002be0ff2ab3d4fc89125221d5e79eabd377e205
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33 * Passed into wb_writeback(), essentially a subset of writeback_control
34 */
35 struct wb_writeback_work {
36 long nr_pages;
37 struct super_block *sb;
38 enum writeback_sync_modes sync_mode;
39 unsigned int for_kupdate:1;
40 unsigned int range_cyclic:1;
41 unsigned int for_background:1;
42
43 struct list_head list; /* pending work list */
44 struct completion *done; /* set if the caller waits */
45 };
46
47 /*
48 * Include the creation of the trace points after defining the
49 * wb_writeback_work structure so that the definition remains local to this
50 * file.
51 */
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/writeback.h>
54
55 #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
56
57 /*
58 * We don't actually have pdflush, but this one is exported though /proc...
59 */
60 int nr_pdflush_threads;
61
62 /**
63 * writeback_in_progress - determine whether there is writeback in progress
64 * @bdi: the device's backing_dev_info structure.
65 *
66 * Determine whether there is writeback waiting to be handled against a
67 * backing device.
68 */
69 int writeback_in_progress(struct backing_dev_info *bdi)
70 {
71 return !list_empty(&bdi->work_list);
72 }
73
74 static void bdi_queue_work(struct backing_dev_info *bdi,
75 struct wb_writeback_work *work)
76 {
77 trace_writeback_queue(bdi, work);
78
79 spin_lock(&bdi->wb_lock);
80 list_add_tail(&work->list, &bdi->work_list);
81 spin_unlock(&bdi->wb_lock);
82
83 /*
84 * If the default thread isn't there, make sure we add it. When
85 * it gets created and wakes up, we'll run this work.
86 */
87 if (unlikely(!bdi->wb.task)) {
88 trace_writeback_nothread(bdi, work);
89 wake_up_process(default_backing_dev_info.wb.task);
90 } else {
91 struct bdi_writeback *wb = &bdi->wb;
92
93 if (wb->task)
94 wake_up_process(wb->task);
95 }
96 }
97
98 static void
99 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
100 bool range_cyclic, bool for_background)
101 {
102 struct wb_writeback_work *work;
103
104 /*
105 * This is WB_SYNC_NONE writeback, so if allocation fails just
106 * wakeup the thread for old dirty data writeback
107 */
108 work = kzalloc(sizeof(*work), GFP_ATOMIC);
109 if (!work) {
110 if (bdi->wb.task) {
111 trace_writeback_nowork(bdi);
112 wake_up_process(bdi->wb.task);
113 }
114 return;
115 }
116
117 work->sync_mode = WB_SYNC_NONE;
118 work->nr_pages = nr_pages;
119 work->range_cyclic = range_cyclic;
120 work->for_background = for_background;
121
122 bdi_queue_work(bdi, work);
123 }
124
125 /**
126 * bdi_start_writeback - start writeback
127 * @bdi: the backing device to write from
128 * @nr_pages: the number of pages to write
129 *
130 * Description:
131 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
132 * started when this function returns, we make no guarentees on
133 * completion. Caller need not hold sb s_umount semaphore.
134 *
135 */
136 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
137 {
138 __bdi_start_writeback(bdi, nr_pages, true, false);
139 }
140
141 /**
142 * bdi_start_background_writeback - start background writeback
143 * @bdi: the backing device to write from
144 *
145 * Description:
146 * This does WB_SYNC_NONE background writeback. The IO is only
147 * started when this function returns, we make no guarentees on
148 * completion. Caller need not hold sb s_umount semaphore.
149 */
150 void bdi_start_background_writeback(struct backing_dev_info *bdi)
151 {
152 __bdi_start_writeback(bdi, LONG_MAX, true, true);
153 }
154
155 /*
156 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
157 * furthest end of its superblock's dirty-inode list.
158 *
159 * Before stamping the inode's ->dirtied_when, we check to see whether it is
160 * already the most-recently-dirtied inode on the b_dirty list. If that is
161 * the case then the inode must have been redirtied while it was being written
162 * out and we don't reset its dirtied_when.
163 */
164 static void redirty_tail(struct inode *inode)
165 {
166 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
167
168 if (!list_empty(&wb->b_dirty)) {
169 struct inode *tail;
170
171 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
172 if (time_before(inode->dirtied_when, tail->dirtied_when))
173 inode->dirtied_when = jiffies;
174 }
175 list_move(&inode->i_list, &wb->b_dirty);
176 }
177
178 /*
179 * requeue inode for re-scanning after bdi->b_io list is exhausted.
180 */
181 static void requeue_io(struct inode *inode)
182 {
183 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
184
185 list_move(&inode->i_list, &wb->b_more_io);
186 }
187
188 static void inode_sync_complete(struct inode *inode)
189 {
190 /*
191 * Prevent speculative execution through spin_unlock(&inode_lock);
192 */
193 smp_mb();
194 wake_up_bit(&inode->i_state, __I_SYNC);
195 }
196
197 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
198 {
199 bool ret = time_after(inode->dirtied_when, t);
200 #ifndef CONFIG_64BIT
201 /*
202 * For inodes being constantly redirtied, dirtied_when can get stuck.
203 * It _appears_ to be in the future, but is actually in distant past.
204 * This test is necessary to prevent such wrapped-around relative times
205 * from permanently stopping the whole bdi writeback.
206 */
207 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
208 #endif
209 return ret;
210 }
211
212 /*
213 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
214 */
215 static void move_expired_inodes(struct list_head *delaying_queue,
216 struct list_head *dispatch_queue,
217 unsigned long *older_than_this)
218 {
219 LIST_HEAD(tmp);
220 struct list_head *pos, *node;
221 struct super_block *sb = NULL;
222 struct inode *inode;
223 int do_sb_sort = 0;
224
225 while (!list_empty(delaying_queue)) {
226 inode = list_entry(delaying_queue->prev, struct inode, i_list);
227 if (older_than_this &&
228 inode_dirtied_after(inode, *older_than_this))
229 break;
230 if (sb && sb != inode->i_sb)
231 do_sb_sort = 1;
232 sb = inode->i_sb;
233 list_move(&inode->i_list, &tmp);
234 }
235
236 /* just one sb in list, splice to dispatch_queue and we're done */
237 if (!do_sb_sort) {
238 list_splice(&tmp, dispatch_queue);
239 return;
240 }
241
242 /* Move inodes from one superblock together */
243 while (!list_empty(&tmp)) {
244 inode = list_entry(tmp.prev, struct inode, i_list);
245 sb = inode->i_sb;
246 list_for_each_prev_safe(pos, node, &tmp) {
247 inode = list_entry(pos, struct inode, i_list);
248 if (inode->i_sb == sb)
249 list_move(&inode->i_list, dispatch_queue);
250 }
251 }
252 }
253
254 /*
255 * Queue all expired dirty inodes for io, eldest first.
256 */
257 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
258 {
259 list_splice_init(&wb->b_more_io, wb->b_io.prev);
260 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
261 }
262
263 static int write_inode(struct inode *inode, struct writeback_control *wbc)
264 {
265 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
266 return inode->i_sb->s_op->write_inode(inode, wbc);
267 return 0;
268 }
269
270 /*
271 * Wait for writeback on an inode to complete.
272 */
273 static void inode_wait_for_writeback(struct inode *inode)
274 {
275 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
276 wait_queue_head_t *wqh;
277
278 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
279 while (inode->i_state & I_SYNC) {
280 spin_unlock(&inode_lock);
281 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
282 spin_lock(&inode_lock);
283 }
284 }
285
286 /*
287 * Write out an inode's dirty pages. Called under inode_lock. Either the
288 * caller has ref on the inode (either via __iget or via syscall against an fd)
289 * or the inode has I_WILL_FREE set (via generic_forget_inode)
290 *
291 * If `wait' is set, wait on the writeout.
292 *
293 * The whole writeout design is quite complex and fragile. We want to avoid
294 * starvation of particular inodes when others are being redirtied, prevent
295 * livelocks, etc.
296 *
297 * Called under inode_lock.
298 */
299 static int
300 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
301 {
302 struct address_space *mapping = inode->i_mapping;
303 unsigned dirty;
304 int ret;
305
306 if (!atomic_read(&inode->i_count))
307 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
308 else
309 WARN_ON(inode->i_state & I_WILL_FREE);
310
311 if (inode->i_state & I_SYNC) {
312 /*
313 * If this inode is locked for writeback and we are not doing
314 * writeback-for-data-integrity, move it to b_more_io so that
315 * writeback can proceed with the other inodes on s_io.
316 *
317 * We'll have another go at writing back this inode when we
318 * completed a full scan of b_io.
319 */
320 if (wbc->sync_mode != WB_SYNC_ALL) {
321 requeue_io(inode);
322 return 0;
323 }
324
325 /*
326 * It's a data-integrity sync. We must wait.
327 */
328 inode_wait_for_writeback(inode);
329 }
330
331 BUG_ON(inode->i_state & I_SYNC);
332
333 /* Set I_SYNC, reset I_DIRTY_PAGES */
334 inode->i_state |= I_SYNC;
335 inode->i_state &= ~I_DIRTY_PAGES;
336 spin_unlock(&inode_lock);
337
338 ret = do_writepages(mapping, wbc);
339
340 /*
341 * Make sure to wait on the data before writing out the metadata.
342 * This is important for filesystems that modify metadata on data
343 * I/O completion.
344 */
345 if (wbc->sync_mode == WB_SYNC_ALL) {
346 int err = filemap_fdatawait(mapping);
347 if (ret == 0)
348 ret = err;
349 }
350
351 /*
352 * Some filesystems may redirty the inode during the writeback
353 * due to delalloc, clear dirty metadata flags right before
354 * write_inode()
355 */
356 spin_lock(&inode_lock);
357 dirty = inode->i_state & I_DIRTY;
358 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
359 spin_unlock(&inode_lock);
360 /* Don't write the inode if only I_DIRTY_PAGES was set */
361 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
362 int err = write_inode(inode, wbc);
363 if (ret == 0)
364 ret = err;
365 }
366
367 spin_lock(&inode_lock);
368 inode->i_state &= ~I_SYNC;
369 if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
370 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
371 /*
372 * More pages get dirtied by a fast dirtier.
373 */
374 goto select_queue;
375 } else if (inode->i_state & I_DIRTY) {
376 /*
377 * At least XFS will redirty the inode during the
378 * writeback (delalloc) and on io completion (isize).
379 */
380 redirty_tail(inode);
381 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
382 /*
383 * We didn't write back all the pages. nfs_writepages()
384 * sometimes bales out without doing anything. Redirty
385 * the inode; Move it from b_io onto b_more_io/b_dirty.
386 */
387 /*
388 * akpm: if the caller was the kupdate function we put
389 * this inode at the head of b_dirty so it gets first
390 * consideration. Otherwise, move it to the tail, for
391 * the reasons described there. I'm not really sure
392 * how much sense this makes. Presumably I had a good
393 * reasons for doing it this way, and I'd rather not
394 * muck with it at present.
395 */
396 if (wbc->for_kupdate) {
397 /*
398 * For the kupdate function we move the inode
399 * to b_more_io so it will get more writeout as
400 * soon as the queue becomes uncongested.
401 */
402 inode->i_state |= I_DIRTY_PAGES;
403 select_queue:
404 if (wbc->nr_to_write <= 0) {
405 /*
406 * slice used up: queue for next turn
407 */
408 requeue_io(inode);
409 } else {
410 /*
411 * somehow blocked: retry later
412 */
413 redirty_tail(inode);
414 }
415 } else {
416 /*
417 * Otherwise fully redirty the inode so that
418 * other inodes on this superblock will get some
419 * writeout. Otherwise heavy writing to one
420 * file would indefinitely suspend writeout of
421 * all the other files.
422 */
423 inode->i_state |= I_DIRTY_PAGES;
424 redirty_tail(inode);
425 }
426 } else if (atomic_read(&inode->i_count)) {
427 /*
428 * The inode is clean, inuse
429 */
430 list_move(&inode->i_list, &inode_in_use);
431 } else {
432 /*
433 * The inode is clean, unused
434 */
435 list_move(&inode->i_list, &inode_unused);
436 }
437 }
438 inode_sync_complete(inode);
439 return ret;
440 }
441
442 /*
443 * For background writeback the caller does not have the sb pinned
444 * before calling writeback. So make sure that we do pin it, so it doesn't
445 * go away while we are writing inodes from it.
446 */
447 static bool pin_sb_for_writeback(struct super_block *sb)
448 {
449 spin_lock(&sb_lock);
450 if (list_empty(&sb->s_instances)) {
451 spin_unlock(&sb_lock);
452 return false;
453 }
454
455 sb->s_count++;
456 spin_unlock(&sb_lock);
457
458 if (down_read_trylock(&sb->s_umount)) {
459 if (sb->s_root)
460 return true;
461 up_read(&sb->s_umount);
462 }
463
464 put_super(sb);
465 return false;
466 }
467
468 /*
469 * Write a portion of b_io inodes which belong to @sb.
470 *
471 * If @only_this_sb is true, then find and write all such
472 * inodes. Otherwise write only ones which go sequentially
473 * in reverse order.
474 *
475 * Return 1, if the caller writeback routine should be
476 * interrupted. Otherwise return 0.
477 */
478 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
479 struct writeback_control *wbc, bool only_this_sb)
480 {
481 while (!list_empty(&wb->b_io)) {
482 long pages_skipped;
483 struct inode *inode = list_entry(wb->b_io.prev,
484 struct inode, i_list);
485
486 if (inode->i_sb != sb) {
487 if (only_this_sb) {
488 /*
489 * We only want to write back data for this
490 * superblock, move all inodes not belonging
491 * to it back onto the dirty list.
492 */
493 redirty_tail(inode);
494 continue;
495 }
496
497 /*
498 * The inode belongs to a different superblock.
499 * Bounce back to the caller to unpin this and
500 * pin the next superblock.
501 */
502 return 0;
503 }
504
505 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
506 requeue_io(inode);
507 continue;
508 }
509 /*
510 * Was this inode dirtied after sync_sb_inodes was called?
511 * This keeps sync from extra jobs and livelock.
512 */
513 if (inode_dirtied_after(inode, wbc->wb_start))
514 return 1;
515
516 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
517 __iget(inode);
518 pages_skipped = wbc->pages_skipped;
519 writeback_single_inode(inode, wbc);
520 if (wbc->pages_skipped != pages_skipped) {
521 /*
522 * writeback is not making progress due to locked
523 * buffers. Skip this inode for now.
524 */
525 redirty_tail(inode);
526 }
527 spin_unlock(&inode_lock);
528 iput(inode);
529 cond_resched();
530 spin_lock(&inode_lock);
531 if (wbc->nr_to_write <= 0) {
532 wbc->more_io = 1;
533 return 1;
534 }
535 if (!list_empty(&wb->b_more_io))
536 wbc->more_io = 1;
537 }
538 /* b_io is empty */
539 return 1;
540 }
541
542 void writeback_inodes_wb(struct bdi_writeback *wb,
543 struct writeback_control *wbc)
544 {
545 int ret = 0;
546
547 wbc->wb_start = jiffies; /* livelock avoidance */
548 spin_lock(&inode_lock);
549 if (!wbc->for_kupdate || list_empty(&wb->b_io))
550 queue_io(wb, wbc->older_than_this);
551
552 while (!list_empty(&wb->b_io)) {
553 struct inode *inode = list_entry(wb->b_io.prev,
554 struct inode, i_list);
555 struct super_block *sb = inode->i_sb;
556
557 if (!pin_sb_for_writeback(sb)) {
558 requeue_io(inode);
559 continue;
560 }
561 ret = writeback_sb_inodes(sb, wb, wbc, false);
562 drop_super(sb);
563
564 if (ret)
565 break;
566 }
567 spin_unlock(&inode_lock);
568 /* Leave any unwritten inodes on b_io */
569 }
570
571 static void __writeback_inodes_sb(struct super_block *sb,
572 struct bdi_writeback *wb, struct writeback_control *wbc)
573 {
574 WARN_ON(!rwsem_is_locked(&sb->s_umount));
575
576 wbc->wb_start = jiffies; /* livelock avoidance */
577 spin_lock(&inode_lock);
578 if (!wbc->for_kupdate || list_empty(&wb->b_io))
579 queue_io(wb, wbc->older_than_this);
580 writeback_sb_inodes(sb, wb, wbc, true);
581 spin_unlock(&inode_lock);
582 }
583
584 /*
585 * The maximum number of pages to writeout in a single bdi flush/kupdate
586 * operation. We do this so we don't hold I_SYNC against an inode for
587 * enormous amounts of time, which would block a userspace task which has
588 * been forced to throttle against that inode. Also, the code reevaluates
589 * the dirty each time it has written this many pages.
590 */
591 #define MAX_WRITEBACK_PAGES 1024
592
593 static inline bool over_bground_thresh(void)
594 {
595 unsigned long background_thresh, dirty_thresh;
596
597 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
598
599 return (global_page_state(NR_FILE_DIRTY) +
600 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
601 }
602
603 /*
604 * Explicit flushing or periodic writeback of "old" data.
605 *
606 * Define "old": the first time one of an inode's pages is dirtied, we mark the
607 * dirtying-time in the inode's address_space. So this periodic writeback code
608 * just walks the superblock inode list, writing back any inodes which are
609 * older than a specific point in time.
610 *
611 * Try to run once per dirty_writeback_interval. But if a writeback event
612 * takes longer than a dirty_writeback_interval interval, then leave a
613 * one-second gap.
614 *
615 * older_than_this takes precedence over nr_to_write. So we'll only write back
616 * all dirty pages if they are all attached to "old" mappings.
617 */
618 static long wb_writeback(struct bdi_writeback *wb,
619 struct wb_writeback_work *work)
620 {
621 struct writeback_control wbc = {
622 .sync_mode = work->sync_mode,
623 .older_than_this = NULL,
624 .for_kupdate = work->for_kupdate,
625 .for_background = work->for_background,
626 .range_cyclic = work->range_cyclic,
627 };
628 unsigned long oldest_jif;
629 long wrote = 0;
630 struct inode *inode;
631
632 if (wbc.for_kupdate) {
633 wbc.older_than_this = &oldest_jif;
634 oldest_jif = jiffies -
635 msecs_to_jiffies(dirty_expire_interval * 10);
636 }
637 if (!wbc.range_cyclic) {
638 wbc.range_start = 0;
639 wbc.range_end = LLONG_MAX;
640 }
641
642 for (;;) {
643 /*
644 * Stop writeback when nr_pages has been consumed
645 */
646 if (work->nr_pages <= 0)
647 break;
648
649 /*
650 * For background writeout, stop when we are below the
651 * background dirty threshold
652 */
653 if (work->for_background && !over_bground_thresh())
654 break;
655
656 wbc.more_io = 0;
657 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
658 wbc.pages_skipped = 0;
659
660 trace_wbc_writeback_start(&wbc, wb->bdi);
661 if (work->sb)
662 __writeback_inodes_sb(work->sb, wb, &wbc);
663 else
664 writeback_inodes_wb(wb, &wbc);
665 trace_wbc_writeback_written(&wbc, wb->bdi);
666
667 work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
668 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
669
670 /*
671 * If we consumed everything, see if we have more
672 */
673 if (wbc.nr_to_write <= 0)
674 continue;
675 /*
676 * Didn't write everything and we don't have more IO, bail
677 */
678 if (!wbc.more_io)
679 break;
680 /*
681 * Did we write something? Try for more
682 */
683 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
684 continue;
685 /*
686 * Nothing written. Wait for some inode to
687 * become available for writeback. Otherwise
688 * we'll just busyloop.
689 */
690 spin_lock(&inode_lock);
691 if (!list_empty(&wb->b_more_io)) {
692 inode = list_entry(wb->b_more_io.prev,
693 struct inode, i_list);
694 trace_wbc_writeback_wait(&wbc, wb->bdi);
695 inode_wait_for_writeback(inode);
696 }
697 spin_unlock(&inode_lock);
698 }
699
700 return wrote;
701 }
702
703 /*
704 * Return the next wb_writeback_work struct that hasn't been processed yet.
705 */
706 static struct wb_writeback_work *
707 get_next_work_item(struct backing_dev_info *bdi)
708 {
709 struct wb_writeback_work *work = NULL;
710
711 spin_lock(&bdi->wb_lock);
712 if (!list_empty(&bdi->work_list)) {
713 work = list_entry(bdi->work_list.next,
714 struct wb_writeback_work, list);
715 list_del_init(&work->list);
716 }
717 spin_unlock(&bdi->wb_lock);
718 return work;
719 }
720
721 static long wb_check_old_data_flush(struct bdi_writeback *wb)
722 {
723 unsigned long expired;
724 long nr_pages;
725
726 /*
727 * When set to zero, disable periodic writeback
728 */
729 if (!dirty_writeback_interval)
730 return 0;
731
732 expired = wb->last_old_flush +
733 msecs_to_jiffies(dirty_writeback_interval * 10);
734 if (time_before(jiffies, expired))
735 return 0;
736
737 wb->last_old_flush = jiffies;
738 nr_pages = global_page_state(NR_FILE_DIRTY) +
739 global_page_state(NR_UNSTABLE_NFS) +
740 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
741
742 if (nr_pages) {
743 struct wb_writeback_work work = {
744 .nr_pages = nr_pages,
745 .sync_mode = WB_SYNC_NONE,
746 .for_kupdate = 1,
747 .range_cyclic = 1,
748 };
749
750 return wb_writeback(wb, &work);
751 }
752
753 return 0;
754 }
755
756 /*
757 * Retrieve work items and do the writeback they describe
758 */
759 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
760 {
761 struct backing_dev_info *bdi = wb->bdi;
762 struct wb_writeback_work *work;
763 long wrote = 0;
764
765 while ((work = get_next_work_item(bdi)) != NULL) {
766 /*
767 * Override sync mode, in case we must wait for completion
768 * because this thread is exiting now.
769 */
770 if (force_wait)
771 work->sync_mode = WB_SYNC_ALL;
772
773 trace_writeback_exec(bdi, work);
774
775 wrote += wb_writeback(wb, work);
776
777 /*
778 * Notify the caller of completion if this is a synchronous
779 * work item, otherwise just free it.
780 */
781 if (work->done)
782 complete(work->done);
783 else
784 kfree(work);
785 }
786
787 /*
788 * Check for periodic writeback, kupdated() style
789 */
790 wrote += wb_check_old_data_flush(wb);
791
792 return wrote;
793 }
794
795 /*
796 * Handle writeback of dirty data for the device backed by this bdi. Also
797 * wakes up periodically and does kupdated style flushing.
798 */
799 int bdi_writeback_thread(void *data)
800 {
801 struct bdi_writeback *wb = data;
802 struct backing_dev_info *bdi = wb->bdi;
803 unsigned long last_active = jiffies;
804 unsigned long wait_jiffies = -1UL;
805 long pages_written;
806
807 /*
808 * Add us to the active bdi_list
809 */
810 spin_lock_bh(&bdi_lock);
811 list_add_rcu(&bdi->bdi_list, &bdi_list);
812 spin_unlock_bh(&bdi_lock);
813
814 current->flags |= PF_FLUSHER | PF_SWAPWRITE;
815 set_freezable();
816
817 /*
818 * Our parent may run at a different priority, just set us to normal
819 */
820 set_user_nice(current, 0);
821
822 /*
823 * Clear pending bit and wakeup anybody waiting to tear us down
824 */
825 clear_bit(BDI_pending, &bdi->state);
826 smp_mb__after_clear_bit();
827 wake_up_bit(&bdi->state, BDI_pending);
828
829 trace_writeback_thread_start(bdi);
830
831 while (!kthread_should_stop()) {
832 pages_written = wb_do_writeback(wb, 0);
833
834 trace_writeback_pages_written(pages_written);
835
836 if (pages_written)
837 last_active = jiffies;
838 else if (wait_jiffies != -1UL) {
839 unsigned long max_idle;
840
841 /*
842 * Longest period of inactivity that we tolerate. If we
843 * see dirty data again later, the thread will get
844 * recreated automatically.
845 */
846 max_idle = max(5UL * 60 * HZ, wait_jiffies);
847 if (time_after(jiffies, max_idle + last_active))
848 break;
849 }
850
851 if (dirty_writeback_interval) {
852 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
853 schedule_timeout_interruptible(wait_jiffies);
854 } else {
855 set_current_state(TASK_INTERRUPTIBLE);
856 if (list_empty_careful(&wb->bdi->work_list) &&
857 !kthread_should_stop())
858 schedule();
859 __set_current_state(TASK_RUNNING);
860 }
861
862 try_to_freeze();
863 }
864
865 wb->task = NULL;
866
867 /*
868 * Flush any work that raced with us exiting. No new work
869 * will be added, since this bdi isn't discoverable anymore.
870 */
871 if (!list_empty(&bdi->work_list))
872 wb_do_writeback(wb, 1);
873
874 trace_writeback_thread_stop(bdi);
875 return 0;
876 }
877
878
879 /*
880 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
881 * the whole world.
882 */
883 void wakeup_flusher_threads(long nr_pages)
884 {
885 struct backing_dev_info *bdi;
886
887 if (!nr_pages) {
888 nr_pages = global_page_state(NR_FILE_DIRTY) +
889 global_page_state(NR_UNSTABLE_NFS);
890 }
891
892 rcu_read_lock();
893 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
894 if (!bdi_has_dirty_io(bdi))
895 continue;
896 __bdi_start_writeback(bdi, nr_pages, false, false);
897 }
898 rcu_read_unlock();
899 }
900
901 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
902 {
903 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
904 struct dentry *dentry;
905 const char *name = "?";
906
907 dentry = d_find_alias(inode);
908 if (dentry) {
909 spin_lock(&dentry->d_lock);
910 name = (const char *) dentry->d_name.name;
911 }
912 printk(KERN_DEBUG
913 "%s(%d): dirtied inode %lu (%s) on %s\n",
914 current->comm, task_pid_nr(current), inode->i_ino,
915 name, inode->i_sb->s_id);
916 if (dentry) {
917 spin_unlock(&dentry->d_lock);
918 dput(dentry);
919 }
920 }
921 }
922
923 /**
924 * __mark_inode_dirty - internal function
925 * @inode: inode to mark
926 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
927 * Mark an inode as dirty. Callers should use mark_inode_dirty or
928 * mark_inode_dirty_sync.
929 *
930 * Put the inode on the super block's dirty list.
931 *
932 * CAREFUL! We mark it dirty unconditionally, but move it onto the
933 * dirty list only if it is hashed or if it refers to a blockdev.
934 * If it was not hashed, it will never be added to the dirty list
935 * even if it is later hashed, as it will have been marked dirty already.
936 *
937 * In short, make sure you hash any inodes _before_ you start marking
938 * them dirty.
939 *
940 * This function *must* be atomic for the I_DIRTY_PAGES case -
941 * set_page_dirty() is called under spinlock in several places.
942 *
943 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
944 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
945 * the kernel-internal blockdev inode represents the dirtying time of the
946 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
947 * page->mapping->host, so the page-dirtying time is recorded in the internal
948 * blockdev inode.
949 */
950 void __mark_inode_dirty(struct inode *inode, int flags)
951 {
952 struct super_block *sb = inode->i_sb;
953
954 /*
955 * Don't do this for I_DIRTY_PAGES - that doesn't actually
956 * dirty the inode itself
957 */
958 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
959 if (sb->s_op->dirty_inode)
960 sb->s_op->dirty_inode(inode);
961 }
962
963 /*
964 * make sure that changes are seen by all cpus before we test i_state
965 * -- mikulas
966 */
967 smp_mb();
968
969 /* avoid the locking if we can */
970 if ((inode->i_state & flags) == flags)
971 return;
972
973 if (unlikely(block_dump))
974 block_dump___mark_inode_dirty(inode);
975
976 spin_lock(&inode_lock);
977 if ((inode->i_state & flags) != flags) {
978 const int was_dirty = inode->i_state & I_DIRTY;
979
980 inode->i_state |= flags;
981
982 /*
983 * If the inode is being synced, just update its dirty state.
984 * The unlocker will place the inode on the appropriate
985 * superblock list, based upon its state.
986 */
987 if (inode->i_state & I_SYNC)
988 goto out;
989
990 /*
991 * Only add valid (hashed) inodes to the superblock's
992 * dirty list. Add blockdev inodes as well.
993 */
994 if (!S_ISBLK(inode->i_mode)) {
995 if (hlist_unhashed(&inode->i_hash))
996 goto out;
997 }
998 if (inode->i_state & (I_FREEING|I_CLEAR))
999 goto out;
1000
1001 /*
1002 * If the inode was already on b_dirty/b_io/b_more_io, don't
1003 * reposition it (that would break b_dirty time-ordering).
1004 */
1005 if (!was_dirty) {
1006 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1007 struct backing_dev_info *bdi = wb->bdi;
1008
1009 if (bdi_cap_writeback_dirty(bdi) &&
1010 !test_bit(BDI_registered, &bdi->state)) {
1011 WARN_ON(1);
1012 printk(KERN_ERR "bdi-%s not registered\n",
1013 bdi->name);
1014 }
1015
1016 inode->dirtied_when = jiffies;
1017 list_move(&inode->i_list, &wb->b_dirty);
1018 }
1019 }
1020 out:
1021 spin_unlock(&inode_lock);
1022 }
1023 EXPORT_SYMBOL(__mark_inode_dirty);
1024
1025 /*
1026 * Write out a superblock's list of dirty inodes. A wait will be performed
1027 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1028 *
1029 * If older_than_this is non-NULL, then only write out inodes which
1030 * had their first dirtying at a time earlier than *older_than_this.
1031 *
1032 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1033 * This function assumes that the blockdev superblock's inodes are backed by
1034 * a variety of queues, so all inodes are searched. For other superblocks,
1035 * assume that all inodes are backed by the same queue.
1036 *
1037 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1038 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1039 * on the writer throttling path, and we get decent balancing between many
1040 * throttled threads: we don't want them all piling up on inode_sync_wait.
1041 */
1042 static void wait_sb_inodes(struct super_block *sb)
1043 {
1044 struct inode *inode, *old_inode = NULL;
1045
1046 /*
1047 * We need to be protected against the filesystem going from
1048 * r/o to r/w or vice versa.
1049 */
1050 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1051
1052 spin_lock(&inode_lock);
1053
1054 /*
1055 * Data integrity sync. Must wait for all pages under writeback,
1056 * because there may have been pages dirtied before our sync
1057 * call, but which had writeout started before we write it out.
1058 * In which case, the inode may not be on the dirty list, but
1059 * we still have to wait for that writeout.
1060 */
1061 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1062 struct address_space *mapping;
1063
1064 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1065 continue;
1066 mapping = inode->i_mapping;
1067 if (mapping->nrpages == 0)
1068 continue;
1069 __iget(inode);
1070 spin_unlock(&inode_lock);
1071 /*
1072 * We hold a reference to 'inode' so it couldn't have
1073 * been removed from s_inodes list while we dropped the
1074 * inode_lock. We cannot iput the inode now as we can
1075 * be holding the last reference and we cannot iput it
1076 * under inode_lock. So we keep the reference and iput
1077 * it later.
1078 */
1079 iput(old_inode);
1080 old_inode = inode;
1081
1082 filemap_fdatawait(mapping);
1083
1084 cond_resched();
1085
1086 spin_lock(&inode_lock);
1087 }
1088 spin_unlock(&inode_lock);
1089 iput(old_inode);
1090 }
1091
1092 /**
1093 * writeback_inodes_sb - writeback dirty inodes from given super_block
1094 * @sb: the superblock
1095 *
1096 * Start writeback on some inodes on this super_block. No guarantees are made
1097 * on how many (if any) will be written, and this function does not wait
1098 * for IO completion of submitted IO. The number of pages submitted is
1099 * returned.
1100 */
1101 void writeback_inodes_sb(struct super_block *sb)
1102 {
1103 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1104 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1105 DECLARE_COMPLETION_ONSTACK(done);
1106 struct wb_writeback_work work = {
1107 .sb = sb,
1108 .sync_mode = WB_SYNC_NONE,
1109 .done = &done,
1110 };
1111
1112 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1113
1114 work.nr_pages = nr_dirty + nr_unstable +
1115 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
1116
1117 bdi_queue_work(sb->s_bdi, &work);
1118 wait_for_completion(&done);
1119 }
1120 EXPORT_SYMBOL(writeback_inodes_sb);
1121
1122 /**
1123 * writeback_inodes_sb_if_idle - start writeback if none underway
1124 * @sb: the superblock
1125 *
1126 * Invoke writeback_inodes_sb if no writeback is currently underway.
1127 * Returns 1 if writeback was started, 0 if not.
1128 */
1129 int writeback_inodes_sb_if_idle(struct super_block *sb)
1130 {
1131 if (!writeback_in_progress(sb->s_bdi)) {
1132 down_read(&sb->s_umount);
1133 writeback_inodes_sb(sb);
1134 up_read(&sb->s_umount);
1135 return 1;
1136 } else
1137 return 0;
1138 }
1139 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1140
1141 /**
1142 * sync_inodes_sb - sync sb inode pages
1143 * @sb: the superblock
1144 *
1145 * This function writes and waits on any dirty inode belonging to this
1146 * super_block. The number of pages synced is returned.
1147 */
1148 void sync_inodes_sb(struct super_block *sb)
1149 {
1150 DECLARE_COMPLETION_ONSTACK(done);
1151 struct wb_writeback_work work = {
1152 .sb = sb,
1153 .sync_mode = WB_SYNC_ALL,
1154 .nr_pages = LONG_MAX,
1155 .range_cyclic = 0,
1156 .done = &done,
1157 };
1158
1159 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1160
1161 bdi_queue_work(sb->s_bdi, &work);
1162 wait_for_completion(&done);
1163
1164 wait_sb_inodes(sb);
1165 }
1166 EXPORT_SYMBOL(sync_inodes_sb);
1167
1168 /**
1169 * write_inode_now - write an inode to disk
1170 * @inode: inode to write to disk
1171 * @sync: whether the write should be synchronous or not
1172 *
1173 * This function commits an inode to disk immediately if it is dirty. This is
1174 * primarily needed by knfsd.
1175 *
1176 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1177 */
1178 int write_inode_now(struct inode *inode, int sync)
1179 {
1180 int ret;
1181 struct writeback_control wbc = {
1182 .nr_to_write = LONG_MAX,
1183 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1184 .range_start = 0,
1185 .range_end = LLONG_MAX,
1186 };
1187
1188 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1189 wbc.nr_to_write = 0;
1190
1191 might_sleep();
1192 spin_lock(&inode_lock);
1193 ret = writeback_single_inode(inode, &wbc);
1194 spin_unlock(&inode_lock);
1195 if (sync)
1196 inode_sync_wait(inode);
1197 return ret;
1198 }
1199 EXPORT_SYMBOL(write_inode_now);
1200
1201 /**
1202 * sync_inode - write an inode and its pages to disk.
1203 * @inode: the inode to sync
1204 * @wbc: controls the writeback mode
1205 *
1206 * sync_inode() will write an inode and its pages to disk. It will also
1207 * correctly update the inode on its superblock's dirty inode lists and will
1208 * update inode->i_state.
1209 *
1210 * The caller must have a ref on the inode.
1211 */
1212 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1213 {
1214 int ret;
1215
1216 spin_lock(&inode_lock);
1217 ret = writeback_single_inode(inode, wbc);
1218 spin_unlock(&inode_lock);
1219 return ret;
1220 }
1221 EXPORT_SYMBOL(sync_inode);
This page took 0.062111 seconds and 4 git commands to generate.