writeback: elevate queue_io() into wb_writeback()
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33 * Passed into wb_writeback(), essentially a subset of writeback_control
34 */
35 struct wb_writeback_work {
36 long nr_pages;
37 struct super_block *sb;
38 enum writeback_sync_modes sync_mode;
39 unsigned int tagged_writepages:1;
40 unsigned int for_kupdate:1;
41 unsigned int range_cyclic:1;
42 unsigned int for_background:1;
43
44 struct list_head list; /* pending work list */
45 struct completion *done; /* set if the caller waits */
46 };
47
48 /*
49 * Include the creation of the trace points after defining the
50 * wb_writeback_work structure so that the definition remains local to this
51 * file.
52 */
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/writeback.h>
55
56 /*
57 * We don't actually have pdflush, but this one is exported though /proc...
58 */
59 int nr_pdflush_threads;
60
61 /**
62 * writeback_in_progress - determine whether there is writeback in progress
63 * @bdi: the device's backing_dev_info structure.
64 *
65 * Determine whether there is writeback waiting to be handled against a
66 * backing device.
67 */
68 int writeback_in_progress(struct backing_dev_info *bdi)
69 {
70 return test_bit(BDI_writeback_running, &bdi->state);
71 }
72
73 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
74 {
75 struct super_block *sb = inode->i_sb;
76
77 if (strcmp(sb->s_type->name, "bdev") == 0)
78 return inode->i_mapping->backing_dev_info;
79
80 return sb->s_bdi;
81 }
82
83 static inline struct inode *wb_inode(struct list_head *head)
84 {
85 return list_entry(head, struct inode, i_wb_list);
86 }
87
88 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
89 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
90 {
91 if (bdi->wb.task) {
92 wake_up_process(bdi->wb.task);
93 } else {
94 /*
95 * The bdi thread isn't there, wake up the forker thread which
96 * will create and run it.
97 */
98 wake_up_process(default_backing_dev_info.wb.task);
99 }
100 }
101
102 static void bdi_queue_work(struct backing_dev_info *bdi,
103 struct wb_writeback_work *work)
104 {
105 trace_writeback_queue(bdi, work);
106
107 spin_lock_bh(&bdi->wb_lock);
108 list_add_tail(&work->list, &bdi->work_list);
109 if (!bdi->wb.task)
110 trace_writeback_nothread(bdi, work);
111 bdi_wakeup_flusher(bdi);
112 spin_unlock_bh(&bdi->wb_lock);
113 }
114
115 static void
116 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
117 bool range_cyclic)
118 {
119 struct wb_writeback_work *work;
120
121 /*
122 * This is WB_SYNC_NONE writeback, so if allocation fails just
123 * wakeup the thread for old dirty data writeback
124 */
125 work = kzalloc(sizeof(*work), GFP_ATOMIC);
126 if (!work) {
127 if (bdi->wb.task) {
128 trace_writeback_nowork(bdi);
129 wake_up_process(bdi->wb.task);
130 }
131 return;
132 }
133
134 work->sync_mode = WB_SYNC_NONE;
135 work->nr_pages = nr_pages;
136 work->range_cyclic = range_cyclic;
137
138 bdi_queue_work(bdi, work);
139 }
140
141 /**
142 * bdi_start_writeback - start writeback
143 * @bdi: the backing device to write from
144 * @nr_pages: the number of pages to write
145 *
146 * Description:
147 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
148 * started when this function returns, we make no guarantees on
149 * completion. Caller need not hold sb s_umount semaphore.
150 *
151 */
152 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
153 {
154 __bdi_start_writeback(bdi, nr_pages, true);
155 }
156
157 /**
158 * bdi_start_background_writeback - start background writeback
159 * @bdi: the backing device to write from
160 *
161 * Description:
162 * This makes sure WB_SYNC_NONE background writeback happens. When
163 * this function returns, it is only guaranteed that for given BDI
164 * some IO is happening if we are over background dirty threshold.
165 * Caller need not hold sb s_umount semaphore.
166 */
167 void bdi_start_background_writeback(struct backing_dev_info *bdi)
168 {
169 /*
170 * We just wake up the flusher thread. It will perform background
171 * writeback as soon as there is no other work to do.
172 */
173 trace_writeback_wake_background(bdi);
174 spin_lock_bh(&bdi->wb_lock);
175 bdi_wakeup_flusher(bdi);
176 spin_unlock_bh(&bdi->wb_lock);
177 }
178
179 /*
180 * Remove the inode from the writeback list it is on.
181 */
182 void inode_wb_list_del(struct inode *inode)
183 {
184 struct backing_dev_info *bdi = inode_to_bdi(inode);
185
186 spin_lock(&bdi->wb.list_lock);
187 list_del_init(&inode->i_wb_list);
188 spin_unlock(&bdi->wb.list_lock);
189 }
190
191 /*
192 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
193 * furthest end of its superblock's dirty-inode list.
194 *
195 * Before stamping the inode's ->dirtied_when, we check to see whether it is
196 * already the most-recently-dirtied inode on the b_dirty list. If that is
197 * the case then the inode must have been redirtied while it was being written
198 * out and we don't reset its dirtied_when.
199 */
200 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
201 {
202 assert_spin_locked(&wb->list_lock);
203 if (!list_empty(&wb->b_dirty)) {
204 struct inode *tail;
205
206 tail = wb_inode(wb->b_dirty.next);
207 if (time_before(inode->dirtied_when, tail->dirtied_when))
208 inode->dirtied_when = jiffies;
209 }
210 list_move(&inode->i_wb_list, &wb->b_dirty);
211 }
212
213 /*
214 * requeue inode for re-scanning after bdi->b_io list is exhausted.
215 */
216 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
217 {
218 assert_spin_locked(&wb->list_lock);
219 list_move(&inode->i_wb_list, &wb->b_more_io);
220 }
221
222 static void inode_sync_complete(struct inode *inode)
223 {
224 /*
225 * Prevent speculative execution through
226 * spin_unlock(&wb->list_lock);
227 */
228
229 smp_mb();
230 wake_up_bit(&inode->i_state, __I_SYNC);
231 }
232
233 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
234 {
235 bool ret = time_after(inode->dirtied_when, t);
236 #ifndef CONFIG_64BIT
237 /*
238 * For inodes being constantly redirtied, dirtied_when can get stuck.
239 * It _appears_ to be in the future, but is actually in distant past.
240 * This test is necessary to prevent such wrapped-around relative times
241 * from permanently stopping the whole bdi writeback.
242 */
243 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
244 #endif
245 return ret;
246 }
247
248 /*
249 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
250 */
251 static void move_expired_inodes(struct list_head *delaying_queue,
252 struct list_head *dispatch_queue,
253 unsigned long *older_than_this)
254 {
255 LIST_HEAD(tmp);
256 struct list_head *pos, *node;
257 struct super_block *sb = NULL;
258 struct inode *inode;
259 int do_sb_sort = 0;
260
261 while (!list_empty(delaying_queue)) {
262 inode = wb_inode(delaying_queue->prev);
263 if (older_than_this &&
264 inode_dirtied_after(inode, *older_than_this))
265 break;
266 if (sb && sb != inode->i_sb)
267 do_sb_sort = 1;
268 sb = inode->i_sb;
269 list_move(&inode->i_wb_list, &tmp);
270 }
271
272 /* just one sb in list, splice to dispatch_queue and we're done */
273 if (!do_sb_sort) {
274 list_splice(&tmp, dispatch_queue);
275 return;
276 }
277
278 /* Move inodes from one superblock together */
279 while (!list_empty(&tmp)) {
280 sb = wb_inode(tmp.prev)->i_sb;
281 list_for_each_prev_safe(pos, node, &tmp) {
282 inode = wb_inode(pos);
283 if (inode->i_sb == sb)
284 list_move(&inode->i_wb_list, dispatch_queue);
285 }
286 }
287 }
288
289 /*
290 * Queue all expired dirty inodes for io, eldest first.
291 * Before
292 * newly dirtied b_dirty b_io b_more_io
293 * =============> gf edc BA
294 * After
295 * newly dirtied b_dirty b_io b_more_io
296 * =============> g fBAedc
297 * |
298 * +--> dequeue for IO
299 */
300 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
301 {
302 assert_spin_locked(&wb->list_lock);
303 list_splice_init(&wb->b_more_io, &wb->b_io);
304 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
305 }
306
307 static int write_inode(struct inode *inode, struct writeback_control *wbc)
308 {
309 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
310 return inode->i_sb->s_op->write_inode(inode, wbc);
311 return 0;
312 }
313
314 /*
315 * Wait for writeback on an inode to complete.
316 */
317 static void inode_wait_for_writeback(struct inode *inode,
318 struct bdi_writeback *wb)
319 {
320 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
321 wait_queue_head_t *wqh;
322
323 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
324 while (inode->i_state & I_SYNC) {
325 spin_unlock(&inode->i_lock);
326 spin_unlock(&wb->list_lock);
327 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
328 spin_lock(&wb->list_lock);
329 spin_lock(&inode->i_lock);
330 }
331 }
332
333 /*
334 * Write out an inode's dirty pages. Called under wb->list_lock and
335 * inode->i_lock. Either the caller has an active reference on the inode or
336 * the inode has I_WILL_FREE set.
337 *
338 * If `wait' is set, wait on the writeout.
339 *
340 * The whole writeout design is quite complex and fragile. We want to avoid
341 * starvation of particular inodes when others are being redirtied, prevent
342 * livelocks, etc.
343 */
344 static int
345 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
346 struct writeback_control *wbc)
347 {
348 struct address_space *mapping = inode->i_mapping;
349 unsigned dirty;
350 int ret;
351
352 assert_spin_locked(&wb->list_lock);
353 assert_spin_locked(&inode->i_lock);
354
355 if (!atomic_read(&inode->i_count))
356 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
357 else
358 WARN_ON(inode->i_state & I_WILL_FREE);
359
360 if (inode->i_state & I_SYNC) {
361 /*
362 * If this inode is locked for writeback and we are not doing
363 * writeback-for-data-integrity, move it to b_more_io so that
364 * writeback can proceed with the other inodes on s_io.
365 *
366 * We'll have another go at writing back this inode when we
367 * completed a full scan of b_io.
368 */
369 if (wbc->sync_mode != WB_SYNC_ALL) {
370 requeue_io(inode, wb);
371 return 0;
372 }
373
374 /*
375 * It's a data-integrity sync. We must wait.
376 */
377 inode_wait_for_writeback(inode, wb);
378 }
379
380 BUG_ON(inode->i_state & I_SYNC);
381
382 /* Set I_SYNC, reset I_DIRTY_PAGES */
383 inode->i_state |= I_SYNC;
384 inode->i_state &= ~I_DIRTY_PAGES;
385 spin_unlock(&inode->i_lock);
386 spin_unlock(&wb->list_lock);
387
388 ret = do_writepages(mapping, wbc);
389
390 /*
391 * Make sure to wait on the data before writing out the metadata.
392 * This is important for filesystems that modify metadata on data
393 * I/O completion.
394 */
395 if (wbc->sync_mode == WB_SYNC_ALL) {
396 int err = filemap_fdatawait(mapping);
397 if (ret == 0)
398 ret = err;
399 }
400
401 /*
402 * Some filesystems may redirty the inode during the writeback
403 * due to delalloc, clear dirty metadata flags right before
404 * write_inode()
405 */
406 spin_lock(&inode->i_lock);
407 dirty = inode->i_state & I_DIRTY;
408 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
409 spin_unlock(&inode->i_lock);
410 /* Don't write the inode if only I_DIRTY_PAGES was set */
411 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
412 int err = write_inode(inode, wbc);
413 if (ret == 0)
414 ret = err;
415 }
416
417 spin_lock(&wb->list_lock);
418 spin_lock(&inode->i_lock);
419 inode->i_state &= ~I_SYNC;
420 if (!(inode->i_state & I_FREEING)) {
421 /*
422 * Sync livelock prevention. Each inode is tagged and synced in
423 * one shot. If still dirty, it will be redirty_tail()'ed below.
424 * Update the dirty time to prevent enqueue and sync it again.
425 */
426 if ((inode->i_state & I_DIRTY) &&
427 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
428 inode->dirtied_when = jiffies;
429
430 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
431 /*
432 * We didn't write back all the pages. nfs_writepages()
433 * sometimes bales out without doing anything.
434 */
435 inode->i_state |= I_DIRTY_PAGES;
436 if (wbc->nr_to_write <= 0) {
437 /*
438 * slice used up: queue for next turn
439 */
440 requeue_io(inode, wb);
441 } else {
442 /*
443 * Writeback blocked by something other than
444 * congestion. Delay the inode for some time to
445 * avoid spinning on the CPU (100% iowait)
446 * retrying writeback of the dirty page/inode
447 * that cannot be performed immediately.
448 */
449 redirty_tail(inode, wb);
450 }
451 } else if (inode->i_state & I_DIRTY) {
452 /*
453 * Filesystems can dirty the inode during writeback
454 * operations, such as delayed allocation during
455 * submission or metadata updates after data IO
456 * completion.
457 */
458 redirty_tail(inode, wb);
459 } else {
460 /*
461 * The inode is clean. At this point we either have
462 * a reference to the inode or it's on it's way out.
463 * No need to add it back to the LRU.
464 */
465 list_del_init(&inode->i_wb_list);
466 wbc->inodes_written++;
467 }
468 }
469 inode_sync_complete(inode);
470 return ret;
471 }
472
473 /*
474 * For background writeback the caller does not have the sb pinned
475 * before calling writeback. So make sure that we do pin it, so it doesn't
476 * go away while we are writing inodes from it.
477 */
478 static bool pin_sb_for_writeback(struct super_block *sb)
479 {
480 spin_lock(&sb_lock);
481 if (list_empty(&sb->s_instances)) {
482 spin_unlock(&sb_lock);
483 return false;
484 }
485
486 sb->s_count++;
487 spin_unlock(&sb_lock);
488
489 if (down_read_trylock(&sb->s_umount)) {
490 if (sb->s_root)
491 return true;
492 up_read(&sb->s_umount);
493 }
494
495 put_super(sb);
496 return false;
497 }
498
499 /*
500 * Write a portion of b_io inodes which belong to @sb.
501 *
502 * If @only_this_sb is true, then find and write all such
503 * inodes. Otherwise write only ones which go sequentially
504 * in reverse order.
505 *
506 * Return 1, if the caller writeback routine should be
507 * interrupted. Otherwise return 0.
508 */
509 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
510 struct writeback_control *wbc, bool only_this_sb)
511 {
512 while (!list_empty(&wb->b_io)) {
513 long pages_skipped;
514 struct inode *inode = wb_inode(wb->b_io.prev);
515
516 if (inode->i_sb != sb) {
517 if (only_this_sb) {
518 /*
519 * We only want to write back data for this
520 * superblock, move all inodes not belonging
521 * to it back onto the dirty list.
522 */
523 redirty_tail(inode, wb);
524 continue;
525 }
526
527 /*
528 * The inode belongs to a different superblock.
529 * Bounce back to the caller to unpin this and
530 * pin the next superblock.
531 */
532 return 0;
533 }
534
535 /*
536 * Don't bother with new inodes or inodes beeing freed, first
537 * kind does not need peridic writeout yet, and for the latter
538 * kind writeout is handled by the freer.
539 */
540 spin_lock(&inode->i_lock);
541 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
542 spin_unlock(&inode->i_lock);
543 requeue_io(inode, wb);
544 continue;
545 }
546
547 /*
548 * Was this inode dirtied after sync_sb_inodes was called?
549 * This keeps sync from extra jobs and livelock.
550 */
551 if (inode_dirtied_after(inode, wbc->wb_start)) {
552 spin_unlock(&inode->i_lock);
553 return 1;
554 }
555
556 __iget(inode);
557
558 pages_skipped = wbc->pages_skipped;
559 writeback_single_inode(inode, wb, wbc);
560 if (wbc->pages_skipped != pages_skipped) {
561 /*
562 * writeback is not making progress due to locked
563 * buffers. Skip this inode for now.
564 */
565 redirty_tail(inode, wb);
566 }
567 spin_unlock(&inode->i_lock);
568 spin_unlock(&wb->list_lock);
569 iput(inode);
570 cond_resched();
571 spin_lock(&wb->list_lock);
572 if (wbc->nr_to_write <= 0) {
573 wbc->more_io = 1;
574 return 1;
575 }
576 if (!list_empty(&wb->b_more_io))
577 wbc->more_io = 1;
578 }
579 /* b_io is empty */
580 return 1;
581 }
582
583 static void __writeback_inodes_wb(struct bdi_writeback *wb,
584 struct writeback_control *wbc)
585 {
586 int ret = 0;
587
588 if (!wbc->wb_start)
589 wbc->wb_start = jiffies; /* livelock avoidance */
590
591 while (!list_empty(&wb->b_io)) {
592 struct inode *inode = wb_inode(wb->b_io.prev);
593 struct super_block *sb = inode->i_sb;
594
595 if (!pin_sb_for_writeback(sb)) {
596 requeue_io(inode, wb);
597 continue;
598 }
599 ret = writeback_sb_inodes(sb, wb, wbc, false);
600 drop_super(sb);
601
602 if (ret)
603 break;
604 }
605 /* Leave any unwritten inodes on b_io */
606 }
607
608 void writeback_inodes_wb(struct bdi_writeback *wb,
609 struct writeback_control *wbc)
610 {
611 spin_lock(&wb->list_lock);
612 if (list_empty(&wb->b_io))
613 queue_io(wb, wbc->older_than_this);
614 __writeback_inodes_wb(wb, wbc);
615 spin_unlock(&wb->list_lock);
616 }
617
618 /*
619 * The maximum number of pages to writeout in a single bdi flush/kupdate
620 * operation. We do this so we don't hold I_SYNC against an inode for
621 * enormous amounts of time, which would block a userspace task which has
622 * been forced to throttle against that inode. Also, the code reevaluates
623 * the dirty each time it has written this many pages.
624 */
625 #define MAX_WRITEBACK_PAGES 1024
626
627 static inline bool over_bground_thresh(void)
628 {
629 unsigned long background_thresh, dirty_thresh;
630
631 global_dirty_limits(&background_thresh, &dirty_thresh);
632
633 return (global_page_state(NR_FILE_DIRTY) +
634 global_page_state(NR_UNSTABLE_NFS) > background_thresh);
635 }
636
637 /*
638 * Explicit flushing or periodic writeback of "old" data.
639 *
640 * Define "old": the first time one of an inode's pages is dirtied, we mark the
641 * dirtying-time in the inode's address_space. So this periodic writeback code
642 * just walks the superblock inode list, writing back any inodes which are
643 * older than a specific point in time.
644 *
645 * Try to run once per dirty_writeback_interval. But if a writeback event
646 * takes longer than a dirty_writeback_interval interval, then leave a
647 * one-second gap.
648 *
649 * older_than_this takes precedence over nr_to_write. So we'll only write back
650 * all dirty pages if they are all attached to "old" mappings.
651 */
652 static long wb_writeback(struct bdi_writeback *wb,
653 struct wb_writeback_work *work)
654 {
655 struct writeback_control wbc = {
656 .sync_mode = work->sync_mode,
657 .tagged_writepages = work->tagged_writepages,
658 .older_than_this = NULL,
659 .for_kupdate = work->for_kupdate,
660 .for_background = work->for_background,
661 .range_cyclic = work->range_cyclic,
662 };
663 unsigned long oldest_jif;
664 long wrote = 0;
665 long write_chunk = MAX_WRITEBACK_PAGES;
666 struct inode *inode;
667
668 if (!wbc.range_cyclic) {
669 wbc.range_start = 0;
670 wbc.range_end = LLONG_MAX;
671 }
672
673 /*
674 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
675 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
676 * here avoids calling into writeback_inodes_wb() more than once.
677 *
678 * The intended call sequence for WB_SYNC_ALL writeback is:
679 *
680 * wb_writeback()
681 * writeback_sb_inodes() <== called only once
682 * write_cache_pages() <== called once for each inode
683 * (quickly) tag currently dirty pages
684 * (maybe slowly) sync all tagged pages
685 */
686 if (wbc.sync_mode == WB_SYNC_ALL || wbc.tagged_writepages)
687 write_chunk = LONG_MAX;
688
689 wbc.wb_start = jiffies; /* livelock avoidance */
690 spin_lock(&wb->list_lock);
691 for (;;) {
692 /*
693 * Stop writeback when nr_pages has been consumed
694 */
695 if (work->nr_pages <= 0)
696 break;
697
698 /*
699 * Background writeout and kupdate-style writeback may
700 * run forever. Stop them if there is other work to do
701 * so that e.g. sync can proceed. They'll be restarted
702 * after the other works are all done.
703 */
704 if ((work->for_background || work->for_kupdate) &&
705 !list_empty(&wb->bdi->work_list))
706 break;
707
708 /*
709 * For background writeout, stop when we are below the
710 * background dirty threshold
711 */
712 if (work->for_background && !over_bground_thresh())
713 break;
714
715 if (work->for_kupdate) {
716 oldest_jif = jiffies -
717 msecs_to_jiffies(dirty_expire_interval * 10);
718 wbc.older_than_this = &oldest_jif;
719 }
720
721 wbc.more_io = 0;
722 wbc.nr_to_write = write_chunk;
723 wbc.pages_skipped = 0;
724 wbc.inodes_written = 0;
725
726 trace_wbc_writeback_start(&wbc, wb->bdi);
727 if (list_empty(&wb->b_io))
728 queue_io(wb, wbc.older_than_this);
729 if (work->sb)
730 writeback_sb_inodes(work->sb, wb, &wbc, true);
731 else
732 __writeback_inodes_wb(wb, &wbc);
733 trace_wbc_writeback_written(&wbc, wb->bdi);
734
735 work->nr_pages -= write_chunk - wbc.nr_to_write;
736 wrote += write_chunk - wbc.nr_to_write;
737
738 /*
739 * Did we write something? Try for more
740 *
741 * Dirty inodes are moved to b_io for writeback in batches.
742 * The completion of the current batch does not necessarily
743 * mean the overall work is done. So we keep looping as long
744 * as made some progress on cleaning pages or inodes.
745 */
746 if (wbc.nr_to_write < write_chunk)
747 continue;
748 if (wbc.inodes_written)
749 continue;
750 /*
751 * No more inodes for IO, bail
752 */
753 if (!wbc.more_io)
754 break;
755 /*
756 * Nothing written. Wait for some inode to
757 * become available for writeback. Otherwise
758 * we'll just busyloop.
759 */
760 if (!list_empty(&wb->b_more_io)) {
761 inode = wb_inode(wb->b_more_io.prev);
762 trace_wbc_writeback_wait(&wbc, wb->bdi);
763 spin_lock(&inode->i_lock);
764 inode_wait_for_writeback(inode, wb);
765 spin_unlock(&inode->i_lock);
766 }
767 }
768 spin_unlock(&wb->list_lock);
769
770 return wrote;
771 }
772
773 /*
774 * Return the next wb_writeback_work struct that hasn't been processed yet.
775 */
776 static struct wb_writeback_work *
777 get_next_work_item(struct backing_dev_info *bdi)
778 {
779 struct wb_writeback_work *work = NULL;
780
781 spin_lock_bh(&bdi->wb_lock);
782 if (!list_empty(&bdi->work_list)) {
783 work = list_entry(bdi->work_list.next,
784 struct wb_writeback_work, list);
785 list_del_init(&work->list);
786 }
787 spin_unlock_bh(&bdi->wb_lock);
788 return work;
789 }
790
791 /*
792 * Add in the number of potentially dirty inodes, because each inode
793 * write can dirty pagecache in the underlying blockdev.
794 */
795 static unsigned long get_nr_dirty_pages(void)
796 {
797 return global_page_state(NR_FILE_DIRTY) +
798 global_page_state(NR_UNSTABLE_NFS) +
799 get_nr_dirty_inodes();
800 }
801
802 static long wb_check_background_flush(struct bdi_writeback *wb)
803 {
804 if (over_bground_thresh()) {
805
806 struct wb_writeback_work work = {
807 .nr_pages = LONG_MAX,
808 .sync_mode = WB_SYNC_NONE,
809 .for_background = 1,
810 .range_cyclic = 1,
811 };
812
813 return wb_writeback(wb, &work);
814 }
815
816 return 0;
817 }
818
819 static long wb_check_old_data_flush(struct bdi_writeback *wb)
820 {
821 unsigned long expired;
822 long nr_pages;
823
824 /*
825 * When set to zero, disable periodic writeback
826 */
827 if (!dirty_writeback_interval)
828 return 0;
829
830 expired = wb->last_old_flush +
831 msecs_to_jiffies(dirty_writeback_interval * 10);
832 if (time_before(jiffies, expired))
833 return 0;
834
835 wb->last_old_flush = jiffies;
836 nr_pages = get_nr_dirty_pages();
837
838 if (nr_pages) {
839 struct wb_writeback_work work = {
840 .nr_pages = nr_pages,
841 .sync_mode = WB_SYNC_NONE,
842 .for_kupdate = 1,
843 .range_cyclic = 1,
844 };
845
846 return wb_writeback(wb, &work);
847 }
848
849 return 0;
850 }
851
852 /*
853 * Retrieve work items and do the writeback they describe
854 */
855 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
856 {
857 struct backing_dev_info *bdi = wb->bdi;
858 struct wb_writeback_work *work;
859 long wrote = 0;
860
861 set_bit(BDI_writeback_running, &wb->bdi->state);
862 while ((work = get_next_work_item(bdi)) != NULL) {
863 /*
864 * Override sync mode, in case we must wait for completion
865 * because this thread is exiting now.
866 */
867 if (force_wait)
868 work->sync_mode = WB_SYNC_ALL;
869
870 trace_writeback_exec(bdi, work);
871
872 wrote += wb_writeback(wb, work);
873
874 /*
875 * Notify the caller of completion if this is a synchronous
876 * work item, otherwise just free it.
877 */
878 if (work->done)
879 complete(work->done);
880 else
881 kfree(work);
882 }
883
884 /*
885 * Check for periodic writeback, kupdated() style
886 */
887 wrote += wb_check_old_data_flush(wb);
888 wrote += wb_check_background_flush(wb);
889 clear_bit(BDI_writeback_running, &wb->bdi->state);
890
891 return wrote;
892 }
893
894 /*
895 * Handle writeback of dirty data for the device backed by this bdi. Also
896 * wakes up periodically and does kupdated style flushing.
897 */
898 int bdi_writeback_thread(void *data)
899 {
900 struct bdi_writeback *wb = data;
901 struct backing_dev_info *bdi = wb->bdi;
902 long pages_written;
903
904 current->flags |= PF_SWAPWRITE;
905 set_freezable();
906 wb->last_active = jiffies;
907
908 /*
909 * Our parent may run at a different priority, just set us to normal
910 */
911 set_user_nice(current, 0);
912
913 trace_writeback_thread_start(bdi);
914
915 while (!kthread_should_stop()) {
916 /*
917 * Remove own delayed wake-up timer, since we are already awake
918 * and we'll take care of the preriodic write-back.
919 */
920 del_timer(&wb->wakeup_timer);
921
922 pages_written = wb_do_writeback(wb, 0);
923
924 trace_writeback_pages_written(pages_written);
925
926 if (pages_written)
927 wb->last_active = jiffies;
928
929 set_current_state(TASK_INTERRUPTIBLE);
930 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
931 __set_current_state(TASK_RUNNING);
932 continue;
933 }
934
935 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
936 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
937 else {
938 /*
939 * We have nothing to do, so can go sleep without any
940 * timeout and save power. When a work is queued or
941 * something is made dirty - we will be woken up.
942 */
943 schedule();
944 }
945
946 try_to_freeze();
947 }
948
949 /* Flush any work that raced with us exiting */
950 if (!list_empty(&bdi->work_list))
951 wb_do_writeback(wb, 1);
952
953 trace_writeback_thread_stop(bdi);
954 return 0;
955 }
956
957
958 /*
959 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
960 * the whole world.
961 */
962 void wakeup_flusher_threads(long nr_pages)
963 {
964 struct backing_dev_info *bdi;
965
966 if (!nr_pages) {
967 nr_pages = global_page_state(NR_FILE_DIRTY) +
968 global_page_state(NR_UNSTABLE_NFS);
969 }
970
971 rcu_read_lock();
972 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
973 if (!bdi_has_dirty_io(bdi))
974 continue;
975 __bdi_start_writeback(bdi, nr_pages, false);
976 }
977 rcu_read_unlock();
978 }
979
980 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
981 {
982 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
983 struct dentry *dentry;
984 const char *name = "?";
985
986 dentry = d_find_alias(inode);
987 if (dentry) {
988 spin_lock(&dentry->d_lock);
989 name = (const char *) dentry->d_name.name;
990 }
991 printk(KERN_DEBUG
992 "%s(%d): dirtied inode %lu (%s) on %s\n",
993 current->comm, task_pid_nr(current), inode->i_ino,
994 name, inode->i_sb->s_id);
995 if (dentry) {
996 spin_unlock(&dentry->d_lock);
997 dput(dentry);
998 }
999 }
1000 }
1001
1002 /**
1003 * __mark_inode_dirty - internal function
1004 * @inode: inode to mark
1005 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1006 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1007 * mark_inode_dirty_sync.
1008 *
1009 * Put the inode on the super block's dirty list.
1010 *
1011 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1012 * dirty list only if it is hashed or if it refers to a blockdev.
1013 * If it was not hashed, it will never be added to the dirty list
1014 * even if it is later hashed, as it will have been marked dirty already.
1015 *
1016 * In short, make sure you hash any inodes _before_ you start marking
1017 * them dirty.
1018 *
1019 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1020 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1021 * the kernel-internal blockdev inode represents the dirtying time of the
1022 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1023 * page->mapping->host, so the page-dirtying time is recorded in the internal
1024 * blockdev inode.
1025 */
1026 void __mark_inode_dirty(struct inode *inode, int flags)
1027 {
1028 struct super_block *sb = inode->i_sb;
1029 struct backing_dev_info *bdi = NULL;
1030
1031 /*
1032 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1033 * dirty the inode itself
1034 */
1035 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1036 if (sb->s_op->dirty_inode)
1037 sb->s_op->dirty_inode(inode, flags);
1038 }
1039
1040 /*
1041 * make sure that changes are seen by all cpus before we test i_state
1042 * -- mikulas
1043 */
1044 smp_mb();
1045
1046 /* avoid the locking if we can */
1047 if ((inode->i_state & flags) == flags)
1048 return;
1049
1050 if (unlikely(block_dump))
1051 block_dump___mark_inode_dirty(inode);
1052
1053 spin_lock(&inode->i_lock);
1054 if ((inode->i_state & flags) != flags) {
1055 const int was_dirty = inode->i_state & I_DIRTY;
1056
1057 inode->i_state |= flags;
1058
1059 /*
1060 * If the inode is being synced, just update its dirty state.
1061 * The unlocker will place the inode on the appropriate
1062 * superblock list, based upon its state.
1063 */
1064 if (inode->i_state & I_SYNC)
1065 goto out_unlock_inode;
1066
1067 /*
1068 * Only add valid (hashed) inodes to the superblock's
1069 * dirty list. Add blockdev inodes as well.
1070 */
1071 if (!S_ISBLK(inode->i_mode)) {
1072 if (inode_unhashed(inode))
1073 goto out_unlock_inode;
1074 }
1075 if (inode->i_state & I_FREEING)
1076 goto out_unlock_inode;
1077
1078 /*
1079 * If the inode was already on b_dirty/b_io/b_more_io, don't
1080 * reposition it (that would break b_dirty time-ordering).
1081 */
1082 if (!was_dirty) {
1083 bool wakeup_bdi = false;
1084 bdi = inode_to_bdi(inode);
1085
1086 if (bdi_cap_writeback_dirty(bdi)) {
1087 WARN(!test_bit(BDI_registered, &bdi->state),
1088 "bdi-%s not registered\n", bdi->name);
1089
1090 /*
1091 * If this is the first dirty inode for this
1092 * bdi, we have to wake-up the corresponding
1093 * bdi thread to make sure background
1094 * write-back happens later.
1095 */
1096 if (!wb_has_dirty_io(&bdi->wb))
1097 wakeup_bdi = true;
1098 }
1099
1100 spin_unlock(&inode->i_lock);
1101 spin_lock(&bdi->wb.list_lock);
1102 inode->dirtied_when = jiffies;
1103 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1104 spin_unlock(&bdi->wb.list_lock);
1105
1106 if (wakeup_bdi)
1107 bdi_wakeup_thread_delayed(bdi);
1108 return;
1109 }
1110 }
1111 out_unlock_inode:
1112 spin_unlock(&inode->i_lock);
1113
1114 }
1115 EXPORT_SYMBOL(__mark_inode_dirty);
1116
1117 /*
1118 * Write out a superblock's list of dirty inodes. A wait will be performed
1119 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1120 *
1121 * If older_than_this is non-NULL, then only write out inodes which
1122 * had their first dirtying at a time earlier than *older_than_this.
1123 *
1124 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1125 * This function assumes that the blockdev superblock's inodes are backed by
1126 * a variety of queues, so all inodes are searched. For other superblocks,
1127 * assume that all inodes are backed by the same queue.
1128 *
1129 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1130 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1131 * on the writer throttling path, and we get decent balancing between many
1132 * throttled threads: we don't want them all piling up on inode_sync_wait.
1133 */
1134 static void wait_sb_inodes(struct super_block *sb)
1135 {
1136 struct inode *inode, *old_inode = NULL;
1137
1138 /*
1139 * We need to be protected against the filesystem going from
1140 * r/o to r/w or vice versa.
1141 */
1142 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1143
1144 spin_lock(&inode_sb_list_lock);
1145
1146 /*
1147 * Data integrity sync. Must wait for all pages under writeback,
1148 * because there may have been pages dirtied before our sync
1149 * call, but which had writeout started before we write it out.
1150 * In which case, the inode may not be on the dirty list, but
1151 * we still have to wait for that writeout.
1152 */
1153 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1154 struct address_space *mapping = inode->i_mapping;
1155
1156 spin_lock(&inode->i_lock);
1157 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1158 (mapping->nrpages == 0)) {
1159 spin_unlock(&inode->i_lock);
1160 continue;
1161 }
1162 __iget(inode);
1163 spin_unlock(&inode->i_lock);
1164 spin_unlock(&inode_sb_list_lock);
1165
1166 /*
1167 * We hold a reference to 'inode' so it couldn't have been
1168 * removed from s_inodes list while we dropped the
1169 * inode_sb_list_lock. We cannot iput the inode now as we can
1170 * be holding the last reference and we cannot iput it under
1171 * inode_sb_list_lock. So we keep the reference and iput it
1172 * later.
1173 */
1174 iput(old_inode);
1175 old_inode = inode;
1176
1177 filemap_fdatawait(mapping);
1178
1179 cond_resched();
1180
1181 spin_lock(&inode_sb_list_lock);
1182 }
1183 spin_unlock(&inode_sb_list_lock);
1184 iput(old_inode);
1185 }
1186
1187 /**
1188 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1189 * @sb: the superblock
1190 * @nr: the number of pages to write
1191 *
1192 * Start writeback on some inodes on this super_block. No guarantees are made
1193 * on how many (if any) will be written, and this function does not wait
1194 * for IO completion of submitted IO.
1195 */
1196 void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr)
1197 {
1198 DECLARE_COMPLETION_ONSTACK(done);
1199 struct wb_writeback_work work = {
1200 .sb = sb,
1201 .sync_mode = WB_SYNC_NONE,
1202 .tagged_writepages = 1,
1203 .done = &done,
1204 .nr_pages = nr,
1205 };
1206
1207 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1208 bdi_queue_work(sb->s_bdi, &work);
1209 wait_for_completion(&done);
1210 }
1211 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1212
1213 /**
1214 * writeback_inodes_sb - writeback dirty inodes from given super_block
1215 * @sb: the superblock
1216 *
1217 * Start writeback on some inodes on this super_block. No guarantees are made
1218 * on how many (if any) will be written, and this function does not wait
1219 * for IO completion of submitted IO.
1220 */
1221 void writeback_inodes_sb(struct super_block *sb)
1222 {
1223 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages());
1224 }
1225 EXPORT_SYMBOL(writeback_inodes_sb);
1226
1227 /**
1228 * writeback_inodes_sb_if_idle - start writeback if none underway
1229 * @sb: the superblock
1230 *
1231 * Invoke writeback_inodes_sb if no writeback is currently underway.
1232 * Returns 1 if writeback was started, 0 if not.
1233 */
1234 int writeback_inodes_sb_if_idle(struct super_block *sb)
1235 {
1236 if (!writeback_in_progress(sb->s_bdi)) {
1237 down_read(&sb->s_umount);
1238 writeback_inodes_sb(sb);
1239 up_read(&sb->s_umount);
1240 return 1;
1241 } else
1242 return 0;
1243 }
1244 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1245
1246 /**
1247 * writeback_inodes_sb_if_idle - start writeback if none underway
1248 * @sb: the superblock
1249 * @nr: the number of pages to write
1250 *
1251 * Invoke writeback_inodes_sb if no writeback is currently underway.
1252 * Returns 1 if writeback was started, 0 if not.
1253 */
1254 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1255 unsigned long nr)
1256 {
1257 if (!writeback_in_progress(sb->s_bdi)) {
1258 down_read(&sb->s_umount);
1259 writeback_inodes_sb_nr(sb, nr);
1260 up_read(&sb->s_umount);
1261 return 1;
1262 } else
1263 return 0;
1264 }
1265 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1266
1267 /**
1268 * sync_inodes_sb - sync sb inode pages
1269 * @sb: the superblock
1270 *
1271 * This function writes and waits on any dirty inode belonging to this
1272 * super_block.
1273 */
1274 void sync_inodes_sb(struct super_block *sb)
1275 {
1276 DECLARE_COMPLETION_ONSTACK(done);
1277 struct wb_writeback_work work = {
1278 .sb = sb,
1279 .sync_mode = WB_SYNC_ALL,
1280 .nr_pages = LONG_MAX,
1281 .range_cyclic = 0,
1282 .done = &done,
1283 };
1284
1285 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1286
1287 bdi_queue_work(sb->s_bdi, &work);
1288 wait_for_completion(&done);
1289
1290 wait_sb_inodes(sb);
1291 }
1292 EXPORT_SYMBOL(sync_inodes_sb);
1293
1294 /**
1295 * write_inode_now - write an inode to disk
1296 * @inode: inode to write to disk
1297 * @sync: whether the write should be synchronous or not
1298 *
1299 * This function commits an inode to disk immediately if it is dirty. This is
1300 * primarily needed by knfsd.
1301 *
1302 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1303 */
1304 int write_inode_now(struct inode *inode, int sync)
1305 {
1306 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1307 int ret;
1308 struct writeback_control wbc = {
1309 .nr_to_write = LONG_MAX,
1310 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1311 .range_start = 0,
1312 .range_end = LLONG_MAX,
1313 };
1314
1315 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1316 wbc.nr_to_write = 0;
1317
1318 might_sleep();
1319 spin_lock(&wb->list_lock);
1320 spin_lock(&inode->i_lock);
1321 ret = writeback_single_inode(inode, wb, &wbc);
1322 spin_unlock(&inode->i_lock);
1323 spin_unlock(&wb->list_lock);
1324 if (sync)
1325 inode_sync_wait(inode);
1326 return ret;
1327 }
1328 EXPORT_SYMBOL(write_inode_now);
1329
1330 /**
1331 * sync_inode - write an inode and its pages to disk.
1332 * @inode: the inode to sync
1333 * @wbc: controls the writeback mode
1334 *
1335 * sync_inode() will write an inode and its pages to disk. It will also
1336 * correctly update the inode on its superblock's dirty inode lists and will
1337 * update inode->i_state.
1338 *
1339 * The caller must have a ref on the inode.
1340 */
1341 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1342 {
1343 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1344 int ret;
1345
1346 spin_lock(&wb->list_lock);
1347 spin_lock(&inode->i_lock);
1348 ret = writeback_single_inode(inode, wb, wbc);
1349 spin_unlock(&inode->i_lock);
1350 spin_unlock(&wb->list_lock);
1351 return ret;
1352 }
1353 EXPORT_SYMBOL(sync_inode);
1354
1355 /**
1356 * sync_inode_metadata - write an inode to disk
1357 * @inode: the inode to sync
1358 * @wait: wait for I/O to complete.
1359 *
1360 * Write an inode to disk and adjust its dirty state after completion.
1361 *
1362 * Note: only writes the actual inode, no associated data or other metadata.
1363 */
1364 int sync_inode_metadata(struct inode *inode, int wait)
1365 {
1366 struct writeback_control wbc = {
1367 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1368 .nr_to_write = 0, /* metadata-only */
1369 };
1370
1371 return sync_inode(inode, &wbc);
1372 }
1373 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.062065 seconds and 5 git commands to generate.