NTFS: Mask out __GFP_HIGHMEM when doing kmalloc() in __ntfs_malloc() as it
[deliverable/linux.git] / fs / file.c
1 /*
2 * linux/fs/file.c
3 *
4 * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
5 *
6 * Manage the dynamic fd arrays in the process files_struct.
7 */
8
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/time.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/file.h>
15 #include <linux/bitops.h>
16 #include <linux/interrupt.h>
17 #include <linux/spinlock.h>
18 #include <linux/rcupdate.h>
19 #include <linux/workqueue.h>
20
21 struct fdtable_defer {
22 spinlock_t lock;
23 struct work_struct wq;
24 struct timer_list timer;
25 struct fdtable *next;
26 };
27
28 /*
29 * We use this list to defer free fdtables that have vmalloced
30 * sets/arrays. By keeping a per-cpu list, we avoid having to embed
31 * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in
32 * this per-task structure.
33 */
34 static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list);
35
36
37 /*
38 * Allocate an fd array, using kmalloc or vmalloc.
39 * Note: the array isn't cleared at allocation time.
40 */
41 struct file ** alloc_fd_array(int num)
42 {
43 struct file **new_fds;
44 int size = num * sizeof(struct file *);
45
46 if (size <= PAGE_SIZE)
47 new_fds = (struct file **) kmalloc(size, GFP_KERNEL);
48 else
49 new_fds = (struct file **) vmalloc(size);
50 return new_fds;
51 }
52
53 void free_fd_array(struct file **array, int num)
54 {
55 int size = num * sizeof(struct file *);
56
57 if (!array) {
58 printk (KERN_ERR "free_fd_array: array = 0 (num = %d)\n", num);
59 return;
60 }
61
62 if (num <= NR_OPEN_DEFAULT) /* Don't free the embedded fd array! */
63 return;
64 else if (size <= PAGE_SIZE)
65 kfree(array);
66 else
67 vfree(array);
68 }
69
70 static void __free_fdtable(struct fdtable *fdt)
71 {
72 int fdset_size, fdarray_size;
73
74 fdset_size = fdt->max_fdset / 8;
75 fdarray_size = fdt->max_fds * sizeof(struct file *);
76 free_fdset(fdt->open_fds, fdset_size);
77 free_fdset(fdt->close_on_exec, fdset_size);
78 free_fd_array(fdt->fd, fdarray_size);
79 kfree(fdt);
80 }
81
82 static void fdtable_timer(unsigned long data)
83 {
84 struct fdtable_defer *fddef = (struct fdtable_defer *)data;
85
86 spin_lock(&fddef->lock);
87 /*
88 * If someone already emptied the queue return.
89 */
90 if (!fddef->next)
91 goto out;
92 if (!schedule_work(&fddef->wq))
93 mod_timer(&fddef->timer, 5);
94 out:
95 spin_unlock(&fddef->lock);
96 }
97
98 static void free_fdtable_work(struct fdtable_defer *f)
99 {
100 struct fdtable *fdt;
101
102 spin_lock_bh(&f->lock);
103 fdt = f->next;
104 f->next = NULL;
105 spin_unlock_bh(&f->lock);
106 while(fdt) {
107 struct fdtable *next = fdt->next;
108 __free_fdtable(fdt);
109 fdt = next;
110 }
111 }
112
113 static void free_fdtable_rcu(struct rcu_head *rcu)
114 {
115 struct fdtable *fdt = container_of(rcu, struct fdtable, rcu);
116 int fdset_size, fdarray_size;
117 struct fdtable_defer *fddef;
118
119 BUG_ON(!fdt);
120 fdset_size = fdt->max_fdset / 8;
121 fdarray_size = fdt->max_fds * sizeof(struct file *);
122
123 if (fdt->free_files) {
124 /*
125 * The this fdtable was embedded in the files structure
126 * and the files structure itself was getting destroyed.
127 * It is now safe to free the files structure.
128 */
129 kmem_cache_free(files_cachep, fdt->free_files);
130 return;
131 }
132 if (fdt->max_fdset <= __FD_SETSIZE && fdt->max_fds <= NR_OPEN_DEFAULT) {
133 /*
134 * The fdtable was embedded
135 */
136 return;
137 }
138 if (fdset_size <= PAGE_SIZE && fdarray_size <= PAGE_SIZE) {
139 kfree(fdt->open_fds);
140 kfree(fdt->close_on_exec);
141 kfree(fdt->fd);
142 kfree(fdt);
143 } else {
144 fddef = &get_cpu_var(fdtable_defer_list);
145 spin_lock(&fddef->lock);
146 fdt->next = fddef->next;
147 fddef->next = fdt;
148 /*
149 * vmallocs are handled from the workqueue context.
150 * If the per-cpu workqueue is running, then we
151 * defer work scheduling through a timer.
152 */
153 if (!schedule_work(&fddef->wq))
154 mod_timer(&fddef->timer, 5);
155 spin_unlock(&fddef->lock);
156 put_cpu_var(fdtable_defer_list);
157 }
158 }
159
160 void free_fdtable(struct fdtable *fdt)
161 {
162 if (fdt->free_files || fdt->max_fdset > __FD_SETSIZE ||
163 fdt->max_fds > NR_OPEN_DEFAULT)
164 call_rcu(&fdt->rcu, free_fdtable_rcu);
165 }
166
167 /*
168 * Expand the fdset in the files_struct. Called with the files spinlock
169 * held for write.
170 */
171 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *fdt)
172 {
173 int i;
174 int count;
175
176 BUG_ON(nfdt->max_fdset < fdt->max_fdset);
177 BUG_ON(nfdt->max_fds < fdt->max_fds);
178 /* Copy the existing tables and install the new pointers */
179
180 i = fdt->max_fdset / (sizeof(unsigned long) * 8);
181 count = (nfdt->max_fdset - fdt->max_fdset) / 8;
182
183 /*
184 * Don't copy the entire array if the current fdset is
185 * not yet initialised.
186 */
187 if (i) {
188 memcpy (nfdt->open_fds, fdt->open_fds,
189 fdt->max_fdset/8);
190 memcpy (nfdt->close_on_exec, fdt->close_on_exec,
191 fdt->max_fdset/8);
192 memset (&nfdt->open_fds->fds_bits[i], 0, count);
193 memset (&nfdt->close_on_exec->fds_bits[i], 0, count);
194 }
195
196 /* Don't copy/clear the array if we are creating a new
197 fd array for fork() */
198 if (fdt->max_fds) {
199 memcpy(nfdt->fd, fdt->fd,
200 fdt->max_fds * sizeof(struct file *));
201 /* clear the remainder of the array */
202 memset(&nfdt->fd[fdt->max_fds], 0,
203 (nfdt->max_fds - fdt->max_fds) *
204 sizeof(struct file *));
205 }
206 nfdt->next_fd = fdt->next_fd;
207 }
208
209 /*
210 * Allocate an fdset array, using kmalloc or vmalloc.
211 * Note: the array isn't cleared at allocation time.
212 */
213 fd_set * alloc_fdset(int num)
214 {
215 fd_set *new_fdset;
216 int size = num / 8;
217
218 if (size <= PAGE_SIZE)
219 new_fdset = (fd_set *) kmalloc(size, GFP_KERNEL);
220 else
221 new_fdset = (fd_set *) vmalloc(size);
222 return new_fdset;
223 }
224
225 void free_fdset(fd_set *array, int num)
226 {
227 int size = num / 8;
228
229 if (num <= __FD_SETSIZE) /* Don't free an embedded fdset */
230 return;
231 else if (size <= PAGE_SIZE)
232 kfree(array);
233 else
234 vfree(array);
235 }
236
237 static struct fdtable *alloc_fdtable(int nr)
238 {
239 struct fdtable *fdt = NULL;
240 int nfds = 0;
241 fd_set *new_openset = NULL, *new_execset = NULL;
242 struct file **new_fds;
243
244 fdt = kmalloc(sizeof(*fdt), GFP_KERNEL);
245 if (!fdt)
246 goto out;
247 memset(fdt, 0, sizeof(*fdt));
248
249 nfds = __FD_SETSIZE;
250 /* Expand to the max in easy steps */
251 do {
252 if (nfds < (PAGE_SIZE * 8))
253 nfds = PAGE_SIZE * 8;
254 else {
255 nfds = nfds * 2;
256 if (nfds > NR_OPEN)
257 nfds = NR_OPEN;
258 }
259 } while (nfds <= nr);
260
261 new_openset = alloc_fdset(nfds);
262 new_execset = alloc_fdset(nfds);
263 if (!new_openset || !new_execset)
264 goto out;
265 fdt->open_fds = new_openset;
266 fdt->close_on_exec = new_execset;
267 fdt->max_fdset = nfds;
268
269 nfds = NR_OPEN_DEFAULT;
270 /*
271 * Expand to the max in easy steps, and keep expanding it until
272 * we have enough for the requested fd array size.
273 */
274 do {
275 #if NR_OPEN_DEFAULT < 256
276 if (nfds < 256)
277 nfds = 256;
278 else
279 #endif
280 if (nfds < (PAGE_SIZE / sizeof(struct file *)))
281 nfds = PAGE_SIZE / sizeof(struct file *);
282 else {
283 nfds = nfds * 2;
284 if (nfds > NR_OPEN)
285 nfds = NR_OPEN;
286 }
287 } while (nfds <= nr);
288 new_fds = alloc_fd_array(nfds);
289 if (!new_fds)
290 goto out;
291 fdt->fd = new_fds;
292 fdt->max_fds = nfds;
293 fdt->free_files = NULL;
294 return fdt;
295 out:
296 if (new_openset)
297 free_fdset(new_openset, nfds);
298 if (new_execset)
299 free_fdset(new_execset, nfds);
300 kfree(fdt);
301 return NULL;
302 }
303
304 /*
305 * Expands the file descriptor table - it will allocate a new fdtable and
306 * both fd array and fdset. It is expected to be called with the
307 * files_lock held.
308 */
309 static int expand_fdtable(struct files_struct *files, int nr)
310 __releases(files->file_lock)
311 __acquires(files->file_lock)
312 {
313 int error = 0;
314 struct fdtable *fdt;
315 struct fdtable *nfdt = NULL;
316
317 spin_unlock(&files->file_lock);
318 nfdt = alloc_fdtable(nr);
319 if (!nfdt) {
320 error = -ENOMEM;
321 spin_lock(&files->file_lock);
322 goto out;
323 }
324
325 spin_lock(&files->file_lock);
326 fdt = files_fdtable(files);
327 /*
328 * Check again since another task may have expanded the
329 * fd table while we dropped the lock
330 */
331 if (nr >= fdt->max_fds || nr >= fdt->max_fdset) {
332 copy_fdtable(nfdt, fdt);
333 } else {
334 /* Somebody expanded while we dropped file_lock */
335 spin_unlock(&files->file_lock);
336 __free_fdtable(nfdt);
337 spin_lock(&files->file_lock);
338 goto out;
339 }
340 rcu_assign_pointer(files->fdt, nfdt);
341 free_fdtable(fdt);
342 out:
343 return error;
344 }
345
346 /*
347 * Expand files.
348 * Return <0 on error; 0 nothing done; 1 files expanded, we may have blocked.
349 * Should be called with the files->file_lock spinlock held for write.
350 */
351 int expand_files(struct files_struct *files, int nr)
352 {
353 int err, expand = 0;
354 struct fdtable *fdt;
355
356 fdt = files_fdtable(files);
357 if (nr >= fdt->max_fdset || nr >= fdt->max_fds) {
358 if (fdt->max_fdset >= NR_OPEN ||
359 fdt->max_fds >= NR_OPEN || nr >= NR_OPEN) {
360 err = -EMFILE;
361 goto out;
362 }
363 expand = 1;
364 if ((err = expand_fdtable(files, nr)))
365 goto out;
366 }
367 err = expand;
368 out:
369 return err;
370 }
371
372 static void __devinit fdtable_defer_list_init(int cpu)
373 {
374 struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu);
375 spin_lock_init(&fddef->lock);
376 INIT_WORK(&fddef->wq, (void (*)(void *))free_fdtable_work, fddef);
377 init_timer(&fddef->timer);
378 fddef->timer.data = (unsigned long)fddef;
379 fddef->timer.function = fdtable_timer;
380 fddef->next = NULL;
381 }
382
383 void __init files_defer_init(void)
384 {
385 int i;
386 /* Really early - can't use for_each_cpu */
387 for (i = 0; i < NR_CPUS; i++)
388 fdtable_defer_list_init(i);
389 }
This page took 0.053718 seconds and 5 git commands to generate.