Merge branch 'drm-tda998x-devel' of git://git.armlinux.org.uk/~rmk/linux-arm into...
[deliverable/linux.git] / fs / f2fs / super.c
1 /*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 struct f2fs_fault_info f2fs_fault;
44
45 char *fault_name[FAULT_MAX] = {
46 [FAULT_KMALLOC] = "kmalloc",
47 [FAULT_PAGE_ALLOC] = "page alloc",
48 [FAULT_ALLOC_NID] = "alloc nid",
49 [FAULT_ORPHAN] = "orphan",
50 [FAULT_BLOCK] = "no more block",
51 [FAULT_DIR_DEPTH] = "too big dir depth",
52 [FAULT_EVICT_INODE] = "evict_inode fail",
53 };
54
55 static void f2fs_build_fault_attr(unsigned int rate)
56 {
57 if (rate) {
58 atomic_set(&f2fs_fault.inject_ops, 0);
59 f2fs_fault.inject_rate = rate;
60 f2fs_fault.inject_type = (1 << FAULT_MAX) - 1;
61 } else {
62 memset(&f2fs_fault, 0, sizeof(struct f2fs_fault_info));
63 }
64 }
65 #endif
66
67 /* f2fs-wide shrinker description */
68 static struct shrinker f2fs_shrinker_info = {
69 .scan_objects = f2fs_shrink_scan,
70 .count_objects = f2fs_shrink_count,
71 .seeks = DEFAULT_SEEKS,
72 };
73
74 enum {
75 Opt_gc_background,
76 Opt_disable_roll_forward,
77 Opt_norecovery,
78 Opt_discard,
79 Opt_nodiscard,
80 Opt_noheap,
81 Opt_user_xattr,
82 Opt_nouser_xattr,
83 Opt_acl,
84 Opt_noacl,
85 Opt_active_logs,
86 Opt_disable_ext_identify,
87 Opt_inline_xattr,
88 Opt_inline_data,
89 Opt_inline_dentry,
90 Opt_flush_merge,
91 Opt_noflush_merge,
92 Opt_nobarrier,
93 Opt_fastboot,
94 Opt_extent_cache,
95 Opt_noextent_cache,
96 Opt_noinline_data,
97 Opt_data_flush,
98 Opt_mode,
99 Opt_fault_injection,
100 Opt_lazytime,
101 Opt_nolazytime,
102 Opt_err,
103 };
104
105 static match_table_t f2fs_tokens = {
106 {Opt_gc_background, "background_gc=%s"},
107 {Opt_disable_roll_forward, "disable_roll_forward"},
108 {Opt_norecovery, "norecovery"},
109 {Opt_discard, "discard"},
110 {Opt_nodiscard, "nodiscard"},
111 {Opt_noheap, "no_heap"},
112 {Opt_user_xattr, "user_xattr"},
113 {Opt_nouser_xattr, "nouser_xattr"},
114 {Opt_acl, "acl"},
115 {Opt_noacl, "noacl"},
116 {Opt_active_logs, "active_logs=%u"},
117 {Opt_disable_ext_identify, "disable_ext_identify"},
118 {Opt_inline_xattr, "inline_xattr"},
119 {Opt_inline_data, "inline_data"},
120 {Opt_inline_dentry, "inline_dentry"},
121 {Opt_flush_merge, "flush_merge"},
122 {Opt_noflush_merge, "noflush_merge"},
123 {Opt_nobarrier, "nobarrier"},
124 {Opt_fastboot, "fastboot"},
125 {Opt_extent_cache, "extent_cache"},
126 {Opt_noextent_cache, "noextent_cache"},
127 {Opt_noinline_data, "noinline_data"},
128 {Opt_data_flush, "data_flush"},
129 {Opt_mode, "mode=%s"},
130 {Opt_fault_injection, "fault_injection=%u"},
131 {Opt_lazytime, "lazytime"},
132 {Opt_nolazytime, "nolazytime"},
133 {Opt_err, NULL},
134 };
135
136 /* Sysfs support for f2fs */
137 enum {
138 GC_THREAD, /* struct f2fs_gc_thread */
139 SM_INFO, /* struct f2fs_sm_info */
140 NM_INFO, /* struct f2fs_nm_info */
141 F2FS_SBI, /* struct f2fs_sb_info */
142 #ifdef CONFIG_F2FS_FAULT_INJECTION
143 FAULT_INFO_RATE, /* struct f2fs_fault_info */
144 FAULT_INFO_TYPE, /* struct f2fs_fault_info */
145 #endif
146 };
147
148 struct f2fs_attr {
149 struct attribute attr;
150 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
151 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
152 const char *, size_t);
153 int struct_type;
154 int offset;
155 };
156
157 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
158 {
159 if (struct_type == GC_THREAD)
160 return (unsigned char *)sbi->gc_thread;
161 else if (struct_type == SM_INFO)
162 return (unsigned char *)SM_I(sbi);
163 else if (struct_type == NM_INFO)
164 return (unsigned char *)NM_I(sbi);
165 else if (struct_type == F2FS_SBI)
166 return (unsigned char *)sbi;
167 #ifdef CONFIG_F2FS_FAULT_INJECTION
168 else if (struct_type == FAULT_INFO_RATE ||
169 struct_type == FAULT_INFO_TYPE)
170 return (unsigned char *)&f2fs_fault;
171 #endif
172 return NULL;
173 }
174
175 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
176 struct f2fs_sb_info *sbi, char *buf)
177 {
178 struct super_block *sb = sbi->sb;
179
180 if (!sb->s_bdev->bd_part)
181 return snprintf(buf, PAGE_SIZE, "0\n");
182
183 return snprintf(buf, PAGE_SIZE, "%llu\n",
184 (unsigned long long)(sbi->kbytes_written +
185 BD_PART_WRITTEN(sbi)));
186 }
187
188 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
189 struct f2fs_sb_info *sbi, char *buf)
190 {
191 unsigned char *ptr = NULL;
192 unsigned int *ui;
193
194 ptr = __struct_ptr(sbi, a->struct_type);
195 if (!ptr)
196 return -EINVAL;
197
198 ui = (unsigned int *)(ptr + a->offset);
199
200 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
201 }
202
203 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
204 struct f2fs_sb_info *sbi,
205 const char *buf, size_t count)
206 {
207 unsigned char *ptr;
208 unsigned long t;
209 unsigned int *ui;
210 ssize_t ret;
211
212 ptr = __struct_ptr(sbi, a->struct_type);
213 if (!ptr)
214 return -EINVAL;
215
216 ui = (unsigned int *)(ptr + a->offset);
217
218 ret = kstrtoul(skip_spaces(buf), 0, &t);
219 if (ret < 0)
220 return ret;
221 #ifdef CONFIG_F2FS_FAULT_INJECTION
222 if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
223 return -EINVAL;
224 #endif
225 *ui = t;
226 return count;
227 }
228
229 static ssize_t f2fs_attr_show(struct kobject *kobj,
230 struct attribute *attr, char *buf)
231 {
232 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
233 s_kobj);
234 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
235
236 return a->show ? a->show(a, sbi, buf) : 0;
237 }
238
239 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
240 const char *buf, size_t len)
241 {
242 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
243 s_kobj);
244 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
245
246 return a->store ? a->store(a, sbi, buf, len) : 0;
247 }
248
249 static void f2fs_sb_release(struct kobject *kobj)
250 {
251 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
252 s_kobj);
253 complete(&sbi->s_kobj_unregister);
254 }
255
256 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
257 static struct f2fs_attr f2fs_attr_##_name = { \
258 .attr = {.name = __stringify(_name), .mode = _mode }, \
259 .show = _show, \
260 .store = _store, \
261 .struct_type = _struct_type, \
262 .offset = _offset \
263 }
264
265 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
266 F2FS_ATTR_OFFSET(struct_type, name, 0644, \
267 f2fs_sbi_show, f2fs_sbi_store, \
268 offsetof(struct struct_name, elname))
269
270 #define F2FS_GENERAL_RO_ATTR(name) \
271 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
272
273 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
274 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
275 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
276 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
277 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
278 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
279 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
280 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
281 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
282 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
283 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
284 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
285 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
286 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
287 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
288 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
289 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
290 #ifdef CONFIG_F2FS_FAULT_INJECTION
291 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
292 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
293 #endif
294 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
295
296 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
297 static struct attribute *f2fs_attrs[] = {
298 ATTR_LIST(gc_min_sleep_time),
299 ATTR_LIST(gc_max_sleep_time),
300 ATTR_LIST(gc_no_gc_sleep_time),
301 ATTR_LIST(gc_idle),
302 ATTR_LIST(reclaim_segments),
303 ATTR_LIST(max_small_discards),
304 ATTR_LIST(batched_trim_sections),
305 ATTR_LIST(ipu_policy),
306 ATTR_LIST(min_ipu_util),
307 ATTR_LIST(min_fsync_blocks),
308 ATTR_LIST(max_victim_search),
309 ATTR_LIST(dir_level),
310 ATTR_LIST(ram_thresh),
311 ATTR_LIST(ra_nid_pages),
312 ATTR_LIST(dirty_nats_ratio),
313 ATTR_LIST(cp_interval),
314 ATTR_LIST(idle_interval),
315 ATTR_LIST(lifetime_write_kbytes),
316 NULL,
317 };
318
319 static const struct sysfs_ops f2fs_attr_ops = {
320 .show = f2fs_attr_show,
321 .store = f2fs_attr_store,
322 };
323
324 static struct kobj_type f2fs_ktype = {
325 .default_attrs = f2fs_attrs,
326 .sysfs_ops = &f2fs_attr_ops,
327 .release = f2fs_sb_release,
328 };
329
330 #ifdef CONFIG_F2FS_FAULT_INJECTION
331 /* sysfs for f2fs fault injection */
332 static struct kobject f2fs_fault_inject;
333
334 static struct attribute *f2fs_fault_attrs[] = {
335 ATTR_LIST(inject_rate),
336 ATTR_LIST(inject_type),
337 NULL
338 };
339
340 static struct kobj_type f2fs_fault_ktype = {
341 .default_attrs = f2fs_fault_attrs,
342 .sysfs_ops = &f2fs_attr_ops,
343 };
344 #endif
345
346 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
347 {
348 struct va_format vaf;
349 va_list args;
350
351 va_start(args, fmt);
352 vaf.fmt = fmt;
353 vaf.va = &args;
354 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
355 va_end(args);
356 }
357
358 static void init_once(void *foo)
359 {
360 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
361
362 inode_init_once(&fi->vfs_inode);
363 }
364
365 static int parse_options(struct super_block *sb, char *options)
366 {
367 struct f2fs_sb_info *sbi = F2FS_SB(sb);
368 struct request_queue *q;
369 substring_t args[MAX_OPT_ARGS];
370 char *p, *name;
371 int arg = 0;
372
373 #ifdef CONFIG_F2FS_FAULT_INJECTION
374 f2fs_build_fault_attr(0);
375 #endif
376
377 if (!options)
378 return 0;
379
380 while ((p = strsep(&options, ",")) != NULL) {
381 int token;
382 if (!*p)
383 continue;
384 /*
385 * Initialize args struct so we know whether arg was
386 * found; some options take optional arguments.
387 */
388 args[0].to = args[0].from = NULL;
389 token = match_token(p, f2fs_tokens, args);
390
391 switch (token) {
392 case Opt_gc_background:
393 name = match_strdup(&args[0]);
394
395 if (!name)
396 return -ENOMEM;
397 if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
398 set_opt(sbi, BG_GC);
399 clear_opt(sbi, FORCE_FG_GC);
400 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
401 clear_opt(sbi, BG_GC);
402 clear_opt(sbi, FORCE_FG_GC);
403 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
404 set_opt(sbi, BG_GC);
405 set_opt(sbi, FORCE_FG_GC);
406 } else {
407 kfree(name);
408 return -EINVAL;
409 }
410 kfree(name);
411 break;
412 case Opt_disable_roll_forward:
413 set_opt(sbi, DISABLE_ROLL_FORWARD);
414 break;
415 case Opt_norecovery:
416 /* this option mounts f2fs with ro */
417 set_opt(sbi, DISABLE_ROLL_FORWARD);
418 if (!f2fs_readonly(sb))
419 return -EINVAL;
420 break;
421 case Opt_discard:
422 q = bdev_get_queue(sb->s_bdev);
423 if (blk_queue_discard(q)) {
424 set_opt(sbi, DISCARD);
425 } else {
426 f2fs_msg(sb, KERN_WARNING,
427 "mounting with \"discard\" option, but "
428 "the device does not support discard");
429 }
430 break;
431 case Opt_nodiscard:
432 clear_opt(sbi, DISCARD);
433 case Opt_noheap:
434 set_opt(sbi, NOHEAP);
435 break;
436 #ifdef CONFIG_F2FS_FS_XATTR
437 case Opt_user_xattr:
438 set_opt(sbi, XATTR_USER);
439 break;
440 case Opt_nouser_xattr:
441 clear_opt(sbi, XATTR_USER);
442 break;
443 case Opt_inline_xattr:
444 set_opt(sbi, INLINE_XATTR);
445 break;
446 #else
447 case Opt_user_xattr:
448 f2fs_msg(sb, KERN_INFO,
449 "user_xattr options not supported");
450 break;
451 case Opt_nouser_xattr:
452 f2fs_msg(sb, KERN_INFO,
453 "nouser_xattr options not supported");
454 break;
455 case Opt_inline_xattr:
456 f2fs_msg(sb, KERN_INFO,
457 "inline_xattr options not supported");
458 break;
459 #endif
460 #ifdef CONFIG_F2FS_FS_POSIX_ACL
461 case Opt_acl:
462 set_opt(sbi, POSIX_ACL);
463 break;
464 case Opt_noacl:
465 clear_opt(sbi, POSIX_ACL);
466 break;
467 #else
468 case Opt_acl:
469 f2fs_msg(sb, KERN_INFO, "acl options not supported");
470 break;
471 case Opt_noacl:
472 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
473 break;
474 #endif
475 case Opt_active_logs:
476 if (args->from && match_int(args, &arg))
477 return -EINVAL;
478 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
479 return -EINVAL;
480 sbi->active_logs = arg;
481 break;
482 case Opt_disable_ext_identify:
483 set_opt(sbi, DISABLE_EXT_IDENTIFY);
484 break;
485 case Opt_inline_data:
486 set_opt(sbi, INLINE_DATA);
487 break;
488 case Opt_inline_dentry:
489 set_opt(sbi, INLINE_DENTRY);
490 break;
491 case Opt_flush_merge:
492 set_opt(sbi, FLUSH_MERGE);
493 break;
494 case Opt_noflush_merge:
495 clear_opt(sbi, FLUSH_MERGE);
496 break;
497 case Opt_nobarrier:
498 set_opt(sbi, NOBARRIER);
499 break;
500 case Opt_fastboot:
501 set_opt(sbi, FASTBOOT);
502 break;
503 case Opt_extent_cache:
504 set_opt(sbi, EXTENT_CACHE);
505 break;
506 case Opt_noextent_cache:
507 clear_opt(sbi, EXTENT_CACHE);
508 break;
509 case Opt_noinline_data:
510 clear_opt(sbi, INLINE_DATA);
511 break;
512 case Opt_data_flush:
513 set_opt(sbi, DATA_FLUSH);
514 break;
515 case Opt_mode:
516 name = match_strdup(&args[0]);
517
518 if (!name)
519 return -ENOMEM;
520 if (strlen(name) == 8 &&
521 !strncmp(name, "adaptive", 8)) {
522 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
523 } else if (strlen(name) == 3 &&
524 !strncmp(name, "lfs", 3)) {
525 set_opt_mode(sbi, F2FS_MOUNT_LFS);
526 } else {
527 kfree(name);
528 return -EINVAL;
529 }
530 kfree(name);
531 break;
532 case Opt_fault_injection:
533 if (args->from && match_int(args, &arg))
534 return -EINVAL;
535 #ifdef CONFIG_F2FS_FAULT_INJECTION
536 f2fs_build_fault_attr(arg);
537 #else
538 f2fs_msg(sb, KERN_INFO,
539 "FAULT_INJECTION was not selected");
540 #endif
541 break;
542 case Opt_lazytime:
543 sb->s_flags |= MS_LAZYTIME;
544 break;
545 case Opt_nolazytime:
546 sb->s_flags &= ~MS_LAZYTIME;
547 break;
548 default:
549 f2fs_msg(sb, KERN_ERR,
550 "Unrecognized mount option \"%s\" or missing value",
551 p);
552 return -EINVAL;
553 }
554 }
555 return 0;
556 }
557
558 static struct inode *f2fs_alloc_inode(struct super_block *sb)
559 {
560 struct f2fs_inode_info *fi;
561
562 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
563 if (!fi)
564 return NULL;
565
566 init_once((void *) fi);
567
568 if (percpu_counter_init(&fi->dirty_pages, 0, GFP_NOFS)) {
569 kmem_cache_free(f2fs_inode_cachep, fi);
570 return NULL;
571 }
572
573 /* Initialize f2fs-specific inode info */
574 fi->vfs_inode.i_version = 1;
575 fi->i_current_depth = 1;
576 fi->i_advise = 0;
577 init_rwsem(&fi->i_sem);
578 INIT_LIST_HEAD(&fi->dirty_list);
579 INIT_LIST_HEAD(&fi->gdirty_list);
580 INIT_LIST_HEAD(&fi->inmem_pages);
581 mutex_init(&fi->inmem_lock);
582 init_rwsem(&fi->dio_rwsem[READ]);
583 init_rwsem(&fi->dio_rwsem[WRITE]);
584
585 /* Will be used by directory only */
586 fi->i_dir_level = F2FS_SB(sb)->dir_level;
587 return &fi->vfs_inode;
588 }
589
590 static int f2fs_drop_inode(struct inode *inode)
591 {
592 /*
593 * This is to avoid a deadlock condition like below.
594 * writeback_single_inode(inode)
595 * - f2fs_write_data_page
596 * - f2fs_gc -> iput -> evict
597 * - inode_wait_for_writeback(inode)
598 */
599 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
600 if (!inode->i_nlink && !is_bad_inode(inode)) {
601 /* to avoid evict_inode call simultaneously */
602 atomic_inc(&inode->i_count);
603 spin_unlock(&inode->i_lock);
604
605 /* some remained atomic pages should discarded */
606 if (f2fs_is_atomic_file(inode))
607 drop_inmem_pages(inode);
608
609 /* should remain fi->extent_tree for writepage */
610 f2fs_destroy_extent_node(inode);
611
612 sb_start_intwrite(inode->i_sb);
613 f2fs_i_size_write(inode, 0);
614
615 if (F2FS_HAS_BLOCKS(inode))
616 f2fs_truncate(inode);
617
618 sb_end_intwrite(inode->i_sb);
619
620 fscrypt_put_encryption_info(inode, NULL);
621 spin_lock(&inode->i_lock);
622 atomic_dec(&inode->i_count);
623 }
624 return 0;
625 }
626
627 return generic_drop_inode(inode);
628 }
629
630 int f2fs_inode_dirtied(struct inode *inode)
631 {
632 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
633
634 spin_lock(&sbi->inode_lock[DIRTY_META]);
635 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
636 spin_unlock(&sbi->inode_lock[DIRTY_META]);
637 return 1;
638 }
639
640 set_inode_flag(inode, FI_DIRTY_INODE);
641 list_add_tail(&F2FS_I(inode)->gdirty_list,
642 &sbi->inode_list[DIRTY_META]);
643 inc_page_count(sbi, F2FS_DIRTY_IMETA);
644 stat_inc_dirty_inode(sbi, DIRTY_META);
645 spin_unlock(&sbi->inode_lock[DIRTY_META]);
646
647 return 0;
648 }
649
650 void f2fs_inode_synced(struct inode *inode)
651 {
652 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
653
654 spin_lock(&sbi->inode_lock[DIRTY_META]);
655 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
656 spin_unlock(&sbi->inode_lock[DIRTY_META]);
657 return;
658 }
659 list_del_init(&F2FS_I(inode)->gdirty_list);
660 clear_inode_flag(inode, FI_DIRTY_INODE);
661 clear_inode_flag(inode, FI_AUTO_RECOVER);
662 dec_page_count(sbi, F2FS_DIRTY_IMETA);
663 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
664 spin_unlock(&sbi->inode_lock[DIRTY_META]);
665 }
666
667 /*
668 * f2fs_dirty_inode() is called from __mark_inode_dirty()
669 *
670 * We should call set_dirty_inode to write the dirty inode through write_inode.
671 */
672 static void f2fs_dirty_inode(struct inode *inode, int flags)
673 {
674 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
675
676 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
677 inode->i_ino == F2FS_META_INO(sbi))
678 return;
679
680 if (flags == I_DIRTY_TIME)
681 return;
682
683 if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
684 clear_inode_flag(inode, FI_AUTO_RECOVER);
685
686 f2fs_inode_dirtied(inode);
687 }
688
689 static void f2fs_i_callback(struct rcu_head *head)
690 {
691 struct inode *inode = container_of(head, struct inode, i_rcu);
692 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
693 }
694
695 static void f2fs_destroy_inode(struct inode *inode)
696 {
697 percpu_counter_destroy(&F2FS_I(inode)->dirty_pages);
698 call_rcu(&inode->i_rcu, f2fs_i_callback);
699 }
700
701 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
702 {
703 int i;
704
705 for (i = 0; i < NR_COUNT_TYPE; i++)
706 percpu_counter_destroy(&sbi->nr_pages[i]);
707 percpu_counter_destroy(&sbi->alloc_valid_block_count);
708 percpu_counter_destroy(&sbi->total_valid_inode_count);
709
710 percpu_free_rwsem(&sbi->cp_rwsem);
711 }
712
713 static void f2fs_put_super(struct super_block *sb)
714 {
715 struct f2fs_sb_info *sbi = F2FS_SB(sb);
716
717 if (sbi->s_proc) {
718 remove_proc_entry("segment_info", sbi->s_proc);
719 remove_proc_entry("segment_bits", sbi->s_proc);
720 remove_proc_entry(sb->s_id, f2fs_proc_root);
721 }
722 kobject_del(&sbi->s_kobj);
723
724 stop_gc_thread(sbi);
725
726 /* prevent remaining shrinker jobs */
727 mutex_lock(&sbi->umount_mutex);
728
729 /*
730 * We don't need to do checkpoint when superblock is clean.
731 * But, the previous checkpoint was not done by umount, it needs to do
732 * clean checkpoint again.
733 */
734 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
735 !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
736 struct cp_control cpc = {
737 .reason = CP_UMOUNT,
738 };
739 write_checkpoint(sbi, &cpc);
740 }
741
742 /* write_checkpoint can update stat informaion */
743 f2fs_destroy_stats(sbi);
744
745 /*
746 * normally superblock is clean, so we need to release this.
747 * In addition, EIO will skip do checkpoint, we need this as well.
748 */
749 release_ino_entry(sbi, true);
750 release_discard_addrs(sbi);
751
752 f2fs_leave_shrinker(sbi);
753 mutex_unlock(&sbi->umount_mutex);
754
755 /* our cp_error case, we can wait for any writeback page */
756 f2fs_flush_merged_bios(sbi);
757
758 iput(sbi->node_inode);
759 iput(sbi->meta_inode);
760
761 /* destroy f2fs internal modules */
762 destroy_node_manager(sbi);
763 destroy_segment_manager(sbi);
764
765 kfree(sbi->ckpt);
766 kobject_put(&sbi->s_kobj);
767 wait_for_completion(&sbi->s_kobj_unregister);
768
769 sb->s_fs_info = NULL;
770 if (sbi->s_chksum_driver)
771 crypto_free_shash(sbi->s_chksum_driver);
772 kfree(sbi->raw_super);
773
774 destroy_percpu_info(sbi);
775 kfree(sbi);
776 }
777
778 int f2fs_sync_fs(struct super_block *sb, int sync)
779 {
780 struct f2fs_sb_info *sbi = F2FS_SB(sb);
781 int err = 0;
782
783 trace_f2fs_sync_fs(sb, sync);
784
785 if (sync) {
786 struct cp_control cpc;
787
788 cpc.reason = __get_cp_reason(sbi);
789
790 mutex_lock(&sbi->gc_mutex);
791 err = write_checkpoint(sbi, &cpc);
792 mutex_unlock(&sbi->gc_mutex);
793 }
794 f2fs_trace_ios(NULL, 1);
795
796 return err;
797 }
798
799 static int f2fs_freeze(struct super_block *sb)
800 {
801 int err;
802
803 if (f2fs_readonly(sb))
804 return 0;
805
806 err = f2fs_sync_fs(sb, 1);
807 return err;
808 }
809
810 static int f2fs_unfreeze(struct super_block *sb)
811 {
812 return 0;
813 }
814
815 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
816 {
817 struct super_block *sb = dentry->d_sb;
818 struct f2fs_sb_info *sbi = F2FS_SB(sb);
819 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
820 block_t total_count, user_block_count, start_count, ovp_count;
821
822 total_count = le64_to_cpu(sbi->raw_super->block_count);
823 user_block_count = sbi->user_block_count;
824 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
825 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
826 buf->f_type = F2FS_SUPER_MAGIC;
827 buf->f_bsize = sbi->blocksize;
828
829 buf->f_blocks = total_count - start_count;
830 buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
831 buf->f_bavail = user_block_count - valid_user_blocks(sbi);
832
833 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
834 buf->f_ffree = buf->f_files - valid_inode_count(sbi);
835
836 buf->f_namelen = F2FS_NAME_LEN;
837 buf->f_fsid.val[0] = (u32)id;
838 buf->f_fsid.val[1] = (u32)(id >> 32);
839
840 return 0;
841 }
842
843 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
844 {
845 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
846
847 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
848 if (test_opt(sbi, FORCE_FG_GC))
849 seq_printf(seq, ",background_gc=%s", "sync");
850 else
851 seq_printf(seq, ",background_gc=%s", "on");
852 } else {
853 seq_printf(seq, ",background_gc=%s", "off");
854 }
855 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
856 seq_puts(seq, ",disable_roll_forward");
857 if (test_opt(sbi, DISCARD))
858 seq_puts(seq, ",discard");
859 if (test_opt(sbi, NOHEAP))
860 seq_puts(seq, ",no_heap_alloc");
861 #ifdef CONFIG_F2FS_FS_XATTR
862 if (test_opt(sbi, XATTR_USER))
863 seq_puts(seq, ",user_xattr");
864 else
865 seq_puts(seq, ",nouser_xattr");
866 if (test_opt(sbi, INLINE_XATTR))
867 seq_puts(seq, ",inline_xattr");
868 #endif
869 #ifdef CONFIG_F2FS_FS_POSIX_ACL
870 if (test_opt(sbi, POSIX_ACL))
871 seq_puts(seq, ",acl");
872 else
873 seq_puts(seq, ",noacl");
874 #endif
875 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
876 seq_puts(seq, ",disable_ext_identify");
877 if (test_opt(sbi, INLINE_DATA))
878 seq_puts(seq, ",inline_data");
879 else
880 seq_puts(seq, ",noinline_data");
881 if (test_opt(sbi, INLINE_DENTRY))
882 seq_puts(seq, ",inline_dentry");
883 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
884 seq_puts(seq, ",flush_merge");
885 if (test_opt(sbi, NOBARRIER))
886 seq_puts(seq, ",nobarrier");
887 if (test_opt(sbi, FASTBOOT))
888 seq_puts(seq, ",fastboot");
889 if (test_opt(sbi, EXTENT_CACHE))
890 seq_puts(seq, ",extent_cache");
891 else
892 seq_puts(seq, ",noextent_cache");
893 if (test_opt(sbi, DATA_FLUSH))
894 seq_puts(seq, ",data_flush");
895
896 seq_puts(seq, ",mode=");
897 if (test_opt(sbi, ADAPTIVE))
898 seq_puts(seq, "adaptive");
899 else if (test_opt(sbi, LFS))
900 seq_puts(seq, "lfs");
901 seq_printf(seq, ",active_logs=%u", sbi->active_logs);
902
903 return 0;
904 }
905
906 static int segment_info_seq_show(struct seq_file *seq, void *offset)
907 {
908 struct super_block *sb = seq->private;
909 struct f2fs_sb_info *sbi = F2FS_SB(sb);
910 unsigned int total_segs =
911 le32_to_cpu(sbi->raw_super->segment_count_main);
912 int i;
913
914 seq_puts(seq, "format: segment_type|valid_blocks\n"
915 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
916
917 for (i = 0; i < total_segs; i++) {
918 struct seg_entry *se = get_seg_entry(sbi, i);
919
920 if ((i % 10) == 0)
921 seq_printf(seq, "%-10d", i);
922 seq_printf(seq, "%d|%-3u", se->type,
923 get_valid_blocks(sbi, i, 1));
924 if ((i % 10) == 9 || i == (total_segs - 1))
925 seq_putc(seq, '\n');
926 else
927 seq_putc(seq, ' ');
928 }
929
930 return 0;
931 }
932
933 static int segment_bits_seq_show(struct seq_file *seq, void *offset)
934 {
935 struct super_block *sb = seq->private;
936 struct f2fs_sb_info *sbi = F2FS_SB(sb);
937 unsigned int total_segs =
938 le32_to_cpu(sbi->raw_super->segment_count_main);
939 int i, j;
940
941 seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
942 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
943
944 for (i = 0; i < total_segs; i++) {
945 struct seg_entry *se = get_seg_entry(sbi, i);
946
947 seq_printf(seq, "%-10d", i);
948 seq_printf(seq, "%d|%-3u|", se->type,
949 get_valid_blocks(sbi, i, 1));
950 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
951 seq_printf(seq, "%x ", se->cur_valid_map[j]);
952 seq_putc(seq, '\n');
953 }
954 return 0;
955 }
956
957 #define F2FS_PROC_FILE_DEF(_name) \
958 static int _name##_open_fs(struct inode *inode, struct file *file) \
959 { \
960 return single_open(file, _name##_seq_show, PDE_DATA(inode)); \
961 } \
962 \
963 static const struct file_operations f2fs_seq_##_name##_fops = { \
964 .open = _name##_open_fs, \
965 .read = seq_read, \
966 .llseek = seq_lseek, \
967 .release = single_release, \
968 };
969
970 F2FS_PROC_FILE_DEF(segment_info);
971 F2FS_PROC_FILE_DEF(segment_bits);
972
973 static void default_options(struct f2fs_sb_info *sbi)
974 {
975 /* init some FS parameters */
976 sbi->active_logs = NR_CURSEG_TYPE;
977
978 set_opt(sbi, BG_GC);
979 set_opt(sbi, INLINE_DATA);
980 set_opt(sbi, EXTENT_CACHE);
981 sbi->sb->s_flags |= MS_LAZYTIME;
982 set_opt(sbi, FLUSH_MERGE);
983 if (f2fs_sb_mounted_hmsmr(sbi->sb)) {
984 set_opt_mode(sbi, F2FS_MOUNT_LFS);
985 set_opt(sbi, DISCARD);
986 } else {
987 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
988 }
989
990 #ifdef CONFIG_F2FS_FS_XATTR
991 set_opt(sbi, XATTR_USER);
992 #endif
993 #ifdef CONFIG_F2FS_FS_POSIX_ACL
994 set_opt(sbi, POSIX_ACL);
995 #endif
996 }
997
998 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
999 {
1000 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1001 struct f2fs_mount_info org_mount_opt;
1002 int err, active_logs;
1003 bool need_restart_gc = false;
1004 bool need_stop_gc = false;
1005 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1006
1007 /*
1008 * Save the old mount options in case we
1009 * need to restore them.
1010 */
1011 org_mount_opt = sbi->mount_opt;
1012 active_logs = sbi->active_logs;
1013
1014 /* recover superblocks we couldn't write due to previous RO mount */
1015 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1016 err = f2fs_commit_super(sbi, false);
1017 f2fs_msg(sb, KERN_INFO,
1018 "Try to recover all the superblocks, ret: %d", err);
1019 if (!err)
1020 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1021 }
1022
1023 sbi->mount_opt.opt = 0;
1024 default_options(sbi);
1025
1026 /* parse mount options */
1027 err = parse_options(sb, data);
1028 if (err)
1029 goto restore_opts;
1030
1031 /*
1032 * Previous and new state of filesystem is RO,
1033 * so skip checking GC and FLUSH_MERGE conditions.
1034 */
1035 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1036 goto skip;
1037
1038 /* disallow enable/disable extent_cache dynamically */
1039 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1040 err = -EINVAL;
1041 f2fs_msg(sbi->sb, KERN_WARNING,
1042 "switch extent_cache option is not allowed");
1043 goto restore_opts;
1044 }
1045
1046 /*
1047 * We stop the GC thread if FS is mounted as RO
1048 * or if background_gc = off is passed in mount
1049 * option. Also sync the filesystem.
1050 */
1051 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1052 if (sbi->gc_thread) {
1053 stop_gc_thread(sbi);
1054 need_restart_gc = true;
1055 }
1056 } else if (!sbi->gc_thread) {
1057 err = start_gc_thread(sbi);
1058 if (err)
1059 goto restore_opts;
1060 need_stop_gc = true;
1061 }
1062
1063 if (*flags & MS_RDONLY) {
1064 writeback_inodes_sb(sb, WB_REASON_SYNC);
1065 sync_inodes_sb(sb);
1066
1067 set_sbi_flag(sbi, SBI_IS_DIRTY);
1068 set_sbi_flag(sbi, SBI_IS_CLOSE);
1069 f2fs_sync_fs(sb, 1);
1070 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1071 }
1072
1073 /*
1074 * We stop issue flush thread if FS is mounted as RO
1075 * or if flush_merge is not passed in mount option.
1076 */
1077 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1078 destroy_flush_cmd_control(sbi);
1079 } else if (!SM_I(sbi)->cmd_control_info) {
1080 err = create_flush_cmd_control(sbi);
1081 if (err)
1082 goto restore_gc;
1083 }
1084 skip:
1085 /* Update the POSIXACL Flag */
1086 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1087 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1088
1089 return 0;
1090 restore_gc:
1091 if (need_restart_gc) {
1092 if (start_gc_thread(sbi))
1093 f2fs_msg(sbi->sb, KERN_WARNING,
1094 "background gc thread has stopped");
1095 } else if (need_stop_gc) {
1096 stop_gc_thread(sbi);
1097 }
1098 restore_opts:
1099 sbi->mount_opt = org_mount_opt;
1100 sbi->active_logs = active_logs;
1101 return err;
1102 }
1103
1104 static struct super_operations f2fs_sops = {
1105 .alloc_inode = f2fs_alloc_inode,
1106 .drop_inode = f2fs_drop_inode,
1107 .destroy_inode = f2fs_destroy_inode,
1108 .write_inode = f2fs_write_inode,
1109 .dirty_inode = f2fs_dirty_inode,
1110 .show_options = f2fs_show_options,
1111 .evict_inode = f2fs_evict_inode,
1112 .put_super = f2fs_put_super,
1113 .sync_fs = f2fs_sync_fs,
1114 .freeze_fs = f2fs_freeze,
1115 .unfreeze_fs = f2fs_unfreeze,
1116 .statfs = f2fs_statfs,
1117 .remount_fs = f2fs_remount,
1118 };
1119
1120 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1121 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1122 {
1123 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1124 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1125 ctx, len, NULL);
1126 }
1127
1128 static int f2fs_key_prefix(struct inode *inode, u8 **key)
1129 {
1130 *key = F2FS_I_SB(inode)->key_prefix;
1131 return F2FS_I_SB(inode)->key_prefix_size;
1132 }
1133
1134 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1135 void *fs_data)
1136 {
1137 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1138 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1139 ctx, len, fs_data, XATTR_CREATE);
1140 }
1141
1142 static unsigned f2fs_max_namelen(struct inode *inode)
1143 {
1144 return S_ISLNK(inode->i_mode) ?
1145 inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1146 }
1147
1148 static struct fscrypt_operations f2fs_cryptops = {
1149 .get_context = f2fs_get_context,
1150 .key_prefix = f2fs_key_prefix,
1151 .set_context = f2fs_set_context,
1152 .is_encrypted = f2fs_encrypted_inode,
1153 .empty_dir = f2fs_empty_dir,
1154 .max_namelen = f2fs_max_namelen,
1155 };
1156 #else
1157 static struct fscrypt_operations f2fs_cryptops = {
1158 .is_encrypted = f2fs_encrypted_inode,
1159 };
1160 #endif
1161
1162 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1163 u64 ino, u32 generation)
1164 {
1165 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1166 struct inode *inode;
1167
1168 if (check_nid_range(sbi, ino))
1169 return ERR_PTR(-ESTALE);
1170
1171 /*
1172 * f2fs_iget isn't quite right if the inode is currently unallocated!
1173 * However f2fs_iget currently does appropriate checks to handle stale
1174 * inodes so everything is OK.
1175 */
1176 inode = f2fs_iget(sb, ino);
1177 if (IS_ERR(inode))
1178 return ERR_CAST(inode);
1179 if (unlikely(generation && inode->i_generation != generation)) {
1180 /* we didn't find the right inode.. */
1181 iput(inode);
1182 return ERR_PTR(-ESTALE);
1183 }
1184 return inode;
1185 }
1186
1187 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1188 int fh_len, int fh_type)
1189 {
1190 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1191 f2fs_nfs_get_inode);
1192 }
1193
1194 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1195 int fh_len, int fh_type)
1196 {
1197 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1198 f2fs_nfs_get_inode);
1199 }
1200
1201 static const struct export_operations f2fs_export_ops = {
1202 .fh_to_dentry = f2fs_fh_to_dentry,
1203 .fh_to_parent = f2fs_fh_to_parent,
1204 .get_parent = f2fs_get_parent,
1205 };
1206
1207 static loff_t max_file_blocks(void)
1208 {
1209 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1210 loff_t leaf_count = ADDRS_PER_BLOCK;
1211
1212 /* two direct node blocks */
1213 result += (leaf_count * 2);
1214
1215 /* two indirect node blocks */
1216 leaf_count *= NIDS_PER_BLOCK;
1217 result += (leaf_count * 2);
1218
1219 /* one double indirect node block */
1220 leaf_count *= NIDS_PER_BLOCK;
1221 result += leaf_count;
1222
1223 return result;
1224 }
1225
1226 static int __f2fs_commit_super(struct buffer_head *bh,
1227 struct f2fs_super_block *super)
1228 {
1229 lock_buffer(bh);
1230 if (super)
1231 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1232 set_buffer_uptodate(bh);
1233 set_buffer_dirty(bh);
1234 unlock_buffer(bh);
1235
1236 /* it's rare case, we can do fua all the time */
1237 return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
1238 }
1239
1240 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1241 struct buffer_head *bh)
1242 {
1243 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1244 (bh->b_data + F2FS_SUPER_OFFSET);
1245 struct super_block *sb = sbi->sb;
1246 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1247 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1248 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1249 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1250 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1251 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1252 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1253 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1254 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1255 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1256 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1257 u32 segment_count = le32_to_cpu(raw_super->segment_count);
1258 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1259 u64 main_end_blkaddr = main_blkaddr +
1260 (segment_count_main << log_blocks_per_seg);
1261 u64 seg_end_blkaddr = segment0_blkaddr +
1262 (segment_count << log_blocks_per_seg);
1263
1264 if (segment0_blkaddr != cp_blkaddr) {
1265 f2fs_msg(sb, KERN_INFO,
1266 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1267 segment0_blkaddr, cp_blkaddr);
1268 return true;
1269 }
1270
1271 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1272 sit_blkaddr) {
1273 f2fs_msg(sb, KERN_INFO,
1274 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1275 cp_blkaddr, sit_blkaddr,
1276 segment_count_ckpt << log_blocks_per_seg);
1277 return true;
1278 }
1279
1280 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1281 nat_blkaddr) {
1282 f2fs_msg(sb, KERN_INFO,
1283 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1284 sit_blkaddr, nat_blkaddr,
1285 segment_count_sit << log_blocks_per_seg);
1286 return true;
1287 }
1288
1289 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1290 ssa_blkaddr) {
1291 f2fs_msg(sb, KERN_INFO,
1292 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1293 nat_blkaddr, ssa_blkaddr,
1294 segment_count_nat << log_blocks_per_seg);
1295 return true;
1296 }
1297
1298 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1299 main_blkaddr) {
1300 f2fs_msg(sb, KERN_INFO,
1301 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1302 ssa_blkaddr, main_blkaddr,
1303 segment_count_ssa << log_blocks_per_seg);
1304 return true;
1305 }
1306
1307 if (main_end_blkaddr > seg_end_blkaddr) {
1308 f2fs_msg(sb, KERN_INFO,
1309 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1310 main_blkaddr,
1311 segment0_blkaddr +
1312 (segment_count << log_blocks_per_seg),
1313 segment_count_main << log_blocks_per_seg);
1314 return true;
1315 } else if (main_end_blkaddr < seg_end_blkaddr) {
1316 int err = 0;
1317 char *res;
1318
1319 /* fix in-memory information all the time */
1320 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1321 segment0_blkaddr) >> log_blocks_per_seg);
1322
1323 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1324 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1325 res = "internally";
1326 } else {
1327 err = __f2fs_commit_super(bh, NULL);
1328 res = err ? "failed" : "done";
1329 }
1330 f2fs_msg(sb, KERN_INFO,
1331 "Fix alignment : %s, start(%u) end(%u) block(%u)",
1332 res, main_blkaddr,
1333 segment0_blkaddr +
1334 (segment_count << log_blocks_per_seg),
1335 segment_count_main << log_blocks_per_seg);
1336 if (err)
1337 return true;
1338 }
1339 return false;
1340 }
1341
1342 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1343 struct buffer_head *bh)
1344 {
1345 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1346 (bh->b_data + F2FS_SUPER_OFFSET);
1347 struct super_block *sb = sbi->sb;
1348 unsigned int blocksize;
1349
1350 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1351 f2fs_msg(sb, KERN_INFO,
1352 "Magic Mismatch, valid(0x%x) - read(0x%x)",
1353 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1354 return 1;
1355 }
1356
1357 /* Currently, support only 4KB page cache size */
1358 if (F2FS_BLKSIZE != PAGE_SIZE) {
1359 f2fs_msg(sb, KERN_INFO,
1360 "Invalid page_cache_size (%lu), supports only 4KB\n",
1361 PAGE_SIZE);
1362 return 1;
1363 }
1364
1365 /* Currently, support only 4KB block size */
1366 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1367 if (blocksize != F2FS_BLKSIZE) {
1368 f2fs_msg(sb, KERN_INFO,
1369 "Invalid blocksize (%u), supports only 4KB\n",
1370 blocksize);
1371 return 1;
1372 }
1373
1374 /* check log blocks per segment */
1375 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1376 f2fs_msg(sb, KERN_INFO,
1377 "Invalid log blocks per segment (%u)\n",
1378 le32_to_cpu(raw_super->log_blocks_per_seg));
1379 return 1;
1380 }
1381
1382 /* Currently, support 512/1024/2048/4096 bytes sector size */
1383 if (le32_to_cpu(raw_super->log_sectorsize) >
1384 F2FS_MAX_LOG_SECTOR_SIZE ||
1385 le32_to_cpu(raw_super->log_sectorsize) <
1386 F2FS_MIN_LOG_SECTOR_SIZE) {
1387 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1388 le32_to_cpu(raw_super->log_sectorsize));
1389 return 1;
1390 }
1391 if (le32_to_cpu(raw_super->log_sectors_per_block) +
1392 le32_to_cpu(raw_super->log_sectorsize) !=
1393 F2FS_MAX_LOG_SECTOR_SIZE) {
1394 f2fs_msg(sb, KERN_INFO,
1395 "Invalid log sectors per block(%u) log sectorsize(%u)",
1396 le32_to_cpu(raw_super->log_sectors_per_block),
1397 le32_to_cpu(raw_super->log_sectorsize));
1398 return 1;
1399 }
1400
1401 /* check reserved ino info */
1402 if (le32_to_cpu(raw_super->node_ino) != 1 ||
1403 le32_to_cpu(raw_super->meta_ino) != 2 ||
1404 le32_to_cpu(raw_super->root_ino) != 3) {
1405 f2fs_msg(sb, KERN_INFO,
1406 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1407 le32_to_cpu(raw_super->node_ino),
1408 le32_to_cpu(raw_super->meta_ino),
1409 le32_to_cpu(raw_super->root_ino));
1410 return 1;
1411 }
1412
1413 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1414 if (sanity_check_area_boundary(sbi, bh))
1415 return 1;
1416
1417 return 0;
1418 }
1419
1420 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1421 {
1422 unsigned int total, fsmeta;
1423 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1424 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1425
1426 total = le32_to_cpu(raw_super->segment_count);
1427 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1428 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1429 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1430 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1431 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1432
1433 if (unlikely(fsmeta >= total))
1434 return 1;
1435
1436 if (unlikely(f2fs_cp_error(sbi))) {
1437 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1438 return 1;
1439 }
1440 return 0;
1441 }
1442
1443 static void init_sb_info(struct f2fs_sb_info *sbi)
1444 {
1445 struct f2fs_super_block *raw_super = sbi->raw_super;
1446
1447 sbi->log_sectors_per_block =
1448 le32_to_cpu(raw_super->log_sectors_per_block);
1449 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1450 sbi->blocksize = 1 << sbi->log_blocksize;
1451 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1452 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1453 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1454 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1455 sbi->total_sections = le32_to_cpu(raw_super->section_count);
1456 sbi->total_node_count =
1457 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1458 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1459 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1460 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1461 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1462 sbi->cur_victim_sec = NULL_SECNO;
1463 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1464
1465 sbi->dir_level = DEF_DIR_LEVEL;
1466 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1467 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1468 clear_sbi_flag(sbi, SBI_NEED_FSCK);
1469
1470 INIT_LIST_HEAD(&sbi->s_list);
1471 mutex_init(&sbi->umount_mutex);
1472 mutex_init(&sbi->wio_mutex[NODE]);
1473 mutex_init(&sbi->wio_mutex[DATA]);
1474
1475 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1476 memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX,
1477 F2FS_KEY_DESC_PREFIX_SIZE);
1478 sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE;
1479 #endif
1480 }
1481
1482 static int init_percpu_info(struct f2fs_sb_info *sbi)
1483 {
1484 int i, err;
1485
1486 if (percpu_init_rwsem(&sbi->cp_rwsem))
1487 return -ENOMEM;
1488
1489 for (i = 0; i < NR_COUNT_TYPE; i++) {
1490 err = percpu_counter_init(&sbi->nr_pages[i], 0, GFP_KERNEL);
1491 if (err)
1492 return err;
1493 }
1494
1495 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1496 if (err)
1497 return err;
1498
1499 return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1500 GFP_KERNEL);
1501 }
1502
1503 /*
1504 * Read f2fs raw super block.
1505 * Because we have two copies of super block, so read both of them
1506 * to get the first valid one. If any one of them is broken, we pass
1507 * them recovery flag back to the caller.
1508 */
1509 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1510 struct f2fs_super_block **raw_super,
1511 int *valid_super_block, int *recovery)
1512 {
1513 struct super_block *sb = sbi->sb;
1514 int block;
1515 struct buffer_head *bh;
1516 struct f2fs_super_block *super;
1517 int err = 0;
1518
1519 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1520 if (!super)
1521 return -ENOMEM;
1522
1523 for (block = 0; block < 2; block++) {
1524 bh = sb_bread(sb, block);
1525 if (!bh) {
1526 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1527 block + 1);
1528 err = -EIO;
1529 continue;
1530 }
1531
1532 /* sanity checking of raw super */
1533 if (sanity_check_raw_super(sbi, bh)) {
1534 f2fs_msg(sb, KERN_ERR,
1535 "Can't find valid F2FS filesystem in %dth superblock",
1536 block + 1);
1537 err = -EINVAL;
1538 brelse(bh);
1539 continue;
1540 }
1541
1542 if (!*raw_super) {
1543 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1544 sizeof(*super));
1545 *valid_super_block = block;
1546 *raw_super = super;
1547 }
1548 brelse(bh);
1549 }
1550
1551 /* Fail to read any one of the superblocks*/
1552 if (err < 0)
1553 *recovery = 1;
1554
1555 /* No valid superblock */
1556 if (!*raw_super)
1557 kfree(super);
1558 else
1559 err = 0;
1560
1561 return err;
1562 }
1563
1564 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1565 {
1566 struct buffer_head *bh;
1567 int err;
1568
1569 if ((recover && f2fs_readonly(sbi->sb)) ||
1570 bdev_read_only(sbi->sb->s_bdev)) {
1571 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1572 return -EROFS;
1573 }
1574
1575 /* write back-up superblock first */
1576 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1577 if (!bh)
1578 return -EIO;
1579 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1580 brelse(bh);
1581
1582 /* if we are in recovery path, skip writing valid superblock */
1583 if (recover || err)
1584 return err;
1585
1586 /* write current valid superblock */
1587 bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1588 if (!bh)
1589 return -EIO;
1590 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1591 brelse(bh);
1592 return err;
1593 }
1594
1595 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1596 {
1597 struct f2fs_sb_info *sbi;
1598 struct f2fs_super_block *raw_super;
1599 struct inode *root;
1600 int err;
1601 bool retry = true, need_fsck = false;
1602 char *options = NULL;
1603 int recovery, i, valid_super_block;
1604 struct curseg_info *seg_i;
1605
1606 try_onemore:
1607 err = -EINVAL;
1608 raw_super = NULL;
1609 valid_super_block = -1;
1610 recovery = 0;
1611
1612 /* allocate memory for f2fs-specific super block info */
1613 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1614 if (!sbi)
1615 return -ENOMEM;
1616
1617 sbi->sb = sb;
1618
1619 /* Load the checksum driver */
1620 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1621 if (IS_ERR(sbi->s_chksum_driver)) {
1622 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1623 err = PTR_ERR(sbi->s_chksum_driver);
1624 sbi->s_chksum_driver = NULL;
1625 goto free_sbi;
1626 }
1627
1628 /* set a block size */
1629 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1630 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1631 goto free_sbi;
1632 }
1633
1634 err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1635 &recovery);
1636 if (err)
1637 goto free_sbi;
1638
1639 sb->s_fs_info = sbi;
1640 sbi->raw_super = raw_super;
1641
1642 default_options(sbi);
1643 /* parse mount options */
1644 options = kstrdup((const char *)data, GFP_KERNEL);
1645 if (data && !options) {
1646 err = -ENOMEM;
1647 goto free_sb_buf;
1648 }
1649
1650 err = parse_options(sb, options);
1651 if (err)
1652 goto free_options;
1653
1654 sbi->max_file_blocks = max_file_blocks();
1655 sb->s_maxbytes = sbi->max_file_blocks <<
1656 le32_to_cpu(raw_super->log_blocksize);
1657 sb->s_max_links = F2FS_LINK_MAX;
1658 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1659
1660 sb->s_op = &f2fs_sops;
1661 sb->s_cop = &f2fs_cryptops;
1662 sb->s_xattr = f2fs_xattr_handlers;
1663 sb->s_export_op = &f2fs_export_ops;
1664 sb->s_magic = F2FS_SUPER_MAGIC;
1665 sb->s_time_gran = 1;
1666 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1667 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1668 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1669
1670 /* init f2fs-specific super block info */
1671 sbi->valid_super_block = valid_super_block;
1672 mutex_init(&sbi->gc_mutex);
1673 mutex_init(&sbi->cp_mutex);
1674 init_rwsem(&sbi->node_write);
1675
1676 /* disallow all the data/node/meta page writes */
1677 set_sbi_flag(sbi, SBI_POR_DOING);
1678 spin_lock_init(&sbi->stat_lock);
1679
1680 init_rwsem(&sbi->read_io.io_rwsem);
1681 sbi->read_io.sbi = sbi;
1682 sbi->read_io.bio = NULL;
1683 for (i = 0; i < NR_PAGE_TYPE; i++) {
1684 init_rwsem(&sbi->write_io[i].io_rwsem);
1685 sbi->write_io[i].sbi = sbi;
1686 sbi->write_io[i].bio = NULL;
1687 }
1688
1689 init_waitqueue_head(&sbi->cp_wait);
1690 init_sb_info(sbi);
1691
1692 err = init_percpu_info(sbi);
1693 if (err)
1694 goto free_options;
1695
1696 /* get an inode for meta space */
1697 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1698 if (IS_ERR(sbi->meta_inode)) {
1699 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1700 err = PTR_ERR(sbi->meta_inode);
1701 goto free_options;
1702 }
1703
1704 err = get_valid_checkpoint(sbi);
1705 if (err) {
1706 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1707 goto free_meta_inode;
1708 }
1709
1710 sbi->total_valid_node_count =
1711 le32_to_cpu(sbi->ckpt->valid_node_count);
1712 percpu_counter_set(&sbi->total_valid_inode_count,
1713 le32_to_cpu(sbi->ckpt->valid_inode_count));
1714 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1715 sbi->total_valid_block_count =
1716 le64_to_cpu(sbi->ckpt->valid_block_count);
1717 sbi->last_valid_block_count = sbi->total_valid_block_count;
1718
1719 for (i = 0; i < NR_INODE_TYPE; i++) {
1720 INIT_LIST_HEAD(&sbi->inode_list[i]);
1721 spin_lock_init(&sbi->inode_lock[i]);
1722 }
1723
1724 init_extent_cache_info(sbi);
1725
1726 init_ino_entry_info(sbi);
1727
1728 /* setup f2fs internal modules */
1729 err = build_segment_manager(sbi);
1730 if (err) {
1731 f2fs_msg(sb, KERN_ERR,
1732 "Failed to initialize F2FS segment manager");
1733 goto free_sm;
1734 }
1735 err = build_node_manager(sbi);
1736 if (err) {
1737 f2fs_msg(sb, KERN_ERR,
1738 "Failed to initialize F2FS node manager");
1739 goto free_nm;
1740 }
1741
1742 /* For write statistics */
1743 if (sb->s_bdev->bd_part)
1744 sbi->sectors_written_start =
1745 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1746
1747 /* Read accumulated write IO statistics if exists */
1748 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1749 if (__exist_node_summaries(sbi))
1750 sbi->kbytes_written =
1751 le64_to_cpu(seg_i->journal->info.kbytes_written);
1752
1753 build_gc_manager(sbi);
1754
1755 /* get an inode for node space */
1756 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1757 if (IS_ERR(sbi->node_inode)) {
1758 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1759 err = PTR_ERR(sbi->node_inode);
1760 goto free_nm;
1761 }
1762
1763 f2fs_join_shrinker(sbi);
1764
1765 /* if there are nt orphan nodes free them */
1766 err = recover_orphan_inodes(sbi);
1767 if (err)
1768 goto free_node_inode;
1769
1770 /* read root inode and dentry */
1771 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1772 if (IS_ERR(root)) {
1773 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1774 err = PTR_ERR(root);
1775 goto free_node_inode;
1776 }
1777 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1778 iput(root);
1779 err = -EINVAL;
1780 goto free_node_inode;
1781 }
1782
1783 sb->s_root = d_make_root(root); /* allocate root dentry */
1784 if (!sb->s_root) {
1785 err = -ENOMEM;
1786 goto free_root_inode;
1787 }
1788
1789 err = f2fs_build_stats(sbi);
1790 if (err)
1791 goto free_root_inode;
1792
1793 if (f2fs_proc_root)
1794 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1795
1796 if (sbi->s_proc) {
1797 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1798 &f2fs_seq_segment_info_fops, sb);
1799 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
1800 &f2fs_seq_segment_bits_fops, sb);
1801 }
1802
1803 sbi->s_kobj.kset = f2fs_kset;
1804 init_completion(&sbi->s_kobj_unregister);
1805 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1806 "%s", sb->s_id);
1807 if (err)
1808 goto free_proc;
1809
1810 /* recover fsynced data */
1811 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1812 /*
1813 * mount should be failed, when device has readonly mode, and
1814 * previous checkpoint was not done by clean system shutdown.
1815 */
1816 if (bdev_read_only(sb->s_bdev) &&
1817 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1818 err = -EROFS;
1819 goto free_kobj;
1820 }
1821
1822 if (need_fsck)
1823 set_sbi_flag(sbi, SBI_NEED_FSCK);
1824
1825 err = recover_fsync_data(sbi, false);
1826 if (err < 0) {
1827 need_fsck = true;
1828 f2fs_msg(sb, KERN_ERR,
1829 "Cannot recover all fsync data errno=%d", err);
1830 goto free_kobj;
1831 }
1832 } else {
1833 err = recover_fsync_data(sbi, true);
1834
1835 if (!f2fs_readonly(sb) && err > 0) {
1836 err = -EINVAL;
1837 f2fs_msg(sb, KERN_ERR,
1838 "Need to recover fsync data");
1839 goto free_kobj;
1840 }
1841 }
1842
1843 /* recover_fsync_data() cleared this already */
1844 clear_sbi_flag(sbi, SBI_POR_DOING);
1845
1846 /*
1847 * If filesystem is not mounted as read-only then
1848 * do start the gc_thread.
1849 */
1850 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1851 /* After POR, we can run background GC thread.*/
1852 err = start_gc_thread(sbi);
1853 if (err)
1854 goto free_kobj;
1855 }
1856 kfree(options);
1857
1858 /* recover broken superblock */
1859 if (recovery) {
1860 err = f2fs_commit_super(sbi, true);
1861 f2fs_msg(sb, KERN_INFO,
1862 "Try to recover %dth superblock, ret: %d",
1863 sbi->valid_super_block ? 1 : 2, err);
1864 }
1865
1866 f2fs_update_time(sbi, CP_TIME);
1867 f2fs_update_time(sbi, REQ_TIME);
1868 return 0;
1869
1870 free_kobj:
1871 f2fs_sync_inode_meta(sbi);
1872 kobject_del(&sbi->s_kobj);
1873 kobject_put(&sbi->s_kobj);
1874 wait_for_completion(&sbi->s_kobj_unregister);
1875 free_proc:
1876 if (sbi->s_proc) {
1877 remove_proc_entry("segment_info", sbi->s_proc);
1878 remove_proc_entry("segment_bits", sbi->s_proc);
1879 remove_proc_entry(sb->s_id, f2fs_proc_root);
1880 }
1881 f2fs_destroy_stats(sbi);
1882 free_root_inode:
1883 dput(sb->s_root);
1884 sb->s_root = NULL;
1885 free_node_inode:
1886 mutex_lock(&sbi->umount_mutex);
1887 f2fs_leave_shrinker(sbi);
1888 iput(sbi->node_inode);
1889 mutex_unlock(&sbi->umount_mutex);
1890 free_nm:
1891 destroy_node_manager(sbi);
1892 free_sm:
1893 destroy_segment_manager(sbi);
1894 kfree(sbi->ckpt);
1895 free_meta_inode:
1896 make_bad_inode(sbi->meta_inode);
1897 iput(sbi->meta_inode);
1898 free_options:
1899 destroy_percpu_info(sbi);
1900 kfree(options);
1901 free_sb_buf:
1902 kfree(raw_super);
1903 free_sbi:
1904 if (sbi->s_chksum_driver)
1905 crypto_free_shash(sbi->s_chksum_driver);
1906 kfree(sbi);
1907
1908 /* give only one another chance */
1909 if (retry) {
1910 retry = false;
1911 shrink_dcache_sb(sb);
1912 goto try_onemore;
1913 }
1914 return err;
1915 }
1916
1917 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1918 const char *dev_name, void *data)
1919 {
1920 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1921 }
1922
1923 static void kill_f2fs_super(struct super_block *sb)
1924 {
1925 if (sb->s_root)
1926 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1927 kill_block_super(sb);
1928 }
1929
1930 static struct file_system_type f2fs_fs_type = {
1931 .owner = THIS_MODULE,
1932 .name = "f2fs",
1933 .mount = f2fs_mount,
1934 .kill_sb = kill_f2fs_super,
1935 .fs_flags = FS_REQUIRES_DEV,
1936 };
1937 MODULE_ALIAS_FS("f2fs");
1938
1939 static int __init init_inodecache(void)
1940 {
1941 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1942 sizeof(struct f2fs_inode_info), 0,
1943 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1944 if (!f2fs_inode_cachep)
1945 return -ENOMEM;
1946 return 0;
1947 }
1948
1949 static void destroy_inodecache(void)
1950 {
1951 /*
1952 * Make sure all delayed rcu free inodes are flushed before we
1953 * destroy cache.
1954 */
1955 rcu_barrier();
1956 kmem_cache_destroy(f2fs_inode_cachep);
1957 }
1958
1959 static int __init init_f2fs_fs(void)
1960 {
1961 int err;
1962
1963 f2fs_build_trace_ios();
1964
1965 err = init_inodecache();
1966 if (err)
1967 goto fail;
1968 err = create_node_manager_caches();
1969 if (err)
1970 goto free_inodecache;
1971 err = create_segment_manager_caches();
1972 if (err)
1973 goto free_node_manager_caches;
1974 err = create_checkpoint_caches();
1975 if (err)
1976 goto free_segment_manager_caches;
1977 err = create_extent_cache();
1978 if (err)
1979 goto free_checkpoint_caches;
1980 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1981 if (!f2fs_kset) {
1982 err = -ENOMEM;
1983 goto free_extent_cache;
1984 }
1985 #ifdef CONFIG_F2FS_FAULT_INJECTION
1986 f2fs_fault_inject.kset = f2fs_kset;
1987 f2fs_build_fault_attr(0);
1988 err = kobject_init_and_add(&f2fs_fault_inject, &f2fs_fault_ktype,
1989 NULL, "fault_injection");
1990 if (err) {
1991 f2fs_fault_inject.kset = NULL;
1992 goto free_kset;
1993 }
1994 #endif
1995 err = register_shrinker(&f2fs_shrinker_info);
1996 if (err)
1997 goto free_kset;
1998
1999 err = register_filesystem(&f2fs_fs_type);
2000 if (err)
2001 goto free_shrinker;
2002 err = f2fs_create_root_stats();
2003 if (err)
2004 goto free_filesystem;
2005 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
2006 return 0;
2007
2008 free_filesystem:
2009 unregister_filesystem(&f2fs_fs_type);
2010 free_shrinker:
2011 unregister_shrinker(&f2fs_shrinker_info);
2012 free_kset:
2013 #ifdef CONFIG_F2FS_FAULT_INJECTION
2014 if (f2fs_fault_inject.kset)
2015 kobject_put(&f2fs_fault_inject);
2016 #endif
2017 kset_unregister(f2fs_kset);
2018 free_extent_cache:
2019 destroy_extent_cache();
2020 free_checkpoint_caches:
2021 destroy_checkpoint_caches();
2022 free_segment_manager_caches:
2023 destroy_segment_manager_caches();
2024 free_node_manager_caches:
2025 destroy_node_manager_caches();
2026 free_inodecache:
2027 destroy_inodecache();
2028 fail:
2029 return err;
2030 }
2031
2032 static void __exit exit_f2fs_fs(void)
2033 {
2034 remove_proc_entry("fs/f2fs", NULL);
2035 f2fs_destroy_root_stats();
2036 unregister_filesystem(&f2fs_fs_type);
2037 unregister_shrinker(&f2fs_shrinker_info);
2038 #ifdef CONFIG_F2FS_FAULT_INJECTION
2039 kobject_put(&f2fs_fault_inject);
2040 #endif
2041 kset_unregister(f2fs_kset);
2042 destroy_extent_cache();
2043 destroy_checkpoint_caches();
2044 destroy_segment_manager_caches();
2045 destroy_node_manager_caches();
2046 destroy_inodecache();
2047 f2fs_destroy_trace_ios();
2048 }
2049
2050 module_init(init_f2fs_fs)
2051 module_exit(exit_f2fs_fs)
2052
2053 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2054 MODULE_DESCRIPTION("Flash Friendly File System");
2055 MODULE_LICENSE("GPL");
This page took 0.094924 seconds and 6 git commands to generate.