253 vaf.va = &args;
254 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
255 va_end(args);
256 }
257
258 static void init_once(void *foo)
259 {
260 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
261
262 inode_init_once(&fi->vfs_inode);
263 }
264
265 static int parse_options(struct super_block *sb, char *options)
266 {
267 struct f2fs_sb_info *sbi = F2FS_SB(sb);
268 struct request_queue *q;
269 substring_t args[MAX_OPT_ARGS];
270 char *p, *name;
271 int arg = 0;
272
273 if (!options)
274 return 0;
275
276 while ((p = strsep(&options, ",")) != NULL) {
277 int token;
278 if (!*p)
279 continue;
280 /*
281 * Initialize args struct so we know whether arg was
282 * found; some options take optional arguments.
283 */
284 args[0].to = args[0].from = NULL;
285 token = match_token(p, f2fs_tokens, args);
286
287 switch (token) {
288 case Opt_gc_background:
289 name = match_strdup(&args[0]);
290
291 if (!name)
292 return -ENOMEM;
293 if (strlen(name) == 2 && !strncmp(name, "on", 2))
294 set_opt(sbi, BG_GC);
295 else if (strlen(name) == 3 && !strncmp(name, "off", 3))
296 clear_opt(sbi, BG_GC);
297 else {
298 kfree(name);
299 return -EINVAL;
300 }
301 kfree(name);
302 break;
303 case Opt_disable_roll_forward:
304 set_opt(sbi, DISABLE_ROLL_FORWARD);
305 break;
306 case Opt_norecovery:
307 /* this option mounts f2fs with ro */
308 set_opt(sbi, DISABLE_ROLL_FORWARD);
309 if (!f2fs_readonly(sb))
310 return -EINVAL;
311 break;
312 case Opt_discard:
313 q = bdev_get_queue(sb->s_bdev);
314 if (blk_queue_discard(q)) {
315 set_opt(sbi, DISCARD);
316 } else {
317 f2fs_msg(sb, KERN_WARNING,
318 "mounting with \"discard\" option, but "
319 "the device does not support discard");
320 }
321 break;
322 case Opt_noheap:
323 set_opt(sbi, NOHEAP);
324 break;
325 #ifdef CONFIG_F2FS_FS_XATTR
326 case Opt_user_xattr:
327 set_opt(sbi, XATTR_USER);
328 break;
329 case Opt_nouser_xattr:
330 clear_opt(sbi, XATTR_USER);
331 break;
332 case Opt_inline_xattr:
333 set_opt(sbi, INLINE_XATTR);
334 break;
335 #else
336 case Opt_user_xattr:
337 f2fs_msg(sb, KERN_INFO,
338 "user_xattr options not supported");
339 break;
340 case Opt_nouser_xattr:
341 f2fs_msg(sb, KERN_INFO,
342 "nouser_xattr options not supported");
343 break;
344 case Opt_inline_xattr:
345 f2fs_msg(sb, KERN_INFO,
346 "inline_xattr options not supported");
347 break;
348 #endif
349 #ifdef CONFIG_F2FS_FS_POSIX_ACL
350 case Opt_acl:
351 set_opt(sbi, POSIX_ACL);
352 break;
353 case Opt_noacl:
354 clear_opt(sbi, POSIX_ACL);
355 break;
356 #else
357 case Opt_acl:
358 f2fs_msg(sb, KERN_INFO, "acl options not supported");
359 break;
360 case Opt_noacl:
361 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
362 break;
363 #endif
364 case Opt_active_logs:
365 if (args->from && match_int(args, &arg))
366 return -EINVAL;
367 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
368 return -EINVAL;
369 sbi->active_logs = arg;
370 break;
371 case Opt_disable_ext_identify:
372 set_opt(sbi, DISABLE_EXT_IDENTIFY);
373 break;
374 case Opt_inline_data:
375 set_opt(sbi, INLINE_DATA);
376 break;
377 case Opt_inline_dentry:
378 set_opt(sbi, INLINE_DENTRY);
379 break;
380 case Opt_flush_merge:
381 set_opt(sbi, FLUSH_MERGE);
382 break;
383 case Opt_nobarrier:
384 set_opt(sbi, NOBARRIER);
385 break;
386 case Opt_fastboot:
387 set_opt(sbi, FASTBOOT);
388 break;
389 case Opt_extent_cache:
390 set_opt(sbi, EXTENT_CACHE);
391 break;
392 case Opt_noinline_data:
393 clear_opt(sbi, INLINE_DATA);
394 break;
395 default:
396 f2fs_msg(sb, KERN_ERR,
397 "Unrecognized mount option \"%s\" or missing value",
398 p);
399 return -EINVAL;
400 }
401 }
402 return 0;
403 }
404
405 static struct inode *f2fs_alloc_inode(struct super_block *sb)
406 {
407 struct f2fs_inode_info *fi;
408
409 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
410 if (!fi)
411 return NULL;
412
413 init_once((void *) fi);
414
415 /* Initialize f2fs-specific inode info */
416 fi->vfs_inode.i_version = 1;
417 atomic_set(&fi->dirty_pages, 0);
418 fi->i_current_depth = 1;
419 fi->i_advise = 0;
420 rwlock_init(&fi->ext_lock);
421 init_rwsem(&fi->i_sem);
422 INIT_RADIX_TREE(&fi->inmem_root, GFP_NOFS);
423 INIT_LIST_HEAD(&fi->inmem_pages);
424 mutex_init(&fi->inmem_lock);
425
426 set_inode_flag(fi, FI_NEW_INODE);
427
428 if (test_opt(F2FS_SB(sb), INLINE_XATTR))
429 set_inode_flag(fi, FI_INLINE_XATTR);
430
431 /* Will be used by directory only */
432 fi->i_dir_level = F2FS_SB(sb)->dir_level;
433
434 #ifdef CONFIG_F2FS_FS_ENCRYPTION
435 fi->i_crypt_info = NULL;
436 #endif
437 return &fi->vfs_inode;
438 }
439
440 static int f2fs_drop_inode(struct inode *inode)
441 {
442 /*
443 * This is to avoid a deadlock condition like below.
444 * writeback_single_inode(inode)
445 * - f2fs_write_data_page
446 * - f2fs_gc -> iput -> evict
447 * - inode_wait_for_writeback(inode)
448 */
449 if (!inode_unhashed(inode) && inode->i_state & I_SYNC) {
450 if (!inode->i_nlink && !is_bad_inode(inode)) {
451 spin_unlock(&inode->i_lock);
452
453 /* some remained atomic pages should discarded */
454 if (f2fs_is_atomic_file(inode))
455 commit_inmem_pages(inode, true);
456
457 sb_start_intwrite(inode->i_sb);
458 i_size_write(inode, 0);
459
460 if (F2FS_HAS_BLOCKS(inode))
461 f2fs_truncate(inode);
462
463 sb_end_intwrite(inode->i_sb);
464
465 #ifdef CONFIG_F2FS_FS_ENCRYPTION
466 if (F2FS_I(inode)->i_crypt_info)
467 f2fs_free_encryption_info(inode,
468 F2FS_I(inode)->i_crypt_info);
469 #endif
470 spin_lock(&inode->i_lock);
471 }
472 return 0;
473 }
474 return generic_drop_inode(inode);
475 }
476
477 /*
478 * f2fs_dirty_inode() is called from __mark_inode_dirty()
479 *
480 * We should call set_dirty_inode to write the dirty inode through write_inode.
481 */
482 static void f2fs_dirty_inode(struct inode *inode, int flags)
483 {
484 set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
485 }
486
487 static void f2fs_i_callback(struct rcu_head *head)
488 {
489 struct inode *inode = container_of(head, struct inode, i_rcu);
490 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
491 }
492
493 static void f2fs_destroy_inode(struct inode *inode)
494 {
495 call_rcu(&inode->i_rcu, f2fs_i_callback);
496 }
497
498 static void f2fs_put_super(struct super_block *sb)
499 {
500 struct f2fs_sb_info *sbi = F2FS_SB(sb);
501
502 if (sbi->s_proc) {
503 remove_proc_entry("segment_info", sbi->s_proc);
504 remove_proc_entry(sb->s_id, f2fs_proc_root);
505 }
506 kobject_del(&sbi->s_kobj);
507
508 stop_gc_thread(sbi);
509
510 /* prevent remaining shrinker jobs */
511 mutex_lock(&sbi->umount_mutex);
512
513 /*
514 * We don't need to do checkpoint when superblock is clean.
515 * But, the previous checkpoint was not done by umount, it needs to do
516 * clean checkpoint again.
517 */
518 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
519 !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
520 struct cp_control cpc = {
521 .reason = CP_UMOUNT,
522 };
523 write_checkpoint(sbi, &cpc);
524 }
525
526 /* write_checkpoint can update stat informaion */
527 f2fs_destroy_stats(sbi);
528
529 /*
530 * normally superblock is clean, so we need to release this.
531 * In addition, EIO will skip do checkpoint, we need this as well.
532 */
533 release_dirty_inode(sbi);
534 release_discard_addrs(sbi);
535
536 f2fs_leave_shrinker(sbi);
537 mutex_unlock(&sbi->umount_mutex);
538
539 iput(sbi->node_inode);
540 iput(sbi->meta_inode);
541
542 /* destroy f2fs internal modules */
543 destroy_node_manager(sbi);
544 destroy_segment_manager(sbi);
545
546 kfree(sbi->ckpt);
547 kobject_put(&sbi->s_kobj);
548 wait_for_completion(&sbi->s_kobj_unregister);
549
550 sb->s_fs_info = NULL;
551 brelse(sbi->raw_super_buf);
552 kfree(sbi);
553 }
554
555 int f2fs_sync_fs(struct super_block *sb, int sync)
556 {
557 struct f2fs_sb_info *sbi = F2FS_SB(sb);
558
559 trace_f2fs_sync_fs(sb, sync);
560
561 if (sync) {
562 struct cp_control cpc;
563
564 cpc.reason = __get_cp_reason(sbi);
565
566 mutex_lock(&sbi->gc_mutex);
567 write_checkpoint(sbi, &cpc);
568 mutex_unlock(&sbi->gc_mutex);
569 } else {
570 f2fs_balance_fs(sbi);
571 }
572 f2fs_trace_ios(NULL, 1);
573
574 return 0;
575 }
576
577 static int f2fs_freeze(struct super_block *sb)
578 {
579 int err;
580
581 if (f2fs_readonly(sb))
582 return 0;
583
584 err = f2fs_sync_fs(sb, 1);
585 return err;
586 }
587
588 static int f2fs_unfreeze(struct super_block *sb)
589 {
590 return 0;
591 }
592
593 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
594 {
595 struct super_block *sb = dentry->d_sb;
596 struct f2fs_sb_info *sbi = F2FS_SB(sb);
597 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
598 block_t total_count, user_block_count, start_count, ovp_count;
599
600 total_count = le64_to_cpu(sbi->raw_super->block_count);
601 user_block_count = sbi->user_block_count;
602 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
603 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
604 buf->f_type = F2FS_SUPER_MAGIC;
605 buf->f_bsize = sbi->blocksize;
606
607 buf->f_blocks = total_count - start_count;
608 buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
609 buf->f_bavail = user_block_count - valid_user_blocks(sbi);
610
611 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
612 buf->f_ffree = buf->f_files - valid_inode_count(sbi);
613
614 buf->f_namelen = F2FS_NAME_LEN;
615 buf->f_fsid.val[0] = (u32)id;
616 buf->f_fsid.val[1] = (u32)(id >> 32);
617
618 return 0;
619 }
620
621 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
622 {
623 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
624
625 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC))
626 seq_printf(seq, ",background_gc=%s", "on");
627 else
628 seq_printf(seq, ",background_gc=%s", "off");
629 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
630 seq_puts(seq, ",disable_roll_forward");
631 if (test_opt(sbi, DISCARD))
632 seq_puts(seq, ",discard");
633 if (test_opt(sbi, NOHEAP))
634 seq_puts(seq, ",no_heap_alloc");
635 #ifdef CONFIG_F2FS_FS_XATTR
636 if (test_opt(sbi, XATTR_USER))
637 seq_puts(seq, ",user_xattr");
638 else
639 seq_puts(seq, ",nouser_xattr");
640 if (test_opt(sbi, INLINE_XATTR))
641 seq_puts(seq, ",inline_xattr");
642 #endif
643 #ifdef CONFIG_F2FS_FS_POSIX_ACL
644 if (test_opt(sbi, POSIX_ACL))
645 seq_puts(seq, ",acl");
646 else
647 seq_puts(seq, ",noacl");
648 #endif
649 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
650 seq_puts(seq, ",disable_ext_identify");
651 if (test_opt(sbi, INLINE_DATA))
652 seq_puts(seq, ",inline_data");
653 else
654 seq_puts(seq, ",noinline_data");
655 if (test_opt(sbi, INLINE_DENTRY))
656 seq_puts(seq, ",inline_dentry");
657 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
658 seq_puts(seq, ",flush_merge");
659 if (test_opt(sbi, NOBARRIER))
660 seq_puts(seq, ",nobarrier");
661 if (test_opt(sbi, FASTBOOT))
662 seq_puts(seq, ",fastboot");
663 if (test_opt(sbi, EXTENT_CACHE))
664 seq_puts(seq, ",extent_cache");
665 seq_printf(seq, ",active_logs=%u", sbi->active_logs);
666
667 return 0;
668 }
669
670 static int segment_info_seq_show(struct seq_file *seq, void *offset)
671 {
672 struct super_block *sb = seq->private;
673 struct f2fs_sb_info *sbi = F2FS_SB(sb);
674 unsigned int total_segs =
675 le32_to_cpu(sbi->raw_super->segment_count_main);
676 int i;
677
678 seq_puts(seq, "format: segment_type|valid_blocks\n"
679 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
680
681 for (i = 0; i < total_segs; i++) {
682 struct seg_entry *se = get_seg_entry(sbi, i);
683
684 if ((i % 10) == 0)
685 seq_printf(seq, "%-5d", i);
686 seq_printf(seq, "%d|%-3u", se->type,
687 get_valid_blocks(sbi, i, 1));
688 if ((i % 10) == 9 || i == (total_segs - 1))
689 seq_putc(seq, '\n');
690 else
691 seq_putc(seq, ' ');
692 }
693
694 return 0;
695 }
696
697 static int segment_info_open_fs(struct inode *inode, struct file *file)
698 {
699 return single_open(file, segment_info_seq_show, PDE_DATA(inode));
700 }
701
702 static const struct file_operations f2fs_seq_segment_info_fops = {
703 .owner = THIS_MODULE,
704 .open = segment_info_open_fs,
705 .read = seq_read,
706 .llseek = seq_lseek,
707 .release = single_release,
708 };
709
710 static void default_options(struct f2fs_sb_info *sbi)
711 {
712 /* init some FS parameters */
713 sbi->active_logs = NR_CURSEG_TYPE;
714
715 set_opt(sbi, BG_GC);
716 set_opt(sbi, INLINE_DATA);
717
718 #ifdef CONFIG_F2FS_FS_XATTR
719 set_opt(sbi, XATTR_USER);
720 #endif
721 #ifdef CONFIG_F2FS_FS_POSIX_ACL
722 set_opt(sbi, POSIX_ACL);
723 #endif
724 }
725
726 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
727 {
728 struct f2fs_sb_info *sbi = F2FS_SB(sb);
729 struct f2fs_mount_info org_mount_opt;
730 int err, active_logs;
731 bool need_restart_gc = false;
732 bool need_stop_gc = false;
733
734 sync_filesystem(sb);
735
736 /*
737 * Save the old mount options in case we
738 * need to restore them.
739 */
740 org_mount_opt = sbi->mount_opt;
741 active_logs = sbi->active_logs;
742
743 sbi->mount_opt.opt = 0;
744 default_options(sbi);
745
746 /* parse mount options */
747 err = parse_options(sb, data);
748 if (err)
749 goto restore_opts;
750
751 /*
752 * Previous and new state of filesystem is RO,
753 * so skip checking GC and FLUSH_MERGE conditions.
754 */
755 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
756 goto skip;
757
758 /*
759 * We stop the GC thread if FS is mounted as RO
760 * or if background_gc = off is passed in mount
761 * option. Also sync the filesystem.
762 */
763 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
764 if (sbi->gc_thread) {
765 stop_gc_thread(sbi);
766 f2fs_sync_fs(sb, 1);
767 need_restart_gc = true;
768 }
769 } else if (!sbi->gc_thread) {
770 err = start_gc_thread(sbi);
771 if (err)
772 goto restore_opts;
773 need_stop_gc = true;
774 }
775
776 /*
777 * We stop issue flush thread if FS is mounted as RO
778 * or if flush_merge is not passed in mount option.
779 */
780 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
781 destroy_flush_cmd_control(sbi);
782 } else if (!SM_I(sbi)->cmd_control_info) {
783 err = create_flush_cmd_control(sbi);
784 if (err)
785 goto restore_gc;
786 }
787 skip:
788 /* Update the POSIXACL Flag */
789 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
790 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
791 return 0;
792 restore_gc:
793 if (need_restart_gc) {
794 if (start_gc_thread(sbi))
795 f2fs_msg(sbi->sb, KERN_WARNING,
796 "background gc thread has stopped");
797 } else if (need_stop_gc) {
798 stop_gc_thread(sbi);
799 }
800 restore_opts:
801 sbi->mount_opt = org_mount_opt;
802 sbi->active_logs = active_logs;
803 return err;
804 }
805
806 static struct super_operations f2fs_sops = {
807 .alloc_inode = f2fs_alloc_inode,
808 .drop_inode = f2fs_drop_inode,
809 .destroy_inode = f2fs_destroy_inode,
810 .write_inode = f2fs_write_inode,
811 .dirty_inode = f2fs_dirty_inode,
812 .show_options = f2fs_show_options,
813 .evict_inode = f2fs_evict_inode,
814 .put_super = f2fs_put_super,
815 .sync_fs = f2fs_sync_fs,
816 .freeze_fs = f2fs_freeze,
817 .unfreeze_fs = f2fs_unfreeze,
818 .statfs = f2fs_statfs,
819 .remount_fs = f2fs_remount,
820 };
821
822 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
823 u64 ino, u32 generation)
824 {
825 struct f2fs_sb_info *sbi = F2FS_SB(sb);
826 struct inode *inode;
827
828 if (check_nid_range(sbi, ino))
829 return ERR_PTR(-ESTALE);
830
831 /*
832 * f2fs_iget isn't quite right if the inode is currently unallocated!
833 * However f2fs_iget currently does appropriate checks to handle stale
834 * inodes so everything is OK.
835 */
836 inode = f2fs_iget(sb, ino);
837 if (IS_ERR(inode))
838 return ERR_CAST(inode);
839 if (unlikely(generation && inode->i_generation != generation)) {
840 /* we didn't find the right inode.. */
841 iput(inode);
842 return ERR_PTR(-ESTALE);
843 }
844 return inode;
845 }
846
847 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
848 int fh_len, int fh_type)
849 {
850 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
851 f2fs_nfs_get_inode);
852 }
853
854 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
855 int fh_len, int fh_type)
856 {
857 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
858 f2fs_nfs_get_inode);
859 }
860
861 static const struct export_operations f2fs_export_ops = {
862 .fh_to_dentry = f2fs_fh_to_dentry,
863 .fh_to_parent = f2fs_fh_to_parent,
864 .get_parent = f2fs_get_parent,
865 };
866
867 static loff_t max_file_size(unsigned bits)
868 {
869 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
870 loff_t leaf_count = ADDRS_PER_BLOCK;
871
872 /* two direct node blocks */
873 result += (leaf_count * 2);
874
875 /* two indirect node blocks */
876 leaf_count *= NIDS_PER_BLOCK;
877 result += (leaf_count * 2);
878
879 /* one double indirect node block */
880 leaf_count *= NIDS_PER_BLOCK;
881 result += leaf_count;
882
883 result <<= bits;
884 return result;
885 }
886
887 static int sanity_check_raw_super(struct super_block *sb,
888 struct f2fs_super_block *raw_super)
889 {
890 unsigned int blocksize;
891
892 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
893 f2fs_msg(sb, KERN_INFO,
894 "Magic Mismatch, valid(0x%x) - read(0x%x)",
895 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
896 return 1;
897 }
898
899 /* Currently, support only 4KB page cache size */
900 if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
901 f2fs_msg(sb, KERN_INFO,
902 "Invalid page_cache_size (%lu), supports only 4KB\n",
903 PAGE_CACHE_SIZE);
904 return 1;
905 }
906
907 /* Currently, support only 4KB block size */
908 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
909 if (blocksize != F2FS_BLKSIZE) {
910 f2fs_msg(sb, KERN_INFO,
911 "Invalid blocksize (%u), supports only 4KB\n",
912 blocksize);
913 return 1;
914 }
915
916 /* Currently, support 512/1024/2048/4096 bytes sector size */
917 if (le32_to_cpu(raw_super->log_sectorsize) >
918 F2FS_MAX_LOG_SECTOR_SIZE ||
919 le32_to_cpu(raw_super->log_sectorsize) <
920 F2FS_MIN_LOG_SECTOR_SIZE) {
921 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
922 le32_to_cpu(raw_super->log_sectorsize));
923 return 1;
924 }
925 if (le32_to_cpu(raw_super->log_sectors_per_block) +
926 le32_to_cpu(raw_super->log_sectorsize) !=
927 F2FS_MAX_LOG_SECTOR_SIZE) {
928 f2fs_msg(sb, KERN_INFO,
929 "Invalid log sectors per block(%u) log sectorsize(%u)",
930 le32_to_cpu(raw_super->log_sectors_per_block),
931 le32_to_cpu(raw_super->log_sectorsize));
932 return 1;
933 }
934 return 0;
935 }
936
937 static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
938 {
939 unsigned int total, fsmeta;
940 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
941 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
942
943 total = le32_to_cpu(raw_super->segment_count);
944 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
945 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
946 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
947 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
948 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
949
950 if (unlikely(fsmeta >= total))
951 return 1;
952
953 if (unlikely(f2fs_cp_error(sbi))) {
954 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
955 return 1;
956 }
957 return 0;
958 }
959
960 static void init_sb_info(struct f2fs_sb_info *sbi)
961 {
962 struct f2fs_super_block *raw_super = sbi->raw_super;
963 int i;
964
965 sbi->log_sectors_per_block =
966 le32_to_cpu(raw_super->log_sectors_per_block);
967 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
968 sbi->blocksize = 1 << sbi->log_blocksize;
969 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
970 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
971 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
972 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
973 sbi->total_sections = le32_to_cpu(raw_super->section_count);
974 sbi->total_node_count =
975 (le32_to_cpu(raw_super->segment_count_nat) / 2)
976 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
977 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
978 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
979 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
980 sbi->cur_victim_sec = NULL_SECNO;
981 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
982
983 for (i = 0; i < NR_COUNT_TYPE; i++)
984 atomic_set(&sbi->nr_pages[i], 0);
985
986 sbi->dir_level = DEF_DIR_LEVEL;
987 clear_sbi_flag(sbi, SBI_NEED_FSCK);
988
989 INIT_LIST_HEAD(&sbi->s_list);
990 mutex_init(&sbi->umount_mutex);
991 }
992
993 /*
994 * Read f2fs raw super block.
995 * Because we have two copies of super block, so read the first one at first,
996 * if the first one is invalid, move to read the second one.
997 */
998 static int read_raw_super_block(struct super_block *sb,
999 struct f2fs_super_block **raw_super,
1000 struct buffer_head **raw_super_buf,
1001 int *recovery)
1002 {
1003 int block = 0;
1004 struct buffer_head *buffer;
1005 struct f2fs_super_block *super;
1006 int err = 0;
1007
1008 retry:
1009 buffer = sb_bread(sb, block);
1010 if (!buffer) {
1011 *recovery = 1;
1012 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1013 block + 1);
1014 if (block == 0) {
1015 block++;
1016 goto retry;
1017 } else {
1018 err = -EIO;
1019 goto out;
1020 }
1021 }
1022
1023 super = (struct f2fs_super_block *)
1024 ((char *)(buffer)->b_data + F2FS_SUPER_OFFSET);
1025
1026 /* sanity checking of raw super */
1027 if (sanity_check_raw_super(sb, super)) {
1028 brelse(buffer);
1029 *recovery = 1;
1030 f2fs_msg(sb, KERN_ERR,
1031 "Can't find valid F2FS filesystem in %dth superblock",
1032 block + 1);
1033 if (block == 0) {
1034 block++;
1035 goto retry;
1036 } else {
1037 err = -EINVAL;
1038 goto out;
1039 }
1040 }
1041
1042 if (!*raw_super) {
1043 *raw_super_buf = buffer;
1044 *raw_super = super;
1045 } else {
1046 /* already have a valid superblock */
1047 brelse(buffer);
1048 }
1049
1050 /* check the validity of the second superblock */
1051 if (block == 0) {
1052 block++;
1053 goto retry;
1054 }
1055
1056 out:
1057 /* No valid superblock */
1058 if (!*raw_super)
1059 return err;
1060
1061 return 0;
1062 }
1063
1064 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1065 {
1066 struct buffer_head *sbh = sbi->raw_super_buf;
1067 sector_t block = sbh->b_blocknr;
1068 int err;
1069
1070 /* write back-up superblock first */
1071 sbh->b_blocknr = block ? 0 : 1;
1072 mark_buffer_dirty(sbh);
1073 err = sync_dirty_buffer(sbh);
1074
1075 sbh->b_blocknr = block;
1076
1077 /* if we are in recovery path, skip writing valid superblock */
1078 if (recover || err)
1079 goto out;
1080
1081 /* write current valid superblock */
1082 mark_buffer_dirty(sbh);
1083 err = sync_dirty_buffer(sbh);
1084 out:
1085 clear_buffer_write_io_error(sbh);
1086 set_buffer_uptodate(sbh);
1087 return err;
1088 }
1089
1090 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1091 {
1092 struct f2fs_sb_info *sbi;
1093 struct f2fs_super_block *raw_super;
1094 struct buffer_head *raw_super_buf;
1095 struct inode *root;
1096 long err;
1097 bool retry = true, need_fsck = false;
1098 char *options = NULL;
1099 int recovery, i;
1100
1101 try_onemore:
1102 err = -EINVAL;
1103 raw_super = NULL;
1104 raw_super_buf = NULL;
1105 recovery = 0;
1106
1107 /* allocate memory for f2fs-specific super block info */
1108 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1109 if (!sbi)
1110 return -ENOMEM;
1111
1112 /* set a block size */
1113 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1114 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1115 goto free_sbi;
1116 }
1117
1118 err = read_raw_super_block(sb, &raw_super, &raw_super_buf, &recovery);
1119 if (err)
1120 goto free_sbi;
1121
1122 sb->s_fs_info = sbi;
1123 default_options(sbi);
1124 /* parse mount options */
1125 options = kstrdup((const char *)data, GFP_KERNEL);
1126 if (data && !options) {
1127 err = -ENOMEM;
1128 goto free_sb_buf;
1129 }
1130
1131 err = parse_options(sb, options);
1132 if (err)
1133 goto free_options;
1134
1135 sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
1136 sb->s_max_links = F2FS_LINK_MAX;
1137 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1138
1139 sb->s_op = &f2fs_sops;
1140 sb->s_xattr = f2fs_xattr_handlers;
1141 sb->s_export_op = &f2fs_export_ops;
1142 sb->s_magic = F2FS_SUPER_MAGIC;
1143 sb->s_time_gran = 1;
1144 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1145 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1146 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1147
1148 /* init f2fs-specific super block info */
1149 sbi->sb = sb;
1150 sbi->raw_super = raw_super;
1151 sbi->raw_super_buf = raw_super_buf;
1152 mutex_init(&sbi->gc_mutex);
1153 mutex_init(&sbi->writepages);
1154 mutex_init(&sbi->cp_mutex);
1155 init_rwsem(&sbi->node_write);
1156 clear_sbi_flag(sbi, SBI_POR_DOING);
1157 spin_lock_init(&sbi->stat_lock);
1158
1159 init_rwsem(&sbi->read_io.io_rwsem);
1160 sbi->read_io.sbi = sbi;
1161 sbi->read_io.bio = NULL;
1162 for (i = 0; i < NR_PAGE_TYPE; i++) {
1163 init_rwsem(&sbi->write_io[i].io_rwsem);
1164 sbi->write_io[i].sbi = sbi;
1165 sbi->write_io[i].bio = NULL;
1166 }
1167
1168 init_rwsem(&sbi->cp_rwsem);
1169 init_waitqueue_head(&sbi->cp_wait);
1170 init_sb_info(sbi);
1171
1172 /* get an inode for meta space */
1173 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1174 if (IS_ERR(sbi->meta_inode)) {
1175 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1176 err = PTR_ERR(sbi->meta_inode);
1177 goto free_options;
1178 }
1179
1180 err = get_valid_checkpoint(sbi);
1181 if (err) {
1182 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1183 goto free_meta_inode;
1184 }
1185
1186 /* sanity checking of checkpoint */
1187 err = -EINVAL;
1188 if (sanity_check_ckpt(sbi)) {
1189 f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
1190 goto free_cp;
1191 }
1192
1193 sbi->total_valid_node_count =
1194 le32_to_cpu(sbi->ckpt->valid_node_count);
1195 sbi->total_valid_inode_count =
1196 le32_to_cpu(sbi->ckpt->valid_inode_count);
1197 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1198 sbi->total_valid_block_count =
1199 le64_to_cpu(sbi->ckpt->valid_block_count);
1200 sbi->last_valid_block_count = sbi->total_valid_block_count;
1201 sbi->alloc_valid_block_count = 0;
1202 INIT_LIST_HEAD(&sbi->dir_inode_list);
1203 spin_lock_init(&sbi->dir_inode_lock);
1204
1205 init_extent_cache_info(sbi);
1206
1207 init_ino_entry_info(sbi);
1208
1209 /* setup f2fs internal modules */
1210 err = build_segment_manager(sbi);
1211 if (err) {
1212 f2fs_msg(sb, KERN_ERR,
1213 "Failed to initialize F2FS segment manager");
1214 goto free_sm;
1215 }
1216 err = build_node_manager(sbi);
1217 if (err) {
1218 f2fs_msg(sb, KERN_ERR,
1219 "Failed to initialize F2FS node manager");
1220 goto free_nm;
1221 }
1222
1223 build_gc_manager(sbi);
1224
1225 /* get an inode for node space */
1226 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1227 if (IS_ERR(sbi->node_inode)) {
1228 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1229 err = PTR_ERR(sbi->node_inode);
1230 goto free_nm;
1231 }
1232
1233 f2fs_join_shrinker(sbi);
1234
1235 /* if there are nt orphan nodes free them */
1236 recover_orphan_inodes(sbi);
1237
1238 /* read root inode and dentry */
1239 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1240 if (IS_ERR(root)) {
1241 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1242 err = PTR_ERR(root);
1243 goto free_node_inode;
1244 }
1245 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1246 iput(root);
1247 err = -EINVAL;
1248 goto free_node_inode;
1249 }
1250
1251 sb->s_root = d_make_root(root); /* allocate root dentry */
1252 if (!sb->s_root) {
1253 err = -ENOMEM;
1254 goto free_root_inode;
1255 }
1256
1257 err = f2fs_build_stats(sbi);
1258 if (err)
1259 goto free_root_inode;
1260
1261 if (f2fs_proc_root)
1262 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1263
1264 if (sbi->s_proc)
1265 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1266 &f2fs_seq_segment_info_fops, sb);
1267
1268 sbi->s_kobj.kset = f2fs_kset;
1269 init_completion(&sbi->s_kobj_unregister);
1270 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1271 "%s", sb->s_id);
1272 if (err)
1273 goto free_proc;
1274
1275 /* recover fsynced data */
1276 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1277 /*
1278 * mount should be failed, when device has readonly mode, and
1279 * previous checkpoint was not done by clean system shutdown.
1280 */
1281 if (bdev_read_only(sb->s_bdev) &&
1282 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1283 err = -EROFS;
1284 goto free_kobj;
1285 }
1286
1287 if (need_fsck)
1288 set_sbi_flag(sbi, SBI_NEED_FSCK);
1289
1290 err = recover_fsync_data(sbi);
1291 if (err) {
1292 need_fsck = true;
1293 f2fs_msg(sb, KERN_ERR,
1294 "Cannot recover all fsync data errno=%ld", err);
1295 goto free_kobj;
1296 }
1297 }
1298
1299 /*
1300 * If filesystem is not mounted as read-only then
1301 * do start the gc_thread.
1302 */
1303 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1304 /* After POR, we can run background GC thread.*/
1305 err = start_gc_thread(sbi);
1306 if (err)
1307 goto free_kobj;
1308 }
1309 kfree(options);
1310
1311 /* recover broken superblock */
1312 if (recovery && !f2fs_readonly(sb) && !bdev_read_only(sb->s_bdev)) {
1313 f2fs_msg(sb, KERN_INFO, "Recover invalid superblock");
1314 f2fs_commit_super(sbi, true);
1315 }
1316
1317 return 0;
1318
1319 free_kobj:
1320 kobject_del(&sbi->s_kobj);
1321 free_proc:
1322 if (sbi->s_proc) {
1323 remove_proc_entry("segment_info", sbi->s_proc);
1324 remove_proc_entry(sb->s_id, f2fs_proc_root);
1325 }
1326 f2fs_destroy_stats(sbi);
1327 free_root_inode:
1328 dput(sb->s_root);
1329 sb->s_root = NULL;
1330 free_node_inode:
1331 mutex_lock(&sbi->umount_mutex);
1332 f2fs_leave_shrinker(sbi);
1333 iput(sbi->node_inode);
1334 mutex_unlock(&sbi->umount_mutex);
1335 free_nm:
1336 destroy_node_manager(sbi);
1337 free_sm:
1338 destroy_segment_manager(sbi);
1339 free_cp:
1340 kfree(sbi->ckpt);
1341 free_meta_inode:
1342 make_bad_inode(sbi->meta_inode);
1343 iput(sbi->meta_inode);
1344 free_options:
1345 kfree(options);
1346 free_sb_buf:
1347 brelse(raw_super_buf);
1348 free_sbi:
1349 kfree(sbi);
1350
1351 /* give only one another chance */
1352 if (retry) {
1353 retry = false;
1354 shrink_dcache_sb(sb);
1355 goto try_onemore;
1356 }
1357 return err;
1358 }
1359
1360 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1361 const char *dev_name, void *data)
1362 {
1363 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1364 }
1365
1366 static void kill_f2fs_super(struct super_block *sb)
1367 {
1368 if (sb->s_root)
1369 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1370 kill_block_super(sb);
1371 }
1372
1373 static struct file_system_type f2fs_fs_type = {
1374 .owner = THIS_MODULE,
1375 .name = "f2fs",
1376 .mount = f2fs_mount,
1377 .kill_sb = kill_f2fs_super,
1378 .fs_flags = FS_REQUIRES_DEV,
1379 };
1380 MODULE_ALIAS_FS("f2fs");
1381
1382 static int __init init_inodecache(void)
1383 {
1384 f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
1385 sizeof(struct f2fs_inode_info));
1386 if (!f2fs_inode_cachep)
1387 return -ENOMEM;
1388 return 0;
1389 }
1390
1391 static void destroy_inodecache(void)
1392 {
1393 /*
1394 * Make sure all delayed rcu free inodes are flushed before we
1395 * destroy cache.
1396 */
1397 rcu_barrier();
1398 kmem_cache_destroy(f2fs_inode_cachep);
1399 }
1400
1401 static int __init init_f2fs_fs(void)
1402 {
1403 int err;
1404
1405 f2fs_build_trace_ios();
1406
1407 err = init_inodecache();
1408 if (err)
1409 goto fail;
1410 err = create_node_manager_caches();
1411 if (err)
1412 goto free_inodecache;
1413 err = create_segment_manager_caches();
1414 if (err)
1415 goto free_node_manager_caches;
1416 err = create_checkpoint_caches();
1417 if (err)
1418 goto free_segment_manager_caches;
1419 err = create_extent_cache();
1420 if (err)
1421 goto free_checkpoint_caches;
1422 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1423 if (!f2fs_kset) {
1424 err = -ENOMEM;
1425 goto free_extent_cache;
1426 }
1427 err = f2fs_init_crypto();
1428 if (err)
1429 goto free_kset;
1430
1431 err = register_shrinker(&f2fs_shrinker_info);
1432 if (err)
1433 goto free_crypto;
1434
1435 err = register_filesystem(&f2fs_fs_type);
1436 if (err)
1437 goto free_shrinker;
1438 f2fs_create_root_stats();
1439 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1440 return 0;
1441
1442 free_shrinker:
1443 unregister_shrinker(&f2fs_shrinker_info);
1444 free_crypto:
1445 f2fs_exit_crypto();
1446 free_kset:
1447 kset_unregister(f2fs_kset);
1448 free_extent_cache:
1449 destroy_extent_cache();
1450 free_checkpoint_caches:
1451 destroy_checkpoint_caches();
1452 free_segment_manager_caches:
1453 destroy_segment_manager_caches();
1454 free_node_manager_caches:
1455 destroy_node_manager_caches();
1456 free_inodecache:
1457 destroy_inodecache();
1458 fail:
1459 return err;
1460 }
1461
1462 static void __exit exit_f2fs_fs(void)
1463 {
1464 remove_proc_entry("fs/f2fs", NULL);
1465 f2fs_destroy_root_stats();
1466 unregister_shrinker(&f2fs_shrinker_info);
1467 unregister_filesystem(&f2fs_fs_type);
1468 f2fs_exit_crypto();
1469 destroy_extent_cache();
1470 destroy_checkpoint_caches();
1471 destroy_segment_manager_caches();
1472 destroy_node_manager_caches();
1473 destroy_inodecache();
1474 kset_unregister(f2fs_kset);
1475 f2fs_destroy_trace_ios();
1476 }
1477
1478 module_init(init_f2fs_fs)
1479 module_exit(exit_f2fs_fs)
1480
1481 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1482 MODULE_DESCRIPTION("Flash Friendly File System");
1483 MODULE_LICENSE("GPL");
This page took 0.062344 seconds and 6 git commands to generate.