revert "mm: have order > 0 compaction start off where it left"
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/freezer.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33 * 4MB minimal write chunk size
34 */
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 enum wb_reason reason; /* why was writeback initiated? */
50
51 struct list_head list; /* pending work list */
52 struct completion *done; /* set if the caller waits */
53 };
54
55 /**
56 * writeback_in_progress - determine whether there is writeback in progress
57 * @bdi: the device's backing_dev_info structure.
58 *
59 * Determine whether there is writeback waiting to be handled against a
60 * backing device.
61 */
62 int writeback_in_progress(struct backing_dev_info *bdi)
63 {
64 return test_bit(BDI_writeback_running, &bdi->state);
65 }
66 EXPORT_SYMBOL(writeback_in_progress);
67
68 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
69 {
70 struct super_block *sb = inode->i_sb;
71
72 if (strcmp(sb->s_type->name, "bdev") == 0)
73 return inode->i_mapping->backing_dev_info;
74
75 return sb->s_bdi;
76 }
77
78 static inline struct inode *wb_inode(struct list_head *head)
79 {
80 return list_entry(head, struct inode, i_wb_list);
81 }
82
83 /*
84 * Include the creation of the trace points after defining the
85 * wb_writeback_work structure and inline functions so that the definition
86 * remains local to this file.
87 */
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/writeback.h>
90
91 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
92 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
93 {
94 if (bdi->wb.task) {
95 wake_up_process(bdi->wb.task);
96 } else {
97 /*
98 * The bdi thread isn't there, wake up the forker thread which
99 * will create and run it.
100 */
101 wake_up_process(default_backing_dev_info.wb.task);
102 }
103 }
104
105 static void bdi_queue_work(struct backing_dev_info *bdi,
106 struct wb_writeback_work *work)
107 {
108 trace_writeback_queue(bdi, work);
109
110 spin_lock_bh(&bdi->wb_lock);
111 list_add_tail(&work->list, &bdi->work_list);
112 if (!bdi->wb.task)
113 trace_writeback_nothread(bdi, work);
114 bdi_wakeup_flusher(bdi);
115 spin_unlock_bh(&bdi->wb_lock);
116 }
117
118 static void
119 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
120 bool range_cyclic, enum wb_reason reason)
121 {
122 struct wb_writeback_work *work;
123
124 /*
125 * This is WB_SYNC_NONE writeback, so if allocation fails just
126 * wakeup the thread for old dirty data writeback
127 */
128 work = kzalloc(sizeof(*work), GFP_ATOMIC);
129 if (!work) {
130 if (bdi->wb.task) {
131 trace_writeback_nowork(bdi);
132 wake_up_process(bdi->wb.task);
133 }
134 return;
135 }
136
137 work->sync_mode = WB_SYNC_NONE;
138 work->nr_pages = nr_pages;
139 work->range_cyclic = range_cyclic;
140 work->reason = reason;
141
142 bdi_queue_work(bdi, work);
143 }
144
145 /**
146 * bdi_start_writeback - start writeback
147 * @bdi: the backing device to write from
148 * @nr_pages: the number of pages to write
149 * @reason: reason why some writeback work was initiated
150 *
151 * Description:
152 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
153 * started when this function returns, we make no guarantees on
154 * completion. Caller need not hold sb s_umount semaphore.
155 *
156 */
157 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
158 enum wb_reason reason)
159 {
160 __bdi_start_writeback(bdi, nr_pages, true, reason);
161 }
162
163 /**
164 * bdi_start_background_writeback - start background writeback
165 * @bdi: the backing device to write from
166 *
167 * Description:
168 * This makes sure WB_SYNC_NONE background writeback happens. When
169 * this function returns, it is only guaranteed that for given BDI
170 * some IO is happening if we are over background dirty threshold.
171 * Caller need not hold sb s_umount semaphore.
172 */
173 void bdi_start_background_writeback(struct backing_dev_info *bdi)
174 {
175 /*
176 * We just wake up the flusher thread. It will perform background
177 * writeback as soon as there is no other work to do.
178 */
179 trace_writeback_wake_background(bdi);
180 spin_lock_bh(&bdi->wb_lock);
181 bdi_wakeup_flusher(bdi);
182 spin_unlock_bh(&bdi->wb_lock);
183 }
184
185 /*
186 * Remove the inode from the writeback list it is on.
187 */
188 void inode_wb_list_del(struct inode *inode)
189 {
190 struct backing_dev_info *bdi = inode_to_bdi(inode);
191
192 spin_lock(&bdi->wb.list_lock);
193 list_del_init(&inode->i_wb_list);
194 spin_unlock(&bdi->wb.list_lock);
195 }
196
197 /*
198 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
199 * furthest end of its superblock's dirty-inode list.
200 *
201 * Before stamping the inode's ->dirtied_when, we check to see whether it is
202 * already the most-recently-dirtied inode on the b_dirty list. If that is
203 * the case then the inode must have been redirtied while it was being written
204 * out and we don't reset its dirtied_when.
205 */
206 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
207 {
208 assert_spin_locked(&wb->list_lock);
209 if (!list_empty(&wb->b_dirty)) {
210 struct inode *tail;
211
212 tail = wb_inode(wb->b_dirty.next);
213 if (time_before(inode->dirtied_when, tail->dirtied_when))
214 inode->dirtied_when = jiffies;
215 }
216 list_move(&inode->i_wb_list, &wb->b_dirty);
217 }
218
219 /*
220 * requeue inode for re-scanning after bdi->b_io list is exhausted.
221 */
222 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
223 {
224 assert_spin_locked(&wb->list_lock);
225 list_move(&inode->i_wb_list, &wb->b_more_io);
226 }
227
228 static void inode_sync_complete(struct inode *inode)
229 {
230 inode->i_state &= ~I_SYNC;
231 /* Waiters must see I_SYNC cleared before being woken up */
232 smp_mb();
233 wake_up_bit(&inode->i_state, __I_SYNC);
234 }
235
236 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
237 {
238 bool ret = time_after(inode->dirtied_when, t);
239 #ifndef CONFIG_64BIT
240 /*
241 * For inodes being constantly redirtied, dirtied_when can get stuck.
242 * It _appears_ to be in the future, but is actually in distant past.
243 * This test is necessary to prevent such wrapped-around relative times
244 * from permanently stopping the whole bdi writeback.
245 */
246 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
247 #endif
248 return ret;
249 }
250
251 /*
252 * Move expired (dirtied after work->older_than_this) dirty inodes from
253 * @delaying_queue to @dispatch_queue.
254 */
255 static int move_expired_inodes(struct list_head *delaying_queue,
256 struct list_head *dispatch_queue,
257 struct wb_writeback_work *work)
258 {
259 LIST_HEAD(tmp);
260 struct list_head *pos, *node;
261 struct super_block *sb = NULL;
262 struct inode *inode;
263 int do_sb_sort = 0;
264 int moved = 0;
265
266 while (!list_empty(delaying_queue)) {
267 inode = wb_inode(delaying_queue->prev);
268 if (work->older_than_this &&
269 inode_dirtied_after(inode, *work->older_than_this))
270 break;
271 if (sb && sb != inode->i_sb)
272 do_sb_sort = 1;
273 sb = inode->i_sb;
274 list_move(&inode->i_wb_list, &tmp);
275 moved++;
276 }
277
278 /* just one sb in list, splice to dispatch_queue and we're done */
279 if (!do_sb_sort) {
280 list_splice(&tmp, dispatch_queue);
281 goto out;
282 }
283
284 /* Move inodes from one superblock together */
285 while (!list_empty(&tmp)) {
286 sb = wb_inode(tmp.prev)->i_sb;
287 list_for_each_prev_safe(pos, node, &tmp) {
288 inode = wb_inode(pos);
289 if (inode->i_sb == sb)
290 list_move(&inode->i_wb_list, dispatch_queue);
291 }
292 }
293 out:
294 return moved;
295 }
296
297 /*
298 * Queue all expired dirty inodes for io, eldest first.
299 * Before
300 * newly dirtied b_dirty b_io b_more_io
301 * =============> gf edc BA
302 * After
303 * newly dirtied b_dirty b_io b_more_io
304 * =============> g fBAedc
305 * |
306 * +--> dequeue for IO
307 */
308 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
309 {
310 int moved;
311 assert_spin_locked(&wb->list_lock);
312 list_splice_init(&wb->b_more_io, &wb->b_io);
313 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
314 trace_writeback_queue_io(wb, work, moved);
315 }
316
317 static int write_inode(struct inode *inode, struct writeback_control *wbc)
318 {
319 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
320 return inode->i_sb->s_op->write_inode(inode, wbc);
321 return 0;
322 }
323
324 /*
325 * Wait for writeback on an inode to complete. Called with i_lock held.
326 * Caller must make sure inode cannot go away when we drop i_lock.
327 */
328 static void __inode_wait_for_writeback(struct inode *inode)
329 __releases(inode->i_lock)
330 __acquires(inode->i_lock)
331 {
332 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
333 wait_queue_head_t *wqh;
334
335 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
336 while (inode->i_state & I_SYNC) {
337 spin_unlock(&inode->i_lock);
338 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
339 spin_lock(&inode->i_lock);
340 }
341 }
342
343 /*
344 * Wait for writeback on an inode to complete. Caller must have inode pinned.
345 */
346 void inode_wait_for_writeback(struct inode *inode)
347 {
348 spin_lock(&inode->i_lock);
349 __inode_wait_for_writeback(inode);
350 spin_unlock(&inode->i_lock);
351 }
352
353 /*
354 * Sleep until I_SYNC is cleared. This function must be called with i_lock
355 * held and drops it. It is aimed for callers not holding any inode reference
356 * so once i_lock is dropped, inode can go away.
357 */
358 static void inode_sleep_on_writeback(struct inode *inode)
359 __releases(inode->i_lock)
360 {
361 DEFINE_WAIT(wait);
362 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
363 int sleep;
364
365 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
366 sleep = inode->i_state & I_SYNC;
367 spin_unlock(&inode->i_lock);
368 if (sleep)
369 schedule();
370 finish_wait(wqh, &wait);
371 }
372
373 /*
374 * Find proper writeback list for the inode depending on its current state and
375 * possibly also change of its state while we were doing writeback. Here we
376 * handle things such as livelock prevention or fairness of writeback among
377 * inodes. This function can be called only by flusher thread - noone else
378 * processes all inodes in writeback lists and requeueing inodes behind flusher
379 * thread's back can have unexpected consequences.
380 */
381 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
382 struct writeback_control *wbc)
383 {
384 if (inode->i_state & I_FREEING)
385 return;
386
387 /*
388 * Sync livelock prevention. Each inode is tagged and synced in one
389 * shot. If still dirty, it will be redirty_tail()'ed below. Update
390 * the dirty time to prevent enqueue and sync it again.
391 */
392 if ((inode->i_state & I_DIRTY) &&
393 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
394 inode->dirtied_when = jiffies;
395
396 if (wbc->pages_skipped) {
397 /*
398 * writeback is not making progress due to locked
399 * buffers. Skip this inode for now.
400 */
401 redirty_tail(inode, wb);
402 return;
403 }
404
405 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
406 /*
407 * We didn't write back all the pages. nfs_writepages()
408 * sometimes bales out without doing anything.
409 */
410 if (wbc->nr_to_write <= 0) {
411 /* Slice used up. Queue for next turn. */
412 requeue_io(inode, wb);
413 } else {
414 /*
415 * Writeback blocked by something other than
416 * congestion. Delay the inode for some time to
417 * avoid spinning on the CPU (100% iowait)
418 * retrying writeback of the dirty page/inode
419 * that cannot be performed immediately.
420 */
421 redirty_tail(inode, wb);
422 }
423 } else if (inode->i_state & I_DIRTY) {
424 /*
425 * Filesystems can dirty the inode during writeback operations,
426 * such as delayed allocation during submission or metadata
427 * updates after data IO completion.
428 */
429 redirty_tail(inode, wb);
430 } else {
431 /* The inode is clean. Remove from writeback lists. */
432 list_del_init(&inode->i_wb_list);
433 }
434 }
435
436 /*
437 * Write out an inode and its dirty pages. Do not update the writeback list
438 * linkage. That is left to the caller. The caller is also responsible for
439 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
440 */
441 static int
442 __writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
443 struct writeback_control *wbc)
444 {
445 struct address_space *mapping = inode->i_mapping;
446 long nr_to_write = wbc->nr_to_write;
447 unsigned dirty;
448 int ret;
449
450 WARN_ON(!(inode->i_state & I_SYNC));
451
452 ret = do_writepages(mapping, wbc);
453
454 /*
455 * Make sure to wait on the data before writing out the metadata.
456 * This is important for filesystems that modify metadata on data
457 * I/O completion.
458 */
459 if (wbc->sync_mode == WB_SYNC_ALL) {
460 int err = filemap_fdatawait(mapping);
461 if (ret == 0)
462 ret = err;
463 }
464
465 /*
466 * Some filesystems may redirty the inode during the writeback
467 * due to delalloc, clear dirty metadata flags right before
468 * write_inode()
469 */
470 spin_lock(&inode->i_lock);
471 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
472 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
473 inode->i_state &= ~I_DIRTY_PAGES;
474 dirty = inode->i_state & I_DIRTY;
475 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
476 spin_unlock(&inode->i_lock);
477 /* Don't write the inode if only I_DIRTY_PAGES was set */
478 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
479 int err = write_inode(inode, wbc);
480 if (ret == 0)
481 ret = err;
482 }
483 trace_writeback_single_inode(inode, wbc, nr_to_write);
484 return ret;
485 }
486
487 /*
488 * Write out an inode's dirty pages. Either the caller has an active reference
489 * on the inode or the inode has I_WILL_FREE set.
490 *
491 * This function is designed to be called for writing back one inode which
492 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
493 * and does more profound writeback list handling in writeback_sb_inodes().
494 */
495 static int
496 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
497 struct writeback_control *wbc)
498 {
499 int ret = 0;
500
501 spin_lock(&inode->i_lock);
502 if (!atomic_read(&inode->i_count))
503 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
504 else
505 WARN_ON(inode->i_state & I_WILL_FREE);
506
507 if (inode->i_state & I_SYNC) {
508 if (wbc->sync_mode != WB_SYNC_ALL)
509 goto out;
510 /*
511 * It's a data-integrity sync. We must wait. Since callers hold
512 * inode reference or inode has I_WILL_FREE set, it cannot go
513 * away under us.
514 */
515 __inode_wait_for_writeback(inode);
516 }
517 WARN_ON(inode->i_state & I_SYNC);
518 /*
519 * Skip inode if it is clean. We don't want to mess with writeback
520 * lists in this function since flusher thread may be doing for example
521 * sync in parallel and if we move the inode, it could get skipped. So
522 * here we make sure inode is on some writeback list and leave it there
523 * unless we have completely cleaned the inode.
524 */
525 if (!(inode->i_state & I_DIRTY))
526 goto out;
527 inode->i_state |= I_SYNC;
528 spin_unlock(&inode->i_lock);
529
530 ret = __writeback_single_inode(inode, wb, wbc);
531
532 spin_lock(&wb->list_lock);
533 spin_lock(&inode->i_lock);
534 /*
535 * If inode is clean, remove it from writeback lists. Otherwise don't
536 * touch it. See comment above for explanation.
537 */
538 if (!(inode->i_state & I_DIRTY))
539 list_del_init(&inode->i_wb_list);
540 spin_unlock(&wb->list_lock);
541 inode_sync_complete(inode);
542 out:
543 spin_unlock(&inode->i_lock);
544 return ret;
545 }
546
547 static long writeback_chunk_size(struct backing_dev_info *bdi,
548 struct wb_writeback_work *work)
549 {
550 long pages;
551
552 /*
553 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
554 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
555 * here avoids calling into writeback_inodes_wb() more than once.
556 *
557 * The intended call sequence for WB_SYNC_ALL writeback is:
558 *
559 * wb_writeback()
560 * writeback_sb_inodes() <== called only once
561 * write_cache_pages() <== called once for each inode
562 * (quickly) tag currently dirty pages
563 * (maybe slowly) sync all tagged pages
564 */
565 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
566 pages = LONG_MAX;
567 else {
568 pages = min(bdi->avg_write_bandwidth / 2,
569 global_dirty_limit / DIRTY_SCOPE);
570 pages = min(pages, work->nr_pages);
571 pages = round_down(pages + MIN_WRITEBACK_PAGES,
572 MIN_WRITEBACK_PAGES);
573 }
574
575 return pages;
576 }
577
578 /*
579 * Write a portion of b_io inodes which belong to @sb.
580 *
581 * Return the number of pages and/or inodes written.
582 */
583 static long writeback_sb_inodes(struct super_block *sb,
584 struct bdi_writeback *wb,
585 struct wb_writeback_work *work)
586 {
587 struct writeback_control wbc = {
588 .sync_mode = work->sync_mode,
589 .tagged_writepages = work->tagged_writepages,
590 .for_kupdate = work->for_kupdate,
591 .for_background = work->for_background,
592 .range_cyclic = work->range_cyclic,
593 .range_start = 0,
594 .range_end = LLONG_MAX,
595 };
596 unsigned long start_time = jiffies;
597 long write_chunk;
598 long wrote = 0; /* count both pages and inodes */
599
600 while (!list_empty(&wb->b_io)) {
601 struct inode *inode = wb_inode(wb->b_io.prev);
602
603 if (inode->i_sb != sb) {
604 if (work->sb) {
605 /*
606 * We only want to write back data for this
607 * superblock, move all inodes not belonging
608 * to it back onto the dirty list.
609 */
610 redirty_tail(inode, wb);
611 continue;
612 }
613
614 /*
615 * The inode belongs to a different superblock.
616 * Bounce back to the caller to unpin this and
617 * pin the next superblock.
618 */
619 break;
620 }
621
622 /*
623 * Don't bother with new inodes or inodes being freed, first
624 * kind does not need periodic writeout yet, and for the latter
625 * kind writeout is handled by the freer.
626 */
627 spin_lock(&inode->i_lock);
628 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
629 spin_unlock(&inode->i_lock);
630 redirty_tail(inode, wb);
631 continue;
632 }
633 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
634 /*
635 * If this inode is locked for writeback and we are not
636 * doing writeback-for-data-integrity, move it to
637 * b_more_io so that writeback can proceed with the
638 * other inodes on s_io.
639 *
640 * We'll have another go at writing back this inode
641 * when we completed a full scan of b_io.
642 */
643 spin_unlock(&inode->i_lock);
644 requeue_io(inode, wb);
645 trace_writeback_sb_inodes_requeue(inode);
646 continue;
647 }
648 spin_unlock(&wb->list_lock);
649
650 /*
651 * We already requeued the inode if it had I_SYNC set and we
652 * are doing WB_SYNC_NONE writeback. So this catches only the
653 * WB_SYNC_ALL case.
654 */
655 if (inode->i_state & I_SYNC) {
656 /* Wait for I_SYNC. This function drops i_lock... */
657 inode_sleep_on_writeback(inode);
658 /* Inode may be gone, start again */
659 spin_lock(&wb->list_lock);
660 continue;
661 }
662 inode->i_state |= I_SYNC;
663 spin_unlock(&inode->i_lock);
664
665 write_chunk = writeback_chunk_size(wb->bdi, work);
666 wbc.nr_to_write = write_chunk;
667 wbc.pages_skipped = 0;
668
669 /*
670 * We use I_SYNC to pin the inode in memory. While it is set
671 * evict_inode() will wait so the inode cannot be freed.
672 */
673 __writeback_single_inode(inode, wb, &wbc);
674
675 work->nr_pages -= write_chunk - wbc.nr_to_write;
676 wrote += write_chunk - wbc.nr_to_write;
677 spin_lock(&wb->list_lock);
678 spin_lock(&inode->i_lock);
679 if (!(inode->i_state & I_DIRTY))
680 wrote++;
681 requeue_inode(inode, wb, &wbc);
682 inode_sync_complete(inode);
683 spin_unlock(&inode->i_lock);
684 cond_resched_lock(&wb->list_lock);
685 /*
686 * bail out to wb_writeback() often enough to check
687 * background threshold and other termination conditions.
688 */
689 if (wrote) {
690 if (time_is_before_jiffies(start_time + HZ / 10UL))
691 break;
692 if (work->nr_pages <= 0)
693 break;
694 }
695 }
696 return wrote;
697 }
698
699 static long __writeback_inodes_wb(struct bdi_writeback *wb,
700 struct wb_writeback_work *work)
701 {
702 unsigned long start_time = jiffies;
703 long wrote = 0;
704
705 while (!list_empty(&wb->b_io)) {
706 struct inode *inode = wb_inode(wb->b_io.prev);
707 struct super_block *sb = inode->i_sb;
708
709 if (!grab_super_passive(sb)) {
710 /*
711 * grab_super_passive() may fail consistently due to
712 * s_umount being grabbed by someone else. Don't use
713 * requeue_io() to avoid busy retrying the inode/sb.
714 */
715 redirty_tail(inode, wb);
716 continue;
717 }
718 wrote += writeback_sb_inodes(sb, wb, work);
719 drop_super(sb);
720
721 /* refer to the same tests at the end of writeback_sb_inodes */
722 if (wrote) {
723 if (time_is_before_jiffies(start_time + HZ / 10UL))
724 break;
725 if (work->nr_pages <= 0)
726 break;
727 }
728 }
729 /* Leave any unwritten inodes on b_io */
730 return wrote;
731 }
732
733 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
734 enum wb_reason reason)
735 {
736 struct wb_writeback_work work = {
737 .nr_pages = nr_pages,
738 .sync_mode = WB_SYNC_NONE,
739 .range_cyclic = 1,
740 .reason = reason,
741 };
742
743 spin_lock(&wb->list_lock);
744 if (list_empty(&wb->b_io))
745 queue_io(wb, &work);
746 __writeback_inodes_wb(wb, &work);
747 spin_unlock(&wb->list_lock);
748
749 return nr_pages - work.nr_pages;
750 }
751
752 static bool over_bground_thresh(struct backing_dev_info *bdi)
753 {
754 unsigned long background_thresh, dirty_thresh;
755
756 global_dirty_limits(&background_thresh, &dirty_thresh);
757
758 if (global_page_state(NR_FILE_DIRTY) +
759 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
760 return true;
761
762 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
763 bdi_dirty_limit(bdi, background_thresh))
764 return true;
765
766 return false;
767 }
768
769 /*
770 * Called under wb->list_lock. If there are multiple wb per bdi,
771 * only the flusher working on the first wb should do it.
772 */
773 static void wb_update_bandwidth(struct bdi_writeback *wb,
774 unsigned long start_time)
775 {
776 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
777 }
778
779 /*
780 * Explicit flushing or periodic writeback of "old" data.
781 *
782 * Define "old": the first time one of an inode's pages is dirtied, we mark the
783 * dirtying-time in the inode's address_space. So this periodic writeback code
784 * just walks the superblock inode list, writing back any inodes which are
785 * older than a specific point in time.
786 *
787 * Try to run once per dirty_writeback_interval. But if a writeback event
788 * takes longer than a dirty_writeback_interval interval, then leave a
789 * one-second gap.
790 *
791 * older_than_this takes precedence over nr_to_write. So we'll only write back
792 * all dirty pages if they are all attached to "old" mappings.
793 */
794 static long wb_writeback(struct bdi_writeback *wb,
795 struct wb_writeback_work *work)
796 {
797 unsigned long wb_start = jiffies;
798 long nr_pages = work->nr_pages;
799 unsigned long oldest_jif;
800 struct inode *inode;
801 long progress;
802
803 oldest_jif = jiffies;
804 work->older_than_this = &oldest_jif;
805
806 spin_lock(&wb->list_lock);
807 for (;;) {
808 /*
809 * Stop writeback when nr_pages has been consumed
810 */
811 if (work->nr_pages <= 0)
812 break;
813
814 /*
815 * Background writeout and kupdate-style writeback may
816 * run forever. Stop them if there is other work to do
817 * so that e.g. sync can proceed. They'll be restarted
818 * after the other works are all done.
819 */
820 if ((work->for_background || work->for_kupdate) &&
821 !list_empty(&wb->bdi->work_list))
822 break;
823
824 /*
825 * For background writeout, stop when we are below the
826 * background dirty threshold
827 */
828 if (work->for_background && !over_bground_thresh(wb->bdi))
829 break;
830
831 /*
832 * Kupdate and background works are special and we want to
833 * include all inodes that need writing. Livelock avoidance is
834 * handled by these works yielding to any other work so we are
835 * safe.
836 */
837 if (work->for_kupdate) {
838 oldest_jif = jiffies -
839 msecs_to_jiffies(dirty_expire_interval * 10);
840 } else if (work->for_background)
841 oldest_jif = jiffies;
842
843 trace_writeback_start(wb->bdi, work);
844 if (list_empty(&wb->b_io))
845 queue_io(wb, work);
846 if (work->sb)
847 progress = writeback_sb_inodes(work->sb, wb, work);
848 else
849 progress = __writeback_inodes_wb(wb, work);
850 trace_writeback_written(wb->bdi, work);
851
852 wb_update_bandwidth(wb, wb_start);
853
854 /*
855 * Did we write something? Try for more
856 *
857 * Dirty inodes are moved to b_io for writeback in batches.
858 * The completion of the current batch does not necessarily
859 * mean the overall work is done. So we keep looping as long
860 * as made some progress on cleaning pages or inodes.
861 */
862 if (progress)
863 continue;
864 /*
865 * No more inodes for IO, bail
866 */
867 if (list_empty(&wb->b_more_io))
868 break;
869 /*
870 * Nothing written. Wait for some inode to
871 * become available for writeback. Otherwise
872 * we'll just busyloop.
873 */
874 if (!list_empty(&wb->b_more_io)) {
875 trace_writeback_wait(wb->bdi, work);
876 inode = wb_inode(wb->b_more_io.prev);
877 spin_lock(&inode->i_lock);
878 spin_unlock(&wb->list_lock);
879 /* This function drops i_lock... */
880 inode_sleep_on_writeback(inode);
881 spin_lock(&wb->list_lock);
882 }
883 }
884 spin_unlock(&wb->list_lock);
885
886 return nr_pages - work->nr_pages;
887 }
888
889 /*
890 * Return the next wb_writeback_work struct that hasn't been processed yet.
891 */
892 static struct wb_writeback_work *
893 get_next_work_item(struct backing_dev_info *bdi)
894 {
895 struct wb_writeback_work *work = NULL;
896
897 spin_lock_bh(&bdi->wb_lock);
898 if (!list_empty(&bdi->work_list)) {
899 work = list_entry(bdi->work_list.next,
900 struct wb_writeback_work, list);
901 list_del_init(&work->list);
902 }
903 spin_unlock_bh(&bdi->wb_lock);
904 return work;
905 }
906
907 /*
908 * Add in the number of potentially dirty inodes, because each inode
909 * write can dirty pagecache in the underlying blockdev.
910 */
911 static unsigned long get_nr_dirty_pages(void)
912 {
913 return global_page_state(NR_FILE_DIRTY) +
914 global_page_state(NR_UNSTABLE_NFS) +
915 get_nr_dirty_inodes();
916 }
917
918 static long wb_check_background_flush(struct bdi_writeback *wb)
919 {
920 if (over_bground_thresh(wb->bdi)) {
921
922 struct wb_writeback_work work = {
923 .nr_pages = LONG_MAX,
924 .sync_mode = WB_SYNC_NONE,
925 .for_background = 1,
926 .range_cyclic = 1,
927 .reason = WB_REASON_BACKGROUND,
928 };
929
930 return wb_writeback(wb, &work);
931 }
932
933 return 0;
934 }
935
936 static long wb_check_old_data_flush(struct bdi_writeback *wb)
937 {
938 unsigned long expired;
939 long nr_pages;
940
941 /*
942 * When set to zero, disable periodic writeback
943 */
944 if (!dirty_writeback_interval)
945 return 0;
946
947 expired = wb->last_old_flush +
948 msecs_to_jiffies(dirty_writeback_interval * 10);
949 if (time_before(jiffies, expired))
950 return 0;
951
952 wb->last_old_flush = jiffies;
953 nr_pages = get_nr_dirty_pages();
954
955 if (nr_pages) {
956 struct wb_writeback_work work = {
957 .nr_pages = nr_pages,
958 .sync_mode = WB_SYNC_NONE,
959 .for_kupdate = 1,
960 .range_cyclic = 1,
961 .reason = WB_REASON_PERIODIC,
962 };
963
964 return wb_writeback(wb, &work);
965 }
966
967 return 0;
968 }
969
970 /*
971 * Retrieve work items and do the writeback they describe
972 */
973 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
974 {
975 struct backing_dev_info *bdi = wb->bdi;
976 struct wb_writeback_work *work;
977 long wrote = 0;
978
979 set_bit(BDI_writeback_running, &wb->bdi->state);
980 while ((work = get_next_work_item(bdi)) != NULL) {
981 /*
982 * Override sync mode, in case we must wait for completion
983 * because this thread is exiting now.
984 */
985 if (force_wait)
986 work->sync_mode = WB_SYNC_ALL;
987
988 trace_writeback_exec(bdi, work);
989
990 wrote += wb_writeback(wb, work);
991
992 /*
993 * Notify the caller of completion if this is a synchronous
994 * work item, otherwise just free it.
995 */
996 if (work->done)
997 complete(work->done);
998 else
999 kfree(work);
1000 }
1001
1002 /*
1003 * Check for periodic writeback, kupdated() style
1004 */
1005 wrote += wb_check_old_data_flush(wb);
1006 wrote += wb_check_background_flush(wb);
1007 clear_bit(BDI_writeback_running, &wb->bdi->state);
1008
1009 return wrote;
1010 }
1011
1012 /*
1013 * Handle writeback of dirty data for the device backed by this bdi. Also
1014 * wakes up periodically and does kupdated style flushing.
1015 */
1016 int bdi_writeback_thread(void *data)
1017 {
1018 struct bdi_writeback *wb = data;
1019 struct backing_dev_info *bdi = wb->bdi;
1020 long pages_written;
1021
1022 current->flags |= PF_SWAPWRITE;
1023 set_freezable();
1024 wb->last_active = jiffies;
1025
1026 /*
1027 * Our parent may run at a different priority, just set us to normal
1028 */
1029 set_user_nice(current, 0);
1030
1031 trace_writeback_thread_start(bdi);
1032
1033 while (!kthread_freezable_should_stop(NULL)) {
1034 /*
1035 * Remove own delayed wake-up timer, since we are already awake
1036 * and we'll take care of the preriodic write-back.
1037 */
1038 del_timer(&wb->wakeup_timer);
1039
1040 pages_written = wb_do_writeback(wb, 0);
1041
1042 trace_writeback_pages_written(pages_written);
1043
1044 if (pages_written)
1045 wb->last_active = jiffies;
1046
1047 set_current_state(TASK_INTERRUPTIBLE);
1048 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
1049 __set_current_state(TASK_RUNNING);
1050 continue;
1051 }
1052
1053 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1054 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
1055 else {
1056 /*
1057 * We have nothing to do, so can go sleep without any
1058 * timeout and save power. When a work is queued or
1059 * something is made dirty - we will be woken up.
1060 */
1061 schedule();
1062 }
1063 }
1064
1065 /* Flush any work that raced with us exiting */
1066 if (!list_empty(&bdi->work_list))
1067 wb_do_writeback(wb, 1);
1068
1069 trace_writeback_thread_stop(bdi);
1070 return 0;
1071 }
1072
1073
1074 /*
1075 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1076 * the whole world.
1077 */
1078 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1079 {
1080 struct backing_dev_info *bdi;
1081
1082 if (!nr_pages) {
1083 nr_pages = global_page_state(NR_FILE_DIRTY) +
1084 global_page_state(NR_UNSTABLE_NFS);
1085 }
1086
1087 rcu_read_lock();
1088 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1089 if (!bdi_has_dirty_io(bdi))
1090 continue;
1091 __bdi_start_writeback(bdi, nr_pages, false, reason);
1092 }
1093 rcu_read_unlock();
1094 }
1095
1096 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1097 {
1098 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1099 struct dentry *dentry;
1100 const char *name = "?";
1101
1102 dentry = d_find_alias(inode);
1103 if (dentry) {
1104 spin_lock(&dentry->d_lock);
1105 name = (const char *) dentry->d_name.name;
1106 }
1107 printk(KERN_DEBUG
1108 "%s(%d): dirtied inode %lu (%s) on %s\n",
1109 current->comm, task_pid_nr(current), inode->i_ino,
1110 name, inode->i_sb->s_id);
1111 if (dentry) {
1112 spin_unlock(&dentry->d_lock);
1113 dput(dentry);
1114 }
1115 }
1116 }
1117
1118 /**
1119 * __mark_inode_dirty - internal function
1120 * @inode: inode to mark
1121 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1122 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1123 * mark_inode_dirty_sync.
1124 *
1125 * Put the inode on the super block's dirty list.
1126 *
1127 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1128 * dirty list only if it is hashed or if it refers to a blockdev.
1129 * If it was not hashed, it will never be added to the dirty list
1130 * even if it is later hashed, as it will have been marked dirty already.
1131 *
1132 * In short, make sure you hash any inodes _before_ you start marking
1133 * them dirty.
1134 *
1135 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1136 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1137 * the kernel-internal blockdev inode represents the dirtying time of the
1138 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1139 * page->mapping->host, so the page-dirtying time is recorded in the internal
1140 * blockdev inode.
1141 */
1142 void __mark_inode_dirty(struct inode *inode, int flags)
1143 {
1144 struct super_block *sb = inode->i_sb;
1145 struct backing_dev_info *bdi = NULL;
1146
1147 /*
1148 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1149 * dirty the inode itself
1150 */
1151 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1152 if (sb->s_op->dirty_inode)
1153 sb->s_op->dirty_inode(inode, flags);
1154 }
1155
1156 /*
1157 * make sure that changes are seen by all cpus before we test i_state
1158 * -- mikulas
1159 */
1160 smp_mb();
1161
1162 /* avoid the locking if we can */
1163 if ((inode->i_state & flags) == flags)
1164 return;
1165
1166 if (unlikely(block_dump))
1167 block_dump___mark_inode_dirty(inode);
1168
1169 spin_lock(&inode->i_lock);
1170 if ((inode->i_state & flags) != flags) {
1171 const int was_dirty = inode->i_state & I_DIRTY;
1172
1173 inode->i_state |= flags;
1174
1175 /*
1176 * If the inode is being synced, just update its dirty state.
1177 * The unlocker will place the inode on the appropriate
1178 * superblock list, based upon its state.
1179 */
1180 if (inode->i_state & I_SYNC)
1181 goto out_unlock_inode;
1182
1183 /*
1184 * Only add valid (hashed) inodes to the superblock's
1185 * dirty list. Add blockdev inodes as well.
1186 */
1187 if (!S_ISBLK(inode->i_mode)) {
1188 if (inode_unhashed(inode))
1189 goto out_unlock_inode;
1190 }
1191 if (inode->i_state & I_FREEING)
1192 goto out_unlock_inode;
1193
1194 /*
1195 * If the inode was already on b_dirty/b_io/b_more_io, don't
1196 * reposition it (that would break b_dirty time-ordering).
1197 */
1198 if (!was_dirty) {
1199 bool wakeup_bdi = false;
1200 bdi = inode_to_bdi(inode);
1201
1202 if (bdi_cap_writeback_dirty(bdi)) {
1203 WARN(!test_bit(BDI_registered, &bdi->state),
1204 "bdi-%s not registered\n", bdi->name);
1205
1206 /*
1207 * If this is the first dirty inode for this
1208 * bdi, we have to wake-up the corresponding
1209 * bdi thread to make sure background
1210 * write-back happens later.
1211 */
1212 if (!wb_has_dirty_io(&bdi->wb))
1213 wakeup_bdi = true;
1214 }
1215
1216 spin_unlock(&inode->i_lock);
1217 spin_lock(&bdi->wb.list_lock);
1218 inode->dirtied_when = jiffies;
1219 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1220 spin_unlock(&bdi->wb.list_lock);
1221
1222 if (wakeup_bdi)
1223 bdi_wakeup_thread_delayed(bdi);
1224 return;
1225 }
1226 }
1227 out_unlock_inode:
1228 spin_unlock(&inode->i_lock);
1229
1230 }
1231 EXPORT_SYMBOL(__mark_inode_dirty);
1232
1233 static void wait_sb_inodes(struct super_block *sb)
1234 {
1235 struct inode *inode, *old_inode = NULL;
1236
1237 /*
1238 * We need to be protected against the filesystem going from
1239 * r/o to r/w or vice versa.
1240 */
1241 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1242
1243 spin_lock(&inode_sb_list_lock);
1244
1245 /*
1246 * Data integrity sync. Must wait for all pages under writeback,
1247 * because there may have been pages dirtied before our sync
1248 * call, but which had writeout started before we write it out.
1249 * In which case, the inode may not be on the dirty list, but
1250 * we still have to wait for that writeout.
1251 */
1252 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1253 struct address_space *mapping = inode->i_mapping;
1254
1255 spin_lock(&inode->i_lock);
1256 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1257 (mapping->nrpages == 0)) {
1258 spin_unlock(&inode->i_lock);
1259 continue;
1260 }
1261 __iget(inode);
1262 spin_unlock(&inode->i_lock);
1263 spin_unlock(&inode_sb_list_lock);
1264
1265 /*
1266 * We hold a reference to 'inode' so it couldn't have been
1267 * removed from s_inodes list while we dropped the
1268 * inode_sb_list_lock. We cannot iput the inode now as we can
1269 * be holding the last reference and we cannot iput it under
1270 * inode_sb_list_lock. So we keep the reference and iput it
1271 * later.
1272 */
1273 iput(old_inode);
1274 old_inode = inode;
1275
1276 filemap_fdatawait(mapping);
1277
1278 cond_resched();
1279
1280 spin_lock(&inode_sb_list_lock);
1281 }
1282 spin_unlock(&inode_sb_list_lock);
1283 iput(old_inode);
1284 }
1285
1286 /**
1287 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1288 * @sb: the superblock
1289 * @nr: the number of pages to write
1290 * @reason: reason why some writeback work initiated
1291 *
1292 * Start writeback on some inodes on this super_block. No guarantees are made
1293 * on how many (if any) will be written, and this function does not wait
1294 * for IO completion of submitted IO.
1295 */
1296 void writeback_inodes_sb_nr(struct super_block *sb,
1297 unsigned long nr,
1298 enum wb_reason reason)
1299 {
1300 DECLARE_COMPLETION_ONSTACK(done);
1301 struct wb_writeback_work work = {
1302 .sb = sb,
1303 .sync_mode = WB_SYNC_NONE,
1304 .tagged_writepages = 1,
1305 .done = &done,
1306 .nr_pages = nr,
1307 .reason = reason,
1308 };
1309
1310 if (sb->s_bdi == &noop_backing_dev_info)
1311 return;
1312 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1313 bdi_queue_work(sb->s_bdi, &work);
1314 wait_for_completion(&done);
1315 }
1316 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1317
1318 /**
1319 * writeback_inodes_sb - writeback dirty inodes from given super_block
1320 * @sb: the superblock
1321 * @reason: reason why some writeback work was initiated
1322 *
1323 * Start writeback on some inodes on this super_block. No guarantees are made
1324 * on how many (if any) will be written, and this function does not wait
1325 * for IO completion of submitted IO.
1326 */
1327 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1328 {
1329 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1330 }
1331 EXPORT_SYMBOL(writeback_inodes_sb);
1332
1333 /**
1334 * writeback_inodes_sb_if_idle - start writeback if none underway
1335 * @sb: the superblock
1336 * @reason: reason why some writeback work was initiated
1337 *
1338 * Invoke writeback_inodes_sb if no writeback is currently underway.
1339 * Returns 1 if writeback was started, 0 if not.
1340 */
1341 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1342 {
1343 if (!writeback_in_progress(sb->s_bdi)) {
1344 down_read(&sb->s_umount);
1345 writeback_inodes_sb(sb, reason);
1346 up_read(&sb->s_umount);
1347 return 1;
1348 } else
1349 return 0;
1350 }
1351 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1352
1353 /**
1354 * writeback_inodes_sb_nr_if_idle - start writeback if none underway
1355 * @sb: the superblock
1356 * @nr: the number of pages to write
1357 * @reason: reason why some writeback work was initiated
1358 *
1359 * Invoke writeback_inodes_sb if no writeback is currently underway.
1360 * Returns 1 if writeback was started, 0 if not.
1361 */
1362 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1363 unsigned long nr,
1364 enum wb_reason reason)
1365 {
1366 if (!writeback_in_progress(sb->s_bdi)) {
1367 down_read(&sb->s_umount);
1368 writeback_inodes_sb_nr(sb, nr, reason);
1369 up_read(&sb->s_umount);
1370 return 1;
1371 } else
1372 return 0;
1373 }
1374 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1375
1376 /**
1377 * sync_inodes_sb - sync sb inode pages
1378 * @sb: the superblock
1379 *
1380 * This function writes and waits on any dirty inode belonging to this
1381 * super_block.
1382 */
1383 void sync_inodes_sb(struct super_block *sb)
1384 {
1385 DECLARE_COMPLETION_ONSTACK(done);
1386 struct wb_writeback_work work = {
1387 .sb = sb,
1388 .sync_mode = WB_SYNC_ALL,
1389 .nr_pages = LONG_MAX,
1390 .range_cyclic = 0,
1391 .done = &done,
1392 .reason = WB_REASON_SYNC,
1393 };
1394
1395 /* Nothing to do? */
1396 if (sb->s_bdi == &noop_backing_dev_info)
1397 return;
1398 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1399
1400 bdi_queue_work(sb->s_bdi, &work);
1401 wait_for_completion(&done);
1402
1403 wait_sb_inodes(sb);
1404 }
1405 EXPORT_SYMBOL(sync_inodes_sb);
1406
1407 /**
1408 * write_inode_now - write an inode to disk
1409 * @inode: inode to write to disk
1410 * @sync: whether the write should be synchronous or not
1411 *
1412 * This function commits an inode to disk immediately if it is dirty. This is
1413 * primarily needed by knfsd.
1414 *
1415 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1416 */
1417 int write_inode_now(struct inode *inode, int sync)
1418 {
1419 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1420 struct writeback_control wbc = {
1421 .nr_to_write = LONG_MAX,
1422 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1423 .range_start = 0,
1424 .range_end = LLONG_MAX,
1425 };
1426
1427 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1428 wbc.nr_to_write = 0;
1429
1430 might_sleep();
1431 return writeback_single_inode(inode, wb, &wbc);
1432 }
1433 EXPORT_SYMBOL(write_inode_now);
1434
1435 /**
1436 * sync_inode - write an inode and its pages to disk.
1437 * @inode: the inode to sync
1438 * @wbc: controls the writeback mode
1439 *
1440 * sync_inode() will write an inode and its pages to disk. It will also
1441 * correctly update the inode on its superblock's dirty inode lists and will
1442 * update inode->i_state.
1443 *
1444 * The caller must have a ref on the inode.
1445 */
1446 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1447 {
1448 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1449 }
1450 EXPORT_SYMBOL(sync_inode);
1451
1452 /**
1453 * sync_inode_metadata - write an inode to disk
1454 * @inode: the inode to sync
1455 * @wait: wait for I/O to complete.
1456 *
1457 * Write an inode to disk and adjust its dirty state after completion.
1458 *
1459 * Note: only writes the actual inode, no associated data or other metadata.
1460 */
1461 int sync_inode_metadata(struct inode *inode, int wait)
1462 {
1463 struct writeback_control wbc = {
1464 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1465 .nr_to_write = 0, /* metadata-only */
1466 };
1467
1468 return sync_inode(inode, &wbc);
1469 }
1470 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.07255 seconds and 5 git commands to generate.