fs/btrfs: Fix build of ctree
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33 * Passed into wb_writeback(), essentially a subset of writeback_control
34 */
35 struct wb_writeback_work {
36 long nr_pages;
37 struct super_block *sb;
38 enum writeback_sync_modes sync_mode;
39 unsigned int for_kupdate:1;
40 unsigned int range_cyclic:1;
41 unsigned int for_background:1;
42
43 struct list_head list; /* pending work list */
44 struct completion *done; /* set if the caller waits */
45 };
46
47 /*
48 * Include the creation of the trace points after defining the
49 * wb_writeback_work structure so that the definition remains local to this
50 * file.
51 */
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/writeback.h>
54
55 /*
56 * We don't actually have pdflush, but this one is exported though /proc...
57 */
58 int nr_pdflush_threads;
59
60 /**
61 * writeback_in_progress - determine whether there is writeback in progress
62 * @bdi: the device's backing_dev_info structure.
63 *
64 * Determine whether there is writeback waiting to be handled against a
65 * backing device.
66 */
67 int writeback_in_progress(struct backing_dev_info *bdi)
68 {
69 return test_bit(BDI_writeback_running, &bdi->state);
70 }
71
72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
73 {
74 struct super_block *sb = inode->i_sb;
75
76 if (strcmp(sb->s_type->name, "bdev") == 0)
77 return inode->i_mapping->backing_dev_info;
78
79 return sb->s_bdi;
80 }
81
82 static void bdi_queue_work(struct backing_dev_info *bdi,
83 struct wb_writeback_work *work)
84 {
85 trace_writeback_queue(bdi, work);
86
87 spin_lock_bh(&bdi->wb_lock);
88 list_add_tail(&work->list, &bdi->work_list);
89 if (bdi->wb.task) {
90 wake_up_process(bdi->wb.task);
91 } else {
92 /*
93 * The bdi thread isn't there, wake up the forker thread which
94 * will create and run it.
95 */
96 trace_writeback_nothread(bdi, work);
97 wake_up_process(default_backing_dev_info.wb.task);
98 }
99 spin_unlock_bh(&bdi->wb_lock);
100 }
101
102 static void
103 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
104 bool range_cyclic, bool for_background)
105 {
106 struct wb_writeback_work *work;
107
108 /*
109 * This is WB_SYNC_NONE writeback, so if allocation fails just
110 * wakeup the thread for old dirty data writeback
111 */
112 work = kzalloc(sizeof(*work), GFP_ATOMIC);
113 if (!work) {
114 if (bdi->wb.task) {
115 trace_writeback_nowork(bdi);
116 wake_up_process(bdi->wb.task);
117 }
118 return;
119 }
120
121 work->sync_mode = WB_SYNC_NONE;
122 work->nr_pages = nr_pages;
123 work->range_cyclic = range_cyclic;
124 work->for_background = for_background;
125
126 bdi_queue_work(bdi, work);
127 }
128
129 /**
130 * bdi_start_writeback - start writeback
131 * @bdi: the backing device to write from
132 * @nr_pages: the number of pages to write
133 *
134 * Description:
135 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
136 * started when this function returns, we make no guarentees on
137 * completion. Caller need not hold sb s_umount semaphore.
138 *
139 */
140 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
141 {
142 __bdi_start_writeback(bdi, nr_pages, true, false);
143 }
144
145 /**
146 * bdi_start_background_writeback - start background writeback
147 * @bdi: the backing device to write from
148 *
149 * Description:
150 * This does WB_SYNC_NONE background writeback. The IO is only
151 * started when this function returns, we make no guarentees on
152 * completion. Caller need not hold sb s_umount semaphore.
153 */
154 void bdi_start_background_writeback(struct backing_dev_info *bdi)
155 {
156 __bdi_start_writeback(bdi, LONG_MAX, true, true);
157 }
158
159 /*
160 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
161 * furthest end of its superblock's dirty-inode list.
162 *
163 * Before stamping the inode's ->dirtied_when, we check to see whether it is
164 * already the most-recently-dirtied inode on the b_dirty list. If that is
165 * the case then the inode must have been redirtied while it was being written
166 * out and we don't reset its dirtied_when.
167 */
168 static void redirty_tail(struct inode *inode)
169 {
170 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
171
172 if (!list_empty(&wb->b_dirty)) {
173 struct inode *tail;
174
175 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
176 if (time_before(inode->dirtied_when, tail->dirtied_when))
177 inode->dirtied_when = jiffies;
178 }
179 list_move(&inode->i_list, &wb->b_dirty);
180 }
181
182 /*
183 * requeue inode for re-scanning after bdi->b_io list is exhausted.
184 */
185 static void requeue_io(struct inode *inode)
186 {
187 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
188
189 list_move(&inode->i_list, &wb->b_more_io);
190 }
191
192 static void inode_sync_complete(struct inode *inode)
193 {
194 /*
195 * Prevent speculative execution through spin_unlock(&inode_lock);
196 */
197 smp_mb();
198 wake_up_bit(&inode->i_state, __I_SYNC);
199 }
200
201 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
202 {
203 bool ret = time_after(inode->dirtied_when, t);
204 #ifndef CONFIG_64BIT
205 /*
206 * For inodes being constantly redirtied, dirtied_when can get stuck.
207 * It _appears_ to be in the future, but is actually in distant past.
208 * This test is necessary to prevent such wrapped-around relative times
209 * from permanently stopping the whole bdi writeback.
210 */
211 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
212 #endif
213 return ret;
214 }
215
216 /*
217 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
218 */
219 static void move_expired_inodes(struct list_head *delaying_queue,
220 struct list_head *dispatch_queue,
221 unsigned long *older_than_this)
222 {
223 LIST_HEAD(tmp);
224 struct list_head *pos, *node;
225 struct super_block *sb = NULL;
226 struct inode *inode;
227 int do_sb_sort = 0;
228
229 while (!list_empty(delaying_queue)) {
230 inode = list_entry(delaying_queue->prev, struct inode, i_list);
231 if (older_than_this &&
232 inode_dirtied_after(inode, *older_than_this))
233 break;
234 if (sb && sb != inode->i_sb)
235 do_sb_sort = 1;
236 sb = inode->i_sb;
237 list_move(&inode->i_list, &tmp);
238 }
239
240 /* just one sb in list, splice to dispatch_queue and we're done */
241 if (!do_sb_sort) {
242 list_splice(&tmp, dispatch_queue);
243 return;
244 }
245
246 /* Move inodes from one superblock together */
247 while (!list_empty(&tmp)) {
248 inode = list_entry(tmp.prev, struct inode, i_list);
249 sb = inode->i_sb;
250 list_for_each_prev_safe(pos, node, &tmp) {
251 inode = list_entry(pos, struct inode, i_list);
252 if (inode->i_sb == sb)
253 list_move(&inode->i_list, dispatch_queue);
254 }
255 }
256 }
257
258 /*
259 * Queue all expired dirty inodes for io, eldest first.
260 * Before
261 * newly dirtied b_dirty b_io b_more_io
262 * =============> gf edc BA
263 * After
264 * newly dirtied b_dirty b_io b_more_io
265 * =============> g fBAedc
266 * |
267 * +--> dequeue for IO
268 */
269 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
270 {
271 list_splice_init(&wb->b_more_io, &wb->b_io);
272 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
273 }
274
275 static int write_inode(struct inode *inode, struct writeback_control *wbc)
276 {
277 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
278 return inode->i_sb->s_op->write_inode(inode, wbc);
279 return 0;
280 }
281
282 /*
283 * Wait for writeback on an inode to complete.
284 */
285 static void inode_wait_for_writeback(struct inode *inode)
286 {
287 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
288 wait_queue_head_t *wqh;
289
290 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
291 while (inode->i_state & I_SYNC) {
292 spin_unlock(&inode_lock);
293 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
294 spin_lock(&inode_lock);
295 }
296 }
297
298 /*
299 * Write out an inode's dirty pages. Called under inode_lock. Either the
300 * caller has ref on the inode (either via __iget or via syscall against an fd)
301 * or the inode has I_WILL_FREE set (via generic_forget_inode)
302 *
303 * If `wait' is set, wait on the writeout.
304 *
305 * The whole writeout design is quite complex and fragile. We want to avoid
306 * starvation of particular inodes when others are being redirtied, prevent
307 * livelocks, etc.
308 *
309 * Called under inode_lock.
310 */
311 static int
312 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
313 {
314 struct address_space *mapping = inode->i_mapping;
315 unsigned dirty;
316 int ret;
317
318 if (!atomic_read(&inode->i_count))
319 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
320 else
321 WARN_ON(inode->i_state & I_WILL_FREE);
322
323 if (inode->i_state & I_SYNC) {
324 /*
325 * If this inode is locked for writeback and we are not doing
326 * writeback-for-data-integrity, move it to b_more_io so that
327 * writeback can proceed with the other inodes on s_io.
328 *
329 * We'll have another go at writing back this inode when we
330 * completed a full scan of b_io.
331 */
332 if (wbc->sync_mode != WB_SYNC_ALL) {
333 requeue_io(inode);
334 return 0;
335 }
336
337 /*
338 * It's a data-integrity sync. We must wait.
339 */
340 inode_wait_for_writeback(inode);
341 }
342
343 BUG_ON(inode->i_state & I_SYNC);
344
345 /* Set I_SYNC, reset I_DIRTY_PAGES */
346 inode->i_state |= I_SYNC;
347 inode->i_state &= ~I_DIRTY_PAGES;
348 spin_unlock(&inode_lock);
349
350 ret = do_writepages(mapping, wbc);
351
352 /*
353 * Make sure to wait on the data before writing out the metadata.
354 * This is important for filesystems that modify metadata on data
355 * I/O completion.
356 */
357 if (wbc->sync_mode == WB_SYNC_ALL) {
358 int err = filemap_fdatawait(mapping);
359 if (ret == 0)
360 ret = err;
361 }
362
363 /*
364 * Some filesystems may redirty the inode during the writeback
365 * due to delalloc, clear dirty metadata flags right before
366 * write_inode()
367 */
368 spin_lock(&inode_lock);
369 dirty = inode->i_state & I_DIRTY;
370 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
371 spin_unlock(&inode_lock);
372 /* Don't write the inode if only I_DIRTY_PAGES was set */
373 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
374 int err = write_inode(inode, wbc);
375 if (ret == 0)
376 ret = err;
377 }
378
379 spin_lock(&inode_lock);
380 inode->i_state &= ~I_SYNC;
381 if (!(inode->i_state & I_FREEING)) {
382 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
383 /*
384 * We didn't write back all the pages. nfs_writepages()
385 * sometimes bales out without doing anything.
386 */
387 inode->i_state |= I_DIRTY_PAGES;
388 if (wbc->nr_to_write <= 0) {
389 /*
390 * slice used up: queue for next turn
391 */
392 requeue_io(inode);
393 } else {
394 /*
395 * Writeback blocked by something other than
396 * congestion. Delay the inode for some time to
397 * avoid spinning on the CPU (100% iowait)
398 * retrying writeback of the dirty page/inode
399 * that cannot be performed immediately.
400 */
401 redirty_tail(inode);
402 }
403 } else if (inode->i_state & I_DIRTY) {
404 /*
405 * Filesystems can dirty the inode during writeback
406 * operations, such as delayed allocation during
407 * submission or metadata updates after data IO
408 * completion.
409 */
410 redirty_tail(inode);
411 } else if (atomic_read(&inode->i_count)) {
412 /*
413 * The inode is clean, inuse
414 */
415 list_move(&inode->i_list, &inode_in_use);
416 } else {
417 /*
418 * The inode is clean, unused
419 */
420 list_move(&inode->i_list, &inode_unused);
421 }
422 }
423 inode_sync_complete(inode);
424 return ret;
425 }
426
427 /*
428 * For background writeback the caller does not have the sb pinned
429 * before calling writeback. So make sure that we do pin it, so it doesn't
430 * go away while we are writing inodes from it.
431 */
432 static bool pin_sb_for_writeback(struct super_block *sb)
433 {
434 spin_lock(&sb_lock);
435 if (list_empty(&sb->s_instances)) {
436 spin_unlock(&sb_lock);
437 return false;
438 }
439
440 sb->s_count++;
441 spin_unlock(&sb_lock);
442
443 if (down_read_trylock(&sb->s_umount)) {
444 if (sb->s_root)
445 return true;
446 up_read(&sb->s_umount);
447 }
448
449 put_super(sb);
450 return false;
451 }
452
453 /*
454 * Write a portion of b_io inodes which belong to @sb.
455 *
456 * If @only_this_sb is true, then find and write all such
457 * inodes. Otherwise write only ones which go sequentially
458 * in reverse order.
459 *
460 * Return 1, if the caller writeback routine should be
461 * interrupted. Otherwise return 0.
462 */
463 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
464 struct writeback_control *wbc, bool only_this_sb)
465 {
466 while (!list_empty(&wb->b_io)) {
467 long pages_skipped;
468 struct inode *inode = list_entry(wb->b_io.prev,
469 struct inode, i_list);
470
471 if (inode->i_sb != sb) {
472 if (only_this_sb) {
473 /*
474 * We only want to write back data for this
475 * superblock, move all inodes not belonging
476 * to it back onto the dirty list.
477 */
478 redirty_tail(inode);
479 continue;
480 }
481
482 /*
483 * The inode belongs to a different superblock.
484 * Bounce back to the caller to unpin this and
485 * pin the next superblock.
486 */
487 return 0;
488 }
489
490 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
491 requeue_io(inode);
492 continue;
493 }
494 /*
495 * Was this inode dirtied after sync_sb_inodes was called?
496 * This keeps sync from extra jobs and livelock.
497 */
498 if (inode_dirtied_after(inode, wbc->wb_start))
499 return 1;
500
501 BUG_ON(inode->i_state & I_FREEING);
502 __iget(inode);
503 pages_skipped = wbc->pages_skipped;
504 writeback_single_inode(inode, wbc);
505 if (wbc->pages_skipped != pages_skipped) {
506 /*
507 * writeback is not making progress due to locked
508 * buffers. Skip this inode for now.
509 */
510 redirty_tail(inode);
511 }
512 spin_unlock(&inode_lock);
513 iput(inode);
514 cond_resched();
515 spin_lock(&inode_lock);
516 if (wbc->nr_to_write <= 0) {
517 wbc->more_io = 1;
518 return 1;
519 }
520 if (!list_empty(&wb->b_more_io))
521 wbc->more_io = 1;
522 }
523 /* b_io is empty */
524 return 1;
525 }
526
527 void writeback_inodes_wb(struct bdi_writeback *wb,
528 struct writeback_control *wbc)
529 {
530 int ret = 0;
531
532 if (!wbc->wb_start)
533 wbc->wb_start = jiffies; /* livelock avoidance */
534 spin_lock(&inode_lock);
535 if (!wbc->for_kupdate || list_empty(&wb->b_io))
536 queue_io(wb, wbc->older_than_this);
537
538 while (!list_empty(&wb->b_io)) {
539 struct inode *inode = list_entry(wb->b_io.prev,
540 struct inode, i_list);
541 struct super_block *sb = inode->i_sb;
542
543 if (!pin_sb_for_writeback(sb)) {
544 requeue_io(inode);
545 continue;
546 }
547 ret = writeback_sb_inodes(sb, wb, wbc, false);
548 drop_super(sb);
549
550 if (ret)
551 break;
552 }
553 spin_unlock(&inode_lock);
554 /* Leave any unwritten inodes on b_io */
555 }
556
557 static void __writeback_inodes_sb(struct super_block *sb,
558 struct bdi_writeback *wb, struct writeback_control *wbc)
559 {
560 WARN_ON(!rwsem_is_locked(&sb->s_umount));
561
562 spin_lock(&inode_lock);
563 if (!wbc->for_kupdate || list_empty(&wb->b_io))
564 queue_io(wb, wbc->older_than_this);
565 writeback_sb_inodes(sb, wb, wbc, true);
566 spin_unlock(&inode_lock);
567 }
568
569 /*
570 * The maximum number of pages to writeout in a single bdi flush/kupdate
571 * operation. We do this so we don't hold I_SYNC against an inode for
572 * enormous amounts of time, which would block a userspace task which has
573 * been forced to throttle against that inode. Also, the code reevaluates
574 * the dirty each time it has written this many pages.
575 */
576 #define MAX_WRITEBACK_PAGES 1024
577
578 static inline bool over_bground_thresh(void)
579 {
580 unsigned long background_thresh, dirty_thresh;
581
582 global_dirty_limits(&background_thresh, &dirty_thresh);
583
584 return (global_page_state(NR_FILE_DIRTY) +
585 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
586 }
587
588 /*
589 * Explicit flushing or periodic writeback of "old" data.
590 *
591 * Define "old": the first time one of an inode's pages is dirtied, we mark the
592 * dirtying-time in the inode's address_space. So this periodic writeback code
593 * just walks the superblock inode list, writing back any inodes which are
594 * older than a specific point in time.
595 *
596 * Try to run once per dirty_writeback_interval. But if a writeback event
597 * takes longer than a dirty_writeback_interval interval, then leave a
598 * one-second gap.
599 *
600 * older_than_this takes precedence over nr_to_write. So we'll only write back
601 * all dirty pages if they are all attached to "old" mappings.
602 */
603 static long wb_writeback(struct bdi_writeback *wb,
604 struct wb_writeback_work *work)
605 {
606 struct writeback_control wbc = {
607 .sync_mode = work->sync_mode,
608 .older_than_this = NULL,
609 .for_kupdate = work->for_kupdate,
610 .for_background = work->for_background,
611 .range_cyclic = work->range_cyclic,
612 };
613 unsigned long oldest_jif;
614 long wrote = 0;
615 struct inode *inode;
616
617 if (wbc.for_kupdate) {
618 wbc.older_than_this = &oldest_jif;
619 oldest_jif = jiffies -
620 msecs_to_jiffies(dirty_expire_interval * 10);
621 }
622 if (!wbc.range_cyclic) {
623 wbc.range_start = 0;
624 wbc.range_end = LLONG_MAX;
625 }
626
627 wbc.wb_start = jiffies; /* livelock avoidance */
628 for (;;) {
629 /*
630 * Stop writeback when nr_pages has been consumed
631 */
632 if (work->nr_pages <= 0)
633 break;
634
635 /*
636 * For background writeout, stop when we are below the
637 * background dirty threshold
638 */
639 if (work->for_background && !over_bground_thresh())
640 break;
641
642 wbc.more_io = 0;
643 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
644 wbc.pages_skipped = 0;
645
646 trace_wbc_writeback_start(&wbc, wb->bdi);
647 if (work->sb)
648 __writeback_inodes_sb(work->sb, wb, &wbc);
649 else
650 writeback_inodes_wb(wb, &wbc);
651 trace_wbc_writeback_written(&wbc, wb->bdi);
652
653 work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
654 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
655
656 /*
657 * If we consumed everything, see if we have more
658 */
659 if (wbc.nr_to_write <= 0)
660 continue;
661 /*
662 * Didn't write everything and we don't have more IO, bail
663 */
664 if (!wbc.more_io)
665 break;
666 /*
667 * Did we write something? Try for more
668 */
669 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
670 continue;
671 /*
672 * Nothing written. Wait for some inode to
673 * become available for writeback. Otherwise
674 * we'll just busyloop.
675 */
676 spin_lock(&inode_lock);
677 if (!list_empty(&wb->b_more_io)) {
678 inode = list_entry(wb->b_more_io.prev,
679 struct inode, i_list);
680 trace_wbc_writeback_wait(&wbc, wb->bdi);
681 inode_wait_for_writeback(inode);
682 }
683 spin_unlock(&inode_lock);
684 }
685
686 return wrote;
687 }
688
689 /*
690 * Return the next wb_writeback_work struct that hasn't been processed yet.
691 */
692 static struct wb_writeback_work *
693 get_next_work_item(struct backing_dev_info *bdi)
694 {
695 struct wb_writeback_work *work = NULL;
696
697 spin_lock_bh(&bdi->wb_lock);
698 if (!list_empty(&bdi->work_list)) {
699 work = list_entry(bdi->work_list.next,
700 struct wb_writeback_work, list);
701 list_del_init(&work->list);
702 }
703 spin_unlock_bh(&bdi->wb_lock);
704 return work;
705 }
706
707 static long wb_check_old_data_flush(struct bdi_writeback *wb)
708 {
709 unsigned long expired;
710 long nr_pages;
711
712 /*
713 * When set to zero, disable periodic writeback
714 */
715 if (!dirty_writeback_interval)
716 return 0;
717
718 expired = wb->last_old_flush +
719 msecs_to_jiffies(dirty_writeback_interval * 10);
720 if (time_before(jiffies, expired))
721 return 0;
722
723 wb->last_old_flush = jiffies;
724 nr_pages = global_page_state(NR_FILE_DIRTY) +
725 global_page_state(NR_UNSTABLE_NFS) +
726 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
727
728 if (nr_pages) {
729 struct wb_writeback_work work = {
730 .nr_pages = nr_pages,
731 .sync_mode = WB_SYNC_NONE,
732 .for_kupdate = 1,
733 .range_cyclic = 1,
734 };
735
736 return wb_writeback(wb, &work);
737 }
738
739 return 0;
740 }
741
742 /*
743 * Retrieve work items and do the writeback they describe
744 */
745 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
746 {
747 struct backing_dev_info *bdi = wb->bdi;
748 struct wb_writeback_work *work;
749 long wrote = 0;
750
751 set_bit(BDI_writeback_running, &wb->bdi->state);
752 while ((work = get_next_work_item(bdi)) != NULL) {
753 /*
754 * Override sync mode, in case we must wait for completion
755 * because this thread is exiting now.
756 */
757 if (force_wait)
758 work->sync_mode = WB_SYNC_ALL;
759
760 trace_writeback_exec(bdi, work);
761
762 wrote += wb_writeback(wb, work);
763
764 /*
765 * Notify the caller of completion if this is a synchronous
766 * work item, otherwise just free it.
767 */
768 if (work->done)
769 complete(work->done);
770 else
771 kfree(work);
772 }
773
774 /*
775 * Check for periodic writeback, kupdated() style
776 */
777 wrote += wb_check_old_data_flush(wb);
778 clear_bit(BDI_writeback_running, &wb->bdi->state);
779
780 return wrote;
781 }
782
783 /*
784 * Handle writeback of dirty data for the device backed by this bdi. Also
785 * wakes up periodically and does kupdated style flushing.
786 */
787 int bdi_writeback_thread(void *data)
788 {
789 struct bdi_writeback *wb = data;
790 struct backing_dev_info *bdi = wb->bdi;
791 long pages_written;
792
793 current->flags |= PF_FLUSHER | PF_SWAPWRITE;
794 set_freezable();
795 wb->last_active = jiffies;
796
797 /*
798 * Our parent may run at a different priority, just set us to normal
799 */
800 set_user_nice(current, 0);
801
802 trace_writeback_thread_start(bdi);
803
804 while (!kthread_should_stop()) {
805 /*
806 * Remove own delayed wake-up timer, since we are already awake
807 * and we'll take care of the preriodic write-back.
808 */
809 del_timer(&wb->wakeup_timer);
810
811 pages_written = wb_do_writeback(wb, 0);
812
813 trace_writeback_pages_written(pages_written);
814
815 if (pages_written)
816 wb->last_active = jiffies;
817
818 set_current_state(TASK_INTERRUPTIBLE);
819 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
820 __set_current_state(TASK_RUNNING);
821 continue;
822 }
823
824 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
825 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
826 else {
827 /*
828 * We have nothing to do, so can go sleep without any
829 * timeout and save power. When a work is queued or
830 * something is made dirty - we will be woken up.
831 */
832 schedule();
833 }
834
835 try_to_freeze();
836 }
837
838 /* Flush any work that raced with us exiting */
839 if (!list_empty(&bdi->work_list))
840 wb_do_writeback(wb, 1);
841
842 trace_writeback_thread_stop(bdi);
843 return 0;
844 }
845
846
847 /*
848 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
849 * the whole world.
850 */
851 void wakeup_flusher_threads(long nr_pages)
852 {
853 struct backing_dev_info *bdi;
854
855 if (!nr_pages) {
856 nr_pages = global_page_state(NR_FILE_DIRTY) +
857 global_page_state(NR_UNSTABLE_NFS);
858 }
859
860 rcu_read_lock();
861 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
862 if (!bdi_has_dirty_io(bdi))
863 continue;
864 __bdi_start_writeback(bdi, nr_pages, false, false);
865 }
866 rcu_read_unlock();
867 }
868
869 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
870 {
871 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
872 struct dentry *dentry;
873 const char *name = "?";
874
875 dentry = d_find_alias(inode);
876 if (dentry) {
877 spin_lock(&dentry->d_lock);
878 name = (const char *) dentry->d_name.name;
879 }
880 printk(KERN_DEBUG
881 "%s(%d): dirtied inode %lu (%s) on %s\n",
882 current->comm, task_pid_nr(current), inode->i_ino,
883 name, inode->i_sb->s_id);
884 if (dentry) {
885 spin_unlock(&dentry->d_lock);
886 dput(dentry);
887 }
888 }
889 }
890
891 /**
892 * __mark_inode_dirty - internal function
893 * @inode: inode to mark
894 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
895 * Mark an inode as dirty. Callers should use mark_inode_dirty or
896 * mark_inode_dirty_sync.
897 *
898 * Put the inode on the super block's dirty list.
899 *
900 * CAREFUL! We mark it dirty unconditionally, but move it onto the
901 * dirty list only if it is hashed or if it refers to a blockdev.
902 * If it was not hashed, it will never be added to the dirty list
903 * even if it is later hashed, as it will have been marked dirty already.
904 *
905 * In short, make sure you hash any inodes _before_ you start marking
906 * them dirty.
907 *
908 * This function *must* be atomic for the I_DIRTY_PAGES case -
909 * set_page_dirty() is called under spinlock in several places.
910 *
911 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
912 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
913 * the kernel-internal blockdev inode represents the dirtying time of the
914 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
915 * page->mapping->host, so the page-dirtying time is recorded in the internal
916 * blockdev inode.
917 */
918 void __mark_inode_dirty(struct inode *inode, int flags)
919 {
920 struct super_block *sb = inode->i_sb;
921 struct backing_dev_info *bdi = NULL;
922 bool wakeup_bdi = false;
923
924 /*
925 * Don't do this for I_DIRTY_PAGES - that doesn't actually
926 * dirty the inode itself
927 */
928 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
929 if (sb->s_op->dirty_inode)
930 sb->s_op->dirty_inode(inode);
931 }
932
933 /*
934 * make sure that changes are seen by all cpus before we test i_state
935 * -- mikulas
936 */
937 smp_mb();
938
939 /* avoid the locking if we can */
940 if ((inode->i_state & flags) == flags)
941 return;
942
943 if (unlikely(block_dump))
944 block_dump___mark_inode_dirty(inode);
945
946 spin_lock(&inode_lock);
947 if ((inode->i_state & flags) != flags) {
948 const int was_dirty = inode->i_state & I_DIRTY;
949
950 inode->i_state |= flags;
951
952 /*
953 * If the inode is being synced, just update its dirty state.
954 * The unlocker will place the inode on the appropriate
955 * superblock list, based upon its state.
956 */
957 if (inode->i_state & I_SYNC)
958 goto out;
959
960 /*
961 * Only add valid (hashed) inodes to the superblock's
962 * dirty list. Add blockdev inodes as well.
963 */
964 if (!S_ISBLK(inode->i_mode)) {
965 if (hlist_unhashed(&inode->i_hash))
966 goto out;
967 }
968 if (inode->i_state & I_FREEING)
969 goto out;
970
971 /*
972 * If the inode was already on b_dirty/b_io/b_more_io, don't
973 * reposition it (that would break b_dirty time-ordering).
974 */
975 if (!was_dirty) {
976 bdi = inode_to_bdi(inode);
977
978 if (bdi_cap_writeback_dirty(bdi)) {
979 WARN(!test_bit(BDI_registered, &bdi->state),
980 "bdi-%s not registered\n", bdi->name);
981
982 /*
983 * If this is the first dirty inode for this
984 * bdi, we have to wake-up the corresponding
985 * bdi thread to make sure background
986 * write-back happens later.
987 */
988 if (!wb_has_dirty_io(&bdi->wb))
989 wakeup_bdi = true;
990 }
991
992 inode->dirtied_when = jiffies;
993 list_move(&inode->i_list, &bdi->wb.b_dirty);
994 }
995 }
996 out:
997 spin_unlock(&inode_lock);
998
999 if (wakeup_bdi)
1000 bdi_wakeup_thread_delayed(bdi);
1001 }
1002 EXPORT_SYMBOL(__mark_inode_dirty);
1003
1004 /*
1005 * Write out a superblock's list of dirty inodes. A wait will be performed
1006 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1007 *
1008 * If older_than_this is non-NULL, then only write out inodes which
1009 * had their first dirtying at a time earlier than *older_than_this.
1010 *
1011 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1012 * This function assumes that the blockdev superblock's inodes are backed by
1013 * a variety of queues, so all inodes are searched. For other superblocks,
1014 * assume that all inodes are backed by the same queue.
1015 *
1016 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1017 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1018 * on the writer throttling path, and we get decent balancing between many
1019 * throttled threads: we don't want them all piling up on inode_sync_wait.
1020 */
1021 static void wait_sb_inodes(struct super_block *sb)
1022 {
1023 struct inode *inode, *old_inode = NULL;
1024
1025 /*
1026 * We need to be protected against the filesystem going from
1027 * r/o to r/w or vice versa.
1028 */
1029 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1030
1031 spin_lock(&inode_lock);
1032
1033 /*
1034 * Data integrity sync. Must wait for all pages under writeback,
1035 * because there may have been pages dirtied before our sync
1036 * call, but which had writeout started before we write it out.
1037 * In which case, the inode may not be on the dirty list, but
1038 * we still have to wait for that writeout.
1039 */
1040 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1041 struct address_space *mapping;
1042
1043 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW))
1044 continue;
1045 mapping = inode->i_mapping;
1046 if (mapping->nrpages == 0)
1047 continue;
1048 __iget(inode);
1049 spin_unlock(&inode_lock);
1050 /*
1051 * We hold a reference to 'inode' so it couldn't have
1052 * been removed from s_inodes list while we dropped the
1053 * inode_lock. We cannot iput the inode now as we can
1054 * be holding the last reference and we cannot iput it
1055 * under inode_lock. So we keep the reference and iput
1056 * it later.
1057 */
1058 iput(old_inode);
1059 old_inode = inode;
1060
1061 filemap_fdatawait(mapping);
1062
1063 cond_resched();
1064
1065 spin_lock(&inode_lock);
1066 }
1067 spin_unlock(&inode_lock);
1068 iput(old_inode);
1069 }
1070
1071 /**
1072 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1073 * @sb: the superblock
1074 * @nr: the number of pages to write
1075 *
1076 * Start writeback on some inodes on this super_block. No guarantees are made
1077 * on how many (if any) will be written, and this function does not wait
1078 * for IO completion of submitted IO.
1079 */
1080 void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr)
1081 {
1082 DECLARE_COMPLETION_ONSTACK(done);
1083 struct wb_writeback_work work = {
1084 .sb = sb,
1085 .sync_mode = WB_SYNC_NONE,
1086 .done = &done,
1087 .nr_pages = nr,
1088 };
1089
1090 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1091 bdi_queue_work(sb->s_bdi, &work);
1092 wait_for_completion(&done);
1093 }
1094 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1095
1096 /**
1097 * writeback_inodes_sb - writeback dirty inodes from given super_block
1098 * @sb: the superblock
1099 *
1100 * Start writeback on some inodes on this super_block. No guarantees are made
1101 * on how many (if any) will be written, and this function does not wait
1102 * for IO completion of submitted IO.
1103 */
1104 void writeback_inodes_sb(struct super_block *sb)
1105 {
1106 return writeback_inodes_sb_nr(sb, global_page_state(NR_FILE_DIRTY) +
1107 global_page_state(NR_UNSTABLE_NFS) +
1108 (inodes_stat.nr_inodes - inodes_stat.nr_unused));
1109 }
1110 EXPORT_SYMBOL(writeback_inodes_sb);
1111
1112 /**
1113 * writeback_inodes_sb_if_idle - start writeback if none underway
1114 * @sb: the superblock
1115 *
1116 * Invoke writeback_inodes_sb if no writeback is currently underway.
1117 * Returns 1 if writeback was started, 0 if not.
1118 */
1119 int writeback_inodes_sb_if_idle(struct super_block *sb)
1120 {
1121 if (!writeback_in_progress(sb->s_bdi)) {
1122 down_read(&sb->s_umount);
1123 writeback_inodes_sb(sb);
1124 up_read(&sb->s_umount);
1125 return 1;
1126 } else
1127 return 0;
1128 }
1129 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1130
1131 /**
1132 * writeback_inodes_sb_if_idle - start writeback if none underway
1133 * @sb: the superblock
1134 * @nr: the number of pages to write
1135 *
1136 * Invoke writeback_inodes_sb if no writeback is currently underway.
1137 * Returns 1 if writeback was started, 0 if not.
1138 */
1139 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1140 unsigned long nr)
1141 {
1142 if (!writeback_in_progress(sb->s_bdi)) {
1143 down_read(&sb->s_umount);
1144 writeback_inodes_sb_nr(sb, nr);
1145 up_read(&sb->s_umount);
1146 return 1;
1147 } else
1148 return 0;
1149 }
1150 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1151
1152 /**
1153 * sync_inodes_sb - sync sb inode pages
1154 * @sb: the superblock
1155 *
1156 * This function writes and waits on any dirty inode belonging to this
1157 * super_block. The number of pages synced is returned.
1158 */
1159 void sync_inodes_sb(struct super_block *sb)
1160 {
1161 DECLARE_COMPLETION_ONSTACK(done);
1162 struct wb_writeback_work work = {
1163 .sb = sb,
1164 .sync_mode = WB_SYNC_ALL,
1165 .nr_pages = LONG_MAX,
1166 .range_cyclic = 0,
1167 .done = &done,
1168 };
1169
1170 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1171
1172 bdi_queue_work(sb->s_bdi, &work);
1173 wait_for_completion(&done);
1174
1175 wait_sb_inodes(sb);
1176 }
1177 EXPORT_SYMBOL(sync_inodes_sb);
1178
1179 /**
1180 * write_inode_now - write an inode to disk
1181 * @inode: inode to write to disk
1182 * @sync: whether the write should be synchronous or not
1183 *
1184 * This function commits an inode to disk immediately if it is dirty. This is
1185 * primarily needed by knfsd.
1186 *
1187 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1188 */
1189 int write_inode_now(struct inode *inode, int sync)
1190 {
1191 int ret;
1192 struct writeback_control wbc = {
1193 .nr_to_write = LONG_MAX,
1194 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1195 .range_start = 0,
1196 .range_end = LLONG_MAX,
1197 };
1198
1199 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1200 wbc.nr_to_write = 0;
1201
1202 might_sleep();
1203 spin_lock(&inode_lock);
1204 ret = writeback_single_inode(inode, &wbc);
1205 spin_unlock(&inode_lock);
1206 if (sync)
1207 inode_sync_wait(inode);
1208 return ret;
1209 }
1210 EXPORT_SYMBOL(write_inode_now);
1211
1212 /**
1213 * sync_inode - write an inode and its pages to disk.
1214 * @inode: the inode to sync
1215 * @wbc: controls the writeback mode
1216 *
1217 * sync_inode() will write an inode and its pages to disk. It will also
1218 * correctly update the inode on its superblock's dirty inode lists and will
1219 * update inode->i_state.
1220 *
1221 * The caller must have a ref on the inode.
1222 */
1223 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1224 {
1225 int ret;
1226
1227 spin_lock(&inode_lock);
1228 ret = writeback_single_inode(inode, wbc);
1229 spin_unlock(&inode_lock);
1230 return ret;
1231 }
1232 EXPORT_SYMBOL(sync_inode);
This page took 0.069628 seconds and 5 git commands to generate.