dax: move DAX-related functions to a new header
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34 * 4MB minimal write chunk size
35 */
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
38 struct wb_completion {
39 atomic_t cnt;
40 };
41
42 /*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
45 struct wb_writeback_work {
46 long nr_pages;
47 struct super_block *sb;
48 unsigned long *older_than_this;
49 enum writeback_sync_modes sync_mode;
50 unsigned int tagged_writepages:1;
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free:1; /* free on completion */
56 unsigned int single_wait:1;
57 unsigned int single_done:1;
58 enum wb_reason reason; /* why was writeback initiated? */
59
60 struct list_head list; /* pending work list */
61 struct wb_completion *done; /* set if the caller waits */
62 };
63
64 /*
65 * If one wants to wait for one or more wb_writeback_works, each work's
66 * ->done should be set to a wb_completion defined using the following
67 * macro. Once all work items are issued with wb_queue_work(), the caller
68 * can wait for the completion of all using wb_wait_for_completion(). Work
69 * items which are waited upon aren't freed automatically on completion.
70 */
71 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
72 struct wb_completion cmpl = { \
73 .cnt = ATOMIC_INIT(1), \
74 }
75
76
77 /*
78 * If an inode is constantly having its pages dirtied, but then the
79 * updates stop dirtytime_expire_interval seconds in the past, it's
80 * possible for the worst case time between when an inode has its
81 * timestamps updated and when they finally get written out to be two
82 * dirtytime_expire_intervals. We set the default to 12 hours (in
83 * seconds), which means most of the time inodes will have their
84 * timestamps written to disk after 12 hours, but in the worst case a
85 * few inodes might not their timestamps updated for 24 hours.
86 */
87 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
88
89 static inline struct inode *wb_inode(struct list_head *head)
90 {
91 return list_entry(head, struct inode, i_io_list);
92 }
93
94 /*
95 * Include the creation of the trace points after defining the
96 * wb_writeback_work structure and inline functions so that the definition
97 * remains local to this file.
98 */
99 #define CREATE_TRACE_POINTS
100 #include <trace/events/writeback.h>
101
102 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
103
104 static bool wb_io_lists_populated(struct bdi_writeback *wb)
105 {
106 if (wb_has_dirty_io(wb)) {
107 return false;
108 } else {
109 set_bit(WB_has_dirty_io, &wb->state);
110 WARN_ON_ONCE(!wb->avg_write_bandwidth);
111 atomic_long_add(wb->avg_write_bandwidth,
112 &wb->bdi->tot_write_bandwidth);
113 return true;
114 }
115 }
116
117 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
118 {
119 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
120 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
121 clear_bit(WB_has_dirty_io, &wb->state);
122 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
123 &wb->bdi->tot_write_bandwidth) < 0);
124 }
125 }
126
127 /**
128 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
129 * @inode: inode to be moved
130 * @wb: target bdi_writeback
131 * @head: one of @wb->b_{dirty|io|more_io}
132 *
133 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
134 * Returns %true if @inode is the first occupant of the !dirty_time IO
135 * lists; otherwise, %false.
136 */
137 static bool inode_io_list_move_locked(struct inode *inode,
138 struct bdi_writeback *wb,
139 struct list_head *head)
140 {
141 assert_spin_locked(&wb->list_lock);
142
143 list_move(&inode->i_io_list, head);
144
145 /* dirty_time doesn't count as dirty_io until expiration */
146 if (head != &wb->b_dirty_time)
147 return wb_io_lists_populated(wb);
148
149 wb_io_lists_depopulated(wb);
150 return false;
151 }
152
153 /**
154 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
155 * @inode: inode to be removed
156 * @wb: bdi_writeback @inode is being removed from
157 *
158 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
159 * clear %WB_has_dirty_io if all are empty afterwards.
160 */
161 static void inode_io_list_del_locked(struct inode *inode,
162 struct bdi_writeback *wb)
163 {
164 assert_spin_locked(&wb->list_lock);
165
166 list_del_init(&inode->i_io_list);
167 wb_io_lists_depopulated(wb);
168 }
169
170 static void wb_wakeup(struct bdi_writeback *wb)
171 {
172 spin_lock_bh(&wb->work_lock);
173 if (test_bit(WB_registered, &wb->state))
174 mod_delayed_work(bdi_wq, &wb->dwork, 0);
175 spin_unlock_bh(&wb->work_lock);
176 }
177
178 static void wb_queue_work(struct bdi_writeback *wb,
179 struct wb_writeback_work *work)
180 {
181 trace_writeback_queue(wb->bdi, work);
182
183 spin_lock_bh(&wb->work_lock);
184 if (!test_bit(WB_registered, &wb->state)) {
185 if (work->single_wait)
186 work->single_done = 1;
187 goto out_unlock;
188 }
189 if (work->done)
190 atomic_inc(&work->done->cnt);
191 list_add_tail(&work->list, &wb->work_list);
192 mod_delayed_work(bdi_wq, &wb->dwork, 0);
193 out_unlock:
194 spin_unlock_bh(&wb->work_lock);
195 }
196
197 /**
198 * wb_wait_for_completion - wait for completion of bdi_writeback_works
199 * @bdi: bdi work items were issued to
200 * @done: target wb_completion
201 *
202 * Wait for one or more work items issued to @bdi with their ->done field
203 * set to @done, which should have been defined with
204 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
205 * work items are completed. Work items which are waited upon aren't freed
206 * automatically on completion.
207 */
208 static void wb_wait_for_completion(struct backing_dev_info *bdi,
209 struct wb_completion *done)
210 {
211 atomic_dec(&done->cnt); /* put down the initial count */
212 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
213 }
214
215 #ifdef CONFIG_CGROUP_WRITEBACK
216
217 /* parameters for foreign inode detection, see wb_detach_inode() */
218 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
219 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
220 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
221 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
222
223 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
224 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
225 /* each slot's duration is 2s / 16 */
226 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
227 /* if foreign slots >= 8, switch */
228 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
229 /* one round can affect upto 5 slots */
230
231 void __inode_attach_wb(struct inode *inode, struct page *page)
232 {
233 struct backing_dev_info *bdi = inode_to_bdi(inode);
234 struct bdi_writeback *wb = NULL;
235
236 if (inode_cgwb_enabled(inode)) {
237 struct cgroup_subsys_state *memcg_css;
238
239 if (page) {
240 memcg_css = mem_cgroup_css_from_page(page);
241 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
242 } else {
243 /* must pin memcg_css, see wb_get_create() */
244 memcg_css = task_get_css(current, memory_cgrp_id);
245 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
246 css_put(memcg_css);
247 }
248 }
249
250 if (!wb)
251 wb = &bdi->wb;
252
253 /*
254 * There may be multiple instances of this function racing to
255 * update the same inode. Use cmpxchg() to tell the winner.
256 */
257 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
258 wb_put(wb);
259 }
260
261 /**
262 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
263 * @inode: inode of interest with i_lock held
264 *
265 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
266 * held on entry and is released on return. The returned wb is guaranteed
267 * to stay @inode's associated wb until its list_lock is released.
268 */
269 static struct bdi_writeback *
270 locked_inode_to_wb_and_lock_list(struct inode *inode)
271 __releases(&inode->i_lock)
272 __acquires(&wb->list_lock)
273 {
274 while (true) {
275 struct bdi_writeback *wb = inode_to_wb(inode);
276
277 /*
278 * inode_to_wb() association is protected by both
279 * @inode->i_lock and @wb->list_lock but list_lock nests
280 * outside i_lock. Drop i_lock and verify that the
281 * association hasn't changed after acquiring list_lock.
282 */
283 wb_get(wb);
284 spin_unlock(&inode->i_lock);
285 spin_lock(&wb->list_lock);
286 wb_put(wb); /* not gonna deref it anymore */
287
288 /* i_wb may have changed inbetween, can't use inode_to_wb() */
289 if (likely(wb == inode->i_wb))
290 return wb; /* @inode already has ref */
291
292 spin_unlock(&wb->list_lock);
293 cpu_relax();
294 spin_lock(&inode->i_lock);
295 }
296 }
297
298 /**
299 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
300 * @inode: inode of interest
301 *
302 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
303 * on entry.
304 */
305 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
306 __acquires(&wb->list_lock)
307 {
308 spin_lock(&inode->i_lock);
309 return locked_inode_to_wb_and_lock_list(inode);
310 }
311
312 struct inode_switch_wbs_context {
313 struct inode *inode;
314 struct bdi_writeback *new_wb;
315
316 struct rcu_head rcu_head;
317 struct work_struct work;
318 };
319
320 static void inode_switch_wbs_work_fn(struct work_struct *work)
321 {
322 struct inode_switch_wbs_context *isw =
323 container_of(work, struct inode_switch_wbs_context, work);
324 struct inode *inode = isw->inode;
325 struct address_space *mapping = inode->i_mapping;
326 struct bdi_writeback *old_wb = inode->i_wb;
327 struct bdi_writeback *new_wb = isw->new_wb;
328 struct radix_tree_iter iter;
329 bool switched = false;
330 void **slot;
331
332 /*
333 * By the time control reaches here, RCU grace period has passed
334 * since I_WB_SWITCH assertion and all wb stat update transactions
335 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
336 * synchronizing against mapping->tree_lock.
337 *
338 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
339 * gives us exclusion against all wb related operations on @inode
340 * including IO list manipulations and stat updates.
341 */
342 if (old_wb < new_wb) {
343 spin_lock(&old_wb->list_lock);
344 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
345 } else {
346 spin_lock(&new_wb->list_lock);
347 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
348 }
349 spin_lock(&inode->i_lock);
350 spin_lock_irq(&mapping->tree_lock);
351
352 /*
353 * Once I_FREEING is visible under i_lock, the eviction path owns
354 * the inode and we shouldn't modify ->i_io_list.
355 */
356 if (unlikely(inode->i_state & I_FREEING))
357 goto skip_switch;
358
359 /*
360 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
361 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
362 * pages actually under underwriteback.
363 */
364 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
365 PAGECACHE_TAG_DIRTY) {
366 struct page *page = radix_tree_deref_slot_protected(slot,
367 &mapping->tree_lock);
368 if (likely(page) && PageDirty(page)) {
369 __dec_wb_stat(old_wb, WB_RECLAIMABLE);
370 __inc_wb_stat(new_wb, WB_RECLAIMABLE);
371 }
372 }
373
374 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
375 PAGECACHE_TAG_WRITEBACK) {
376 struct page *page = radix_tree_deref_slot_protected(slot,
377 &mapping->tree_lock);
378 if (likely(page)) {
379 WARN_ON_ONCE(!PageWriteback(page));
380 __dec_wb_stat(old_wb, WB_WRITEBACK);
381 __inc_wb_stat(new_wb, WB_WRITEBACK);
382 }
383 }
384
385 wb_get(new_wb);
386
387 /*
388 * Transfer to @new_wb's IO list if necessary. The specific list
389 * @inode was on is ignored and the inode is put on ->b_dirty which
390 * is always correct including from ->b_dirty_time. The transfer
391 * preserves @inode->dirtied_when ordering.
392 */
393 if (!list_empty(&inode->i_io_list)) {
394 struct inode *pos;
395
396 inode_io_list_del_locked(inode, old_wb);
397 inode->i_wb = new_wb;
398 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
399 if (time_after_eq(inode->dirtied_when,
400 pos->dirtied_when))
401 break;
402 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
403 } else {
404 inode->i_wb = new_wb;
405 }
406
407 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
408 inode->i_wb_frn_winner = 0;
409 inode->i_wb_frn_avg_time = 0;
410 inode->i_wb_frn_history = 0;
411 switched = true;
412 skip_switch:
413 /*
414 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
415 * ensures that the new wb is visible if they see !I_WB_SWITCH.
416 */
417 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
418
419 spin_unlock_irq(&mapping->tree_lock);
420 spin_unlock(&inode->i_lock);
421 spin_unlock(&new_wb->list_lock);
422 spin_unlock(&old_wb->list_lock);
423
424 if (switched) {
425 wb_wakeup(new_wb);
426 wb_put(old_wb);
427 }
428 wb_put(new_wb);
429
430 iput(inode);
431 kfree(isw);
432 }
433
434 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
435 {
436 struct inode_switch_wbs_context *isw = container_of(rcu_head,
437 struct inode_switch_wbs_context, rcu_head);
438
439 /* needs to grab bh-unsafe locks, bounce to work item */
440 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
441 schedule_work(&isw->work);
442 }
443
444 /**
445 * inode_switch_wbs - change the wb association of an inode
446 * @inode: target inode
447 * @new_wb_id: ID of the new wb
448 *
449 * Switch @inode's wb association to the wb identified by @new_wb_id. The
450 * switching is performed asynchronously and may fail silently.
451 */
452 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
453 {
454 struct backing_dev_info *bdi = inode_to_bdi(inode);
455 struct cgroup_subsys_state *memcg_css;
456 struct inode_switch_wbs_context *isw;
457
458 /* noop if seems to be already in progress */
459 if (inode->i_state & I_WB_SWITCH)
460 return;
461
462 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
463 if (!isw)
464 return;
465
466 /* find and pin the new wb */
467 rcu_read_lock();
468 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
469 if (memcg_css)
470 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
471 rcu_read_unlock();
472 if (!isw->new_wb)
473 goto out_free;
474
475 /* while holding I_WB_SWITCH, no one else can update the association */
476 spin_lock(&inode->i_lock);
477 if (inode->i_state & (I_WB_SWITCH | I_FREEING) ||
478 inode_to_wb(inode) == isw->new_wb) {
479 spin_unlock(&inode->i_lock);
480 goto out_free;
481 }
482 inode->i_state |= I_WB_SWITCH;
483 spin_unlock(&inode->i_lock);
484
485 ihold(inode);
486 isw->inode = inode;
487
488 /*
489 * In addition to synchronizing among switchers, I_WB_SWITCH tells
490 * the RCU protected stat update paths to grab the mapping's
491 * tree_lock so that stat transfer can synchronize against them.
492 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
493 */
494 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
495 return;
496
497 out_free:
498 if (isw->new_wb)
499 wb_put(isw->new_wb);
500 kfree(isw);
501 }
502
503 /**
504 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
505 * @wbc: writeback_control of interest
506 * @inode: target inode
507 *
508 * @inode is locked and about to be written back under the control of @wbc.
509 * Record @inode's writeback context into @wbc and unlock the i_lock. On
510 * writeback completion, wbc_detach_inode() should be called. This is used
511 * to track the cgroup writeback context.
512 */
513 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
514 struct inode *inode)
515 {
516 if (!inode_cgwb_enabled(inode)) {
517 spin_unlock(&inode->i_lock);
518 return;
519 }
520
521 wbc->wb = inode_to_wb(inode);
522 wbc->inode = inode;
523
524 wbc->wb_id = wbc->wb->memcg_css->id;
525 wbc->wb_lcand_id = inode->i_wb_frn_winner;
526 wbc->wb_tcand_id = 0;
527 wbc->wb_bytes = 0;
528 wbc->wb_lcand_bytes = 0;
529 wbc->wb_tcand_bytes = 0;
530
531 wb_get(wbc->wb);
532 spin_unlock(&inode->i_lock);
533
534 /*
535 * A dying wb indicates that the memcg-blkcg mapping has changed
536 * and a new wb is already serving the memcg. Switch immediately.
537 */
538 if (unlikely(wb_dying(wbc->wb)))
539 inode_switch_wbs(inode, wbc->wb_id);
540 }
541
542 /**
543 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
544 * @wbc: writeback_control of the just finished writeback
545 *
546 * To be called after a writeback attempt of an inode finishes and undoes
547 * wbc_attach_and_unlock_inode(). Can be called under any context.
548 *
549 * As concurrent write sharing of an inode is expected to be very rare and
550 * memcg only tracks page ownership on first-use basis severely confining
551 * the usefulness of such sharing, cgroup writeback tracks ownership
552 * per-inode. While the support for concurrent write sharing of an inode
553 * is deemed unnecessary, an inode being written to by different cgroups at
554 * different points in time is a lot more common, and, more importantly,
555 * charging only by first-use can too readily lead to grossly incorrect
556 * behaviors (single foreign page can lead to gigabytes of writeback to be
557 * incorrectly attributed).
558 *
559 * To resolve this issue, cgroup writeback detects the majority dirtier of
560 * an inode and transfers the ownership to it. To avoid unnnecessary
561 * oscillation, the detection mechanism keeps track of history and gives
562 * out the switch verdict only if the foreign usage pattern is stable over
563 * a certain amount of time and/or writeback attempts.
564 *
565 * On each writeback attempt, @wbc tries to detect the majority writer
566 * using Boyer-Moore majority vote algorithm. In addition to the byte
567 * count from the majority voting, it also counts the bytes written for the
568 * current wb and the last round's winner wb (max of last round's current
569 * wb, the winner from two rounds ago, and the last round's majority
570 * candidate). Keeping track of the historical winner helps the algorithm
571 * to semi-reliably detect the most active writer even when it's not the
572 * absolute majority.
573 *
574 * Once the winner of the round is determined, whether the winner is
575 * foreign or not and how much IO time the round consumed is recorded in
576 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
577 * over a certain threshold, the switch verdict is given.
578 */
579 void wbc_detach_inode(struct writeback_control *wbc)
580 {
581 struct bdi_writeback *wb = wbc->wb;
582 struct inode *inode = wbc->inode;
583 unsigned long avg_time, max_bytes, max_time;
584 u16 history;
585 int max_id;
586
587 if (!wb)
588 return;
589
590 history = inode->i_wb_frn_history;
591 avg_time = inode->i_wb_frn_avg_time;
592
593 /* pick the winner of this round */
594 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
595 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
596 max_id = wbc->wb_id;
597 max_bytes = wbc->wb_bytes;
598 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
599 max_id = wbc->wb_lcand_id;
600 max_bytes = wbc->wb_lcand_bytes;
601 } else {
602 max_id = wbc->wb_tcand_id;
603 max_bytes = wbc->wb_tcand_bytes;
604 }
605
606 /*
607 * Calculate the amount of IO time the winner consumed and fold it
608 * into the running average kept per inode. If the consumed IO
609 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
610 * deciding whether to switch or not. This is to prevent one-off
611 * small dirtiers from skewing the verdict.
612 */
613 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
614 wb->avg_write_bandwidth);
615 if (avg_time)
616 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
617 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
618 else
619 avg_time = max_time; /* immediate catch up on first run */
620
621 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
622 int slots;
623
624 /*
625 * The switch verdict is reached if foreign wb's consume
626 * more than a certain proportion of IO time in a
627 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
628 * history mask where each bit represents one sixteenth of
629 * the period. Determine the number of slots to shift into
630 * history from @max_time.
631 */
632 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
633 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
634 history <<= slots;
635 if (wbc->wb_id != max_id)
636 history |= (1U << slots) - 1;
637
638 /*
639 * Switch if the current wb isn't the consistent winner.
640 * If there are multiple closely competing dirtiers, the
641 * inode may switch across them repeatedly over time, which
642 * is okay. The main goal is avoiding keeping an inode on
643 * the wrong wb for an extended period of time.
644 */
645 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
646 inode_switch_wbs(inode, max_id);
647 }
648
649 /*
650 * Multiple instances of this function may race to update the
651 * following fields but we don't mind occassional inaccuracies.
652 */
653 inode->i_wb_frn_winner = max_id;
654 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
655 inode->i_wb_frn_history = history;
656
657 wb_put(wbc->wb);
658 wbc->wb = NULL;
659 }
660
661 /**
662 * wbc_account_io - account IO issued during writeback
663 * @wbc: writeback_control of the writeback in progress
664 * @page: page being written out
665 * @bytes: number of bytes being written out
666 *
667 * @bytes from @page are about to written out during the writeback
668 * controlled by @wbc. Keep the book for foreign inode detection. See
669 * wbc_detach_inode().
670 */
671 void wbc_account_io(struct writeback_control *wbc, struct page *page,
672 size_t bytes)
673 {
674 int id;
675
676 /*
677 * pageout() path doesn't attach @wbc to the inode being written
678 * out. This is intentional as we don't want the function to block
679 * behind a slow cgroup. Ultimately, we want pageout() to kick off
680 * regular writeback instead of writing things out itself.
681 */
682 if (!wbc->wb)
683 return;
684
685 rcu_read_lock();
686 id = mem_cgroup_css_from_page(page)->id;
687 rcu_read_unlock();
688
689 if (id == wbc->wb_id) {
690 wbc->wb_bytes += bytes;
691 return;
692 }
693
694 if (id == wbc->wb_lcand_id)
695 wbc->wb_lcand_bytes += bytes;
696
697 /* Boyer-Moore majority vote algorithm */
698 if (!wbc->wb_tcand_bytes)
699 wbc->wb_tcand_id = id;
700 if (id == wbc->wb_tcand_id)
701 wbc->wb_tcand_bytes += bytes;
702 else
703 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
704 }
705 EXPORT_SYMBOL_GPL(wbc_account_io);
706
707 /**
708 * inode_congested - test whether an inode is congested
709 * @inode: inode to test for congestion
710 * @cong_bits: mask of WB_[a]sync_congested bits to test
711 *
712 * Tests whether @inode is congested. @cong_bits is the mask of congestion
713 * bits to test and the return value is the mask of set bits.
714 *
715 * If cgroup writeback is enabled for @inode, the congestion state is
716 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
717 * associated with @inode is congested; otherwise, the root wb's congestion
718 * state is used.
719 */
720 int inode_congested(struct inode *inode, int cong_bits)
721 {
722 /*
723 * Once set, ->i_wb never becomes NULL while the inode is alive.
724 * Start transaction iff ->i_wb is visible.
725 */
726 if (inode && inode_to_wb_is_valid(inode)) {
727 struct bdi_writeback *wb;
728 bool locked, congested;
729
730 wb = unlocked_inode_to_wb_begin(inode, &locked);
731 congested = wb_congested(wb, cong_bits);
732 unlocked_inode_to_wb_end(inode, locked);
733 return congested;
734 }
735
736 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
737 }
738 EXPORT_SYMBOL_GPL(inode_congested);
739
740 /**
741 * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
742 * @bdi: bdi the work item was issued to
743 * @work: work item to wait for
744 *
745 * Wait for the completion of @work which was issued to one of @bdi's
746 * bdi_writeback's. The caller must have set @work->single_wait before
747 * issuing it. This wait operates independently fo
748 * wb_wait_for_completion() and also disables automatic freeing of @work.
749 */
750 static void wb_wait_for_single_work(struct backing_dev_info *bdi,
751 struct wb_writeback_work *work)
752 {
753 if (WARN_ON_ONCE(!work->single_wait))
754 return;
755
756 wait_event(bdi->wb_waitq, work->single_done);
757
758 /*
759 * Paired with smp_wmb() in wb_do_writeback() and ensures that all
760 * modifications to @work prior to assertion of ->single_done is
761 * visible to the caller once this function returns.
762 */
763 smp_rmb();
764 }
765
766 /**
767 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
768 * @wb: target bdi_writeback to split @nr_pages to
769 * @nr_pages: number of pages to write for the whole bdi
770 *
771 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
772 * relation to the total write bandwidth of all wb's w/ dirty inodes on
773 * @wb->bdi.
774 */
775 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
776 {
777 unsigned long this_bw = wb->avg_write_bandwidth;
778 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
779
780 if (nr_pages == LONG_MAX)
781 return LONG_MAX;
782
783 /*
784 * This may be called on clean wb's and proportional distribution
785 * may not make sense, just use the original @nr_pages in those
786 * cases. In general, we wanna err on the side of writing more.
787 */
788 if (!tot_bw || this_bw >= tot_bw)
789 return nr_pages;
790 else
791 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
792 }
793
794 /**
795 * wb_clone_and_queue_work - clone a wb_writeback_work and issue it to a wb
796 * @wb: target bdi_writeback
797 * @base_work: source wb_writeback_work
798 *
799 * Try to make a clone of @base_work and issue it to @wb. If cloning
800 * succeeds, %true is returned; otherwise, @base_work is issued directly
801 * and %false is returned. In the latter case, the caller is required to
802 * wait for @base_work's completion using wb_wait_for_single_work().
803 *
804 * A clone is auto-freed on completion. @base_work never is.
805 */
806 static bool wb_clone_and_queue_work(struct bdi_writeback *wb,
807 struct wb_writeback_work *base_work)
808 {
809 struct wb_writeback_work *work;
810
811 work = kmalloc(sizeof(*work), GFP_ATOMIC);
812 if (work) {
813 *work = *base_work;
814 work->auto_free = 1;
815 work->single_wait = 0;
816 } else {
817 work = base_work;
818 work->auto_free = 0;
819 work->single_wait = 1;
820 }
821 work->single_done = 0;
822 wb_queue_work(wb, work);
823 return work != base_work;
824 }
825
826 /**
827 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
828 * @bdi: target backing_dev_info
829 * @base_work: wb_writeback_work to issue
830 * @skip_if_busy: skip wb's which already have writeback in progress
831 *
832 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
833 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
834 * distributed to the busy wbs according to each wb's proportion in the
835 * total active write bandwidth of @bdi.
836 */
837 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
838 struct wb_writeback_work *base_work,
839 bool skip_if_busy)
840 {
841 long nr_pages = base_work->nr_pages;
842 int next_blkcg_id = 0;
843 struct bdi_writeback *wb;
844 struct wb_iter iter;
845
846 might_sleep();
847 restart:
848 rcu_read_lock();
849 bdi_for_each_wb(wb, bdi, &iter, next_blkcg_id) {
850 /* SYNC_ALL writes out I_DIRTY_TIME too */
851 if (!wb_has_dirty_io(wb) &&
852 (base_work->sync_mode == WB_SYNC_NONE ||
853 list_empty(&wb->b_dirty_time)))
854 continue;
855 if (skip_if_busy && writeback_in_progress(wb))
856 continue;
857
858 base_work->nr_pages = wb_split_bdi_pages(wb, nr_pages);
859 if (!wb_clone_and_queue_work(wb, base_work)) {
860 next_blkcg_id = wb->blkcg_css->id + 1;
861 rcu_read_unlock();
862 wb_wait_for_single_work(bdi, base_work);
863 goto restart;
864 }
865 }
866 rcu_read_unlock();
867 }
868
869 #else /* CONFIG_CGROUP_WRITEBACK */
870
871 static struct bdi_writeback *
872 locked_inode_to_wb_and_lock_list(struct inode *inode)
873 __releases(&inode->i_lock)
874 __acquires(&wb->list_lock)
875 {
876 struct bdi_writeback *wb = inode_to_wb(inode);
877
878 spin_unlock(&inode->i_lock);
879 spin_lock(&wb->list_lock);
880 return wb;
881 }
882
883 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
884 __acquires(&wb->list_lock)
885 {
886 struct bdi_writeback *wb = inode_to_wb(inode);
887
888 spin_lock(&wb->list_lock);
889 return wb;
890 }
891
892 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
893 {
894 return nr_pages;
895 }
896
897 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
898 struct wb_writeback_work *base_work,
899 bool skip_if_busy)
900 {
901 might_sleep();
902
903 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
904 base_work->auto_free = 0;
905 base_work->single_wait = 0;
906 base_work->single_done = 0;
907 wb_queue_work(&bdi->wb, base_work);
908 }
909 }
910
911 #endif /* CONFIG_CGROUP_WRITEBACK */
912
913 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
914 bool range_cyclic, enum wb_reason reason)
915 {
916 struct wb_writeback_work *work;
917
918 if (!wb_has_dirty_io(wb))
919 return;
920
921 /*
922 * This is WB_SYNC_NONE writeback, so if allocation fails just
923 * wakeup the thread for old dirty data writeback
924 */
925 work = kzalloc(sizeof(*work), GFP_ATOMIC);
926 if (!work) {
927 trace_writeback_nowork(wb->bdi);
928 wb_wakeup(wb);
929 return;
930 }
931
932 work->sync_mode = WB_SYNC_NONE;
933 work->nr_pages = nr_pages;
934 work->range_cyclic = range_cyclic;
935 work->reason = reason;
936 work->auto_free = 1;
937
938 wb_queue_work(wb, work);
939 }
940
941 /**
942 * wb_start_background_writeback - start background writeback
943 * @wb: bdi_writback to write from
944 *
945 * Description:
946 * This makes sure WB_SYNC_NONE background writeback happens. When
947 * this function returns, it is only guaranteed that for given wb
948 * some IO is happening if we are over background dirty threshold.
949 * Caller need not hold sb s_umount semaphore.
950 */
951 void wb_start_background_writeback(struct bdi_writeback *wb)
952 {
953 /*
954 * We just wake up the flusher thread. It will perform background
955 * writeback as soon as there is no other work to do.
956 */
957 trace_writeback_wake_background(wb->bdi);
958 wb_wakeup(wb);
959 }
960
961 /*
962 * Remove the inode from the writeback list it is on.
963 */
964 void inode_io_list_del(struct inode *inode)
965 {
966 struct bdi_writeback *wb;
967
968 wb = inode_to_wb_and_lock_list(inode);
969 inode_io_list_del_locked(inode, wb);
970 spin_unlock(&wb->list_lock);
971 }
972
973 /*
974 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
975 * furthest end of its superblock's dirty-inode list.
976 *
977 * Before stamping the inode's ->dirtied_when, we check to see whether it is
978 * already the most-recently-dirtied inode on the b_dirty list. If that is
979 * the case then the inode must have been redirtied while it was being written
980 * out and we don't reset its dirtied_when.
981 */
982 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
983 {
984 if (!list_empty(&wb->b_dirty)) {
985 struct inode *tail;
986
987 tail = wb_inode(wb->b_dirty.next);
988 if (time_before(inode->dirtied_when, tail->dirtied_when))
989 inode->dirtied_when = jiffies;
990 }
991 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
992 }
993
994 /*
995 * requeue inode for re-scanning after bdi->b_io list is exhausted.
996 */
997 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
998 {
999 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1000 }
1001
1002 static void inode_sync_complete(struct inode *inode)
1003 {
1004 inode->i_state &= ~I_SYNC;
1005 /* If inode is clean an unused, put it into LRU now... */
1006 inode_add_lru(inode);
1007 /* Waiters must see I_SYNC cleared before being woken up */
1008 smp_mb();
1009 wake_up_bit(&inode->i_state, __I_SYNC);
1010 }
1011
1012 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1013 {
1014 bool ret = time_after(inode->dirtied_when, t);
1015 #ifndef CONFIG_64BIT
1016 /*
1017 * For inodes being constantly redirtied, dirtied_when can get stuck.
1018 * It _appears_ to be in the future, but is actually in distant past.
1019 * This test is necessary to prevent such wrapped-around relative times
1020 * from permanently stopping the whole bdi writeback.
1021 */
1022 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1023 #endif
1024 return ret;
1025 }
1026
1027 #define EXPIRE_DIRTY_ATIME 0x0001
1028
1029 /*
1030 * Move expired (dirtied before work->older_than_this) dirty inodes from
1031 * @delaying_queue to @dispatch_queue.
1032 */
1033 static int move_expired_inodes(struct list_head *delaying_queue,
1034 struct list_head *dispatch_queue,
1035 int flags,
1036 struct wb_writeback_work *work)
1037 {
1038 unsigned long *older_than_this = NULL;
1039 unsigned long expire_time;
1040 LIST_HEAD(tmp);
1041 struct list_head *pos, *node;
1042 struct super_block *sb = NULL;
1043 struct inode *inode;
1044 int do_sb_sort = 0;
1045 int moved = 0;
1046
1047 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1048 older_than_this = work->older_than_this;
1049 else if (!work->for_sync) {
1050 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1051 older_than_this = &expire_time;
1052 }
1053 while (!list_empty(delaying_queue)) {
1054 inode = wb_inode(delaying_queue->prev);
1055 if (older_than_this &&
1056 inode_dirtied_after(inode, *older_than_this))
1057 break;
1058 list_move(&inode->i_io_list, &tmp);
1059 moved++;
1060 if (flags & EXPIRE_DIRTY_ATIME)
1061 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1062 if (sb_is_blkdev_sb(inode->i_sb))
1063 continue;
1064 if (sb && sb != inode->i_sb)
1065 do_sb_sort = 1;
1066 sb = inode->i_sb;
1067 }
1068
1069 /* just one sb in list, splice to dispatch_queue and we're done */
1070 if (!do_sb_sort) {
1071 list_splice(&tmp, dispatch_queue);
1072 goto out;
1073 }
1074
1075 /* Move inodes from one superblock together */
1076 while (!list_empty(&tmp)) {
1077 sb = wb_inode(tmp.prev)->i_sb;
1078 list_for_each_prev_safe(pos, node, &tmp) {
1079 inode = wb_inode(pos);
1080 if (inode->i_sb == sb)
1081 list_move(&inode->i_io_list, dispatch_queue);
1082 }
1083 }
1084 out:
1085 return moved;
1086 }
1087
1088 /*
1089 * Queue all expired dirty inodes for io, eldest first.
1090 * Before
1091 * newly dirtied b_dirty b_io b_more_io
1092 * =============> gf edc BA
1093 * After
1094 * newly dirtied b_dirty b_io b_more_io
1095 * =============> g fBAedc
1096 * |
1097 * +--> dequeue for IO
1098 */
1099 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1100 {
1101 int moved;
1102
1103 assert_spin_locked(&wb->list_lock);
1104 list_splice_init(&wb->b_more_io, &wb->b_io);
1105 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1106 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1107 EXPIRE_DIRTY_ATIME, work);
1108 if (moved)
1109 wb_io_lists_populated(wb);
1110 trace_writeback_queue_io(wb, work, moved);
1111 }
1112
1113 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1114 {
1115 int ret;
1116
1117 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1118 trace_writeback_write_inode_start(inode, wbc);
1119 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1120 trace_writeback_write_inode(inode, wbc);
1121 return ret;
1122 }
1123 return 0;
1124 }
1125
1126 /*
1127 * Wait for writeback on an inode to complete. Called with i_lock held.
1128 * Caller must make sure inode cannot go away when we drop i_lock.
1129 */
1130 static void __inode_wait_for_writeback(struct inode *inode)
1131 __releases(inode->i_lock)
1132 __acquires(inode->i_lock)
1133 {
1134 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1135 wait_queue_head_t *wqh;
1136
1137 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1138 while (inode->i_state & I_SYNC) {
1139 spin_unlock(&inode->i_lock);
1140 __wait_on_bit(wqh, &wq, bit_wait,
1141 TASK_UNINTERRUPTIBLE);
1142 spin_lock(&inode->i_lock);
1143 }
1144 }
1145
1146 /*
1147 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1148 */
1149 void inode_wait_for_writeback(struct inode *inode)
1150 {
1151 spin_lock(&inode->i_lock);
1152 __inode_wait_for_writeback(inode);
1153 spin_unlock(&inode->i_lock);
1154 }
1155
1156 /*
1157 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1158 * held and drops it. It is aimed for callers not holding any inode reference
1159 * so once i_lock is dropped, inode can go away.
1160 */
1161 static void inode_sleep_on_writeback(struct inode *inode)
1162 __releases(inode->i_lock)
1163 {
1164 DEFINE_WAIT(wait);
1165 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1166 int sleep;
1167
1168 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1169 sleep = inode->i_state & I_SYNC;
1170 spin_unlock(&inode->i_lock);
1171 if (sleep)
1172 schedule();
1173 finish_wait(wqh, &wait);
1174 }
1175
1176 /*
1177 * Find proper writeback list for the inode depending on its current state and
1178 * possibly also change of its state while we were doing writeback. Here we
1179 * handle things such as livelock prevention or fairness of writeback among
1180 * inodes. This function can be called only by flusher thread - noone else
1181 * processes all inodes in writeback lists and requeueing inodes behind flusher
1182 * thread's back can have unexpected consequences.
1183 */
1184 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1185 struct writeback_control *wbc)
1186 {
1187 if (inode->i_state & I_FREEING)
1188 return;
1189
1190 /*
1191 * Sync livelock prevention. Each inode is tagged and synced in one
1192 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1193 * the dirty time to prevent enqueue and sync it again.
1194 */
1195 if ((inode->i_state & I_DIRTY) &&
1196 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1197 inode->dirtied_when = jiffies;
1198
1199 if (wbc->pages_skipped) {
1200 /*
1201 * writeback is not making progress due to locked
1202 * buffers. Skip this inode for now.
1203 */
1204 redirty_tail(inode, wb);
1205 return;
1206 }
1207
1208 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1209 /*
1210 * We didn't write back all the pages. nfs_writepages()
1211 * sometimes bales out without doing anything.
1212 */
1213 if (wbc->nr_to_write <= 0) {
1214 /* Slice used up. Queue for next turn. */
1215 requeue_io(inode, wb);
1216 } else {
1217 /*
1218 * Writeback blocked by something other than
1219 * congestion. Delay the inode for some time to
1220 * avoid spinning on the CPU (100% iowait)
1221 * retrying writeback of the dirty page/inode
1222 * that cannot be performed immediately.
1223 */
1224 redirty_tail(inode, wb);
1225 }
1226 } else if (inode->i_state & I_DIRTY) {
1227 /*
1228 * Filesystems can dirty the inode during writeback operations,
1229 * such as delayed allocation during submission or metadata
1230 * updates after data IO completion.
1231 */
1232 redirty_tail(inode, wb);
1233 } else if (inode->i_state & I_DIRTY_TIME) {
1234 inode->dirtied_when = jiffies;
1235 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1236 } else {
1237 /* The inode is clean. Remove from writeback lists. */
1238 inode_io_list_del_locked(inode, wb);
1239 }
1240 }
1241
1242 /*
1243 * Write out an inode and its dirty pages. Do not update the writeback list
1244 * linkage. That is left to the caller. The caller is also responsible for
1245 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1246 */
1247 static int
1248 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1249 {
1250 struct address_space *mapping = inode->i_mapping;
1251 long nr_to_write = wbc->nr_to_write;
1252 unsigned dirty;
1253 int ret;
1254
1255 WARN_ON(!(inode->i_state & I_SYNC));
1256
1257 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1258
1259 ret = do_writepages(mapping, wbc);
1260
1261 /*
1262 * Make sure to wait on the data before writing out the metadata.
1263 * This is important for filesystems that modify metadata on data
1264 * I/O completion. We don't do it for sync(2) writeback because it has a
1265 * separate, external IO completion path and ->sync_fs for guaranteeing
1266 * inode metadata is written back correctly.
1267 */
1268 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1269 int err = filemap_fdatawait(mapping);
1270 if (ret == 0)
1271 ret = err;
1272 }
1273
1274 /*
1275 * Some filesystems may redirty the inode during the writeback
1276 * due to delalloc, clear dirty metadata flags right before
1277 * write_inode()
1278 */
1279 spin_lock(&inode->i_lock);
1280
1281 dirty = inode->i_state & I_DIRTY;
1282 if (inode->i_state & I_DIRTY_TIME) {
1283 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1284 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1285 unlikely(time_after(jiffies,
1286 (inode->dirtied_time_when +
1287 dirtytime_expire_interval * HZ)))) {
1288 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1289 trace_writeback_lazytime(inode);
1290 }
1291 } else
1292 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1293 inode->i_state &= ~dirty;
1294
1295 /*
1296 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1297 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1298 * either they see the I_DIRTY bits cleared or we see the dirtied
1299 * inode.
1300 *
1301 * I_DIRTY_PAGES is always cleared together above even if @mapping
1302 * still has dirty pages. The flag is reinstated after smp_mb() if
1303 * necessary. This guarantees that either __mark_inode_dirty()
1304 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1305 */
1306 smp_mb();
1307
1308 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1309 inode->i_state |= I_DIRTY_PAGES;
1310
1311 spin_unlock(&inode->i_lock);
1312
1313 if (dirty & I_DIRTY_TIME)
1314 mark_inode_dirty_sync(inode);
1315 /* Don't write the inode if only I_DIRTY_PAGES was set */
1316 if (dirty & ~I_DIRTY_PAGES) {
1317 int err = write_inode(inode, wbc);
1318 if (ret == 0)
1319 ret = err;
1320 }
1321 trace_writeback_single_inode(inode, wbc, nr_to_write);
1322 return ret;
1323 }
1324
1325 /*
1326 * Write out an inode's dirty pages. Either the caller has an active reference
1327 * on the inode or the inode has I_WILL_FREE set.
1328 *
1329 * This function is designed to be called for writing back one inode which
1330 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1331 * and does more profound writeback list handling in writeback_sb_inodes().
1332 */
1333 static int
1334 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
1335 struct writeback_control *wbc)
1336 {
1337 int ret = 0;
1338
1339 spin_lock(&inode->i_lock);
1340 if (!atomic_read(&inode->i_count))
1341 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1342 else
1343 WARN_ON(inode->i_state & I_WILL_FREE);
1344
1345 if (inode->i_state & I_SYNC) {
1346 if (wbc->sync_mode != WB_SYNC_ALL)
1347 goto out;
1348 /*
1349 * It's a data-integrity sync. We must wait. Since callers hold
1350 * inode reference or inode has I_WILL_FREE set, it cannot go
1351 * away under us.
1352 */
1353 __inode_wait_for_writeback(inode);
1354 }
1355 WARN_ON(inode->i_state & I_SYNC);
1356 /*
1357 * Skip inode if it is clean and we have no outstanding writeback in
1358 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1359 * function since flusher thread may be doing for example sync in
1360 * parallel and if we move the inode, it could get skipped. So here we
1361 * make sure inode is on some writeback list and leave it there unless
1362 * we have completely cleaned the inode.
1363 */
1364 if (!(inode->i_state & I_DIRTY_ALL) &&
1365 (wbc->sync_mode != WB_SYNC_ALL ||
1366 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1367 goto out;
1368 inode->i_state |= I_SYNC;
1369 wbc_attach_and_unlock_inode(wbc, inode);
1370
1371 ret = __writeback_single_inode(inode, wbc);
1372
1373 wbc_detach_inode(wbc);
1374 spin_lock(&wb->list_lock);
1375 spin_lock(&inode->i_lock);
1376 /*
1377 * If inode is clean, remove it from writeback lists. Otherwise don't
1378 * touch it. See comment above for explanation.
1379 */
1380 if (!(inode->i_state & I_DIRTY_ALL))
1381 inode_io_list_del_locked(inode, wb);
1382 spin_unlock(&wb->list_lock);
1383 inode_sync_complete(inode);
1384 out:
1385 spin_unlock(&inode->i_lock);
1386 return ret;
1387 }
1388
1389 static long writeback_chunk_size(struct bdi_writeback *wb,
1390 struct wb_writeback_work *work)
1391 {
1392 long pages;
1393
1394 /*
1395 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1396 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1397 * here avoids calling into writeback_inodes_wb() more than once.
1398 *
1399 * The intended call sequence for WB_SYNC_ALL writeback is:
1400 *
1401 * wb_writeback()
1402 * writeback_sb_inodes() <== called only once
1403 * write_cache_pages() <== called once for each inode
1404 * (quickly) tag currently dirty pages
1405 * (maybe slowly) sync all tagged pages
1406 */
1407 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1408 pages = LONG_MAX;
1409 else {
1410 pages = min(wb->avg_write_bandwidth / 2,
1411 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1412 pages = min(pages, work->nr_pages);
1413 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1414 MIN_WRITEBACK_PAGES);
1415 }
1416
1417 return pages;
1418 }
1419
1420 /*
1421 * Write a portion of b_io inodes which belong to @sb.
1422 *
1423 * Return the number of pages and/or inodes written.
1424 */
1425 static long writeback_sb_inodes(struct super_block *sb,
1426 struct bdi_writeback *wb,
1427 struct wb_writeback_work *work)
1428 {
1429 struct writeback_control wbc = {
1430 .sync_mode = work->sync_mode,
1431 .tagged_writepages = work->tagged_writepages,
1432 .for_kupdate = work->for_kupdate,
1433 .for_background = work->for_background,
1434 .for_sync = work->for_sync,
1435 .range_cyclic = work->range_cyclic,
1436 .range_start = 0,
1437 .range_end = LLONG_MAX,
1438 };
1439 unsigned long start_time = jiffies;
1440 long write_chunk;
1441 long wrote = 0; /* count both pages and inodes */
1442 struct blk_plug plug;
1443
1444 blk_start_plug(&plug);
1445 while (!list_empty(&wb->b_io)) {
1446 struct inode *inode = wb_inode(wb->b_io.prev);
1447
1448 if (inode->i_sb != sb) {
1449 if (work->sb) {
1450 /*
1451 * We only want to write back data for this
1452 * superblock, move all inodes not belonging
1453 * to it back onto the dirty list.
1454 */
1455 redirty_tail(inode, wb);
1456 continue;
1457 }
1458
1459 /*
1460 * The inode belongs to a different superblock.
1461 * Bounce back to the caller to unpin this and
1462 * pin the next superblock.
1463 */
1464 break;
1465 }
1466
1467 /*
1468 * Don't bother with new inodes or inodes being freed, first
1469 * kind does not need periodic writeout yet, and for the latter
1470 * kind writeout is handled by the freer.
1471 */
1472 spin_lock(&inode->i_lock);
1473 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1474 spin_unlock(&inode->i_lock);
1475 redirty_tail(inode, wb);
1476 continue;
1477 }
1478 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1479 /*
1480 * If this inode is locked for writeback and we are not
1481 * doing writeback-for-data-integrity, move it to
1482 * b_more_io so that writeback can proceed with the
1483 * other inodes on s_io.
1484 *
1485 * We'll have another go at writing back this inode
1486 * when we completed a full scan of b_io.
1487 */
1488 spin_unlock(&inode->i_lock);
1489 requeue_io(inode, wb);
1490 trace_writeback_sb_inodes_requeue(inode);
1491 continue;
1492 }
1493 spin_unlock(&wb->list_lock);
1494
1495 /*
1496 * We already requeued the inode if it had I_SYNC set and we
1497 * are doing WB_SYNC_NONE writeback. So this catches only the
1498 * WB_SYNC_ALL case.
1499 */
1500 if (inode->i_state & I_SYNC) {
1501 /* Wait for I_SYNC. This function drops i_lock... */
1502 inode_sleep_on_writeback(inode);
1503 /* Inode may be gone, start again */
1504 spin_lock(&wb->list_lock);
1505 continue;
1506 }
1507 inode->i_state |= I_SYNC;
1508 wbc_attach_and_unlock_inode(&wbc, inode);
1509
1510 write_chunk = writeback_chunk_size(wb, work);
1511 wbc.nr_to_write = write_chunk;
1512 wbc.pages_skipped = 0;
1513
1514 /*
1515 * We use I_SYNC to pin the inode in memory. While it is set
1516 * evict_inode() will wait so the inode cannot be freed.
1517 */
1518 __writeback_single_inode(inode, &wbc);
1519
1520 wbc_detach_inode(&wbc);
1521 work->nr_pages -= write_chunk - wbc.nr_to_write;
1522 wrote += write_chunk - wbc.nr_to_write;
1523 spin_lock(&wb->list_lock);
1524 spin_lock(&inode->i_lock);
1525 if (!(inode->i_state & I_DIRTY_ALL))
1526 wrote++;
1527 requeue_inode(inode, wb, &wbc);
1528 inode_sync_complete(inode);
1529 spin_unlock(&inode->i_lock);
1530 cond_resched_lock(&wb->list_lock);
1531 /*
1532 * bail out to wb_writeback() often enough to check
1533 * background threshold and other termination conditions.
1534 */
1535 if (wrote) {
1536 if (time_is_before_jiffies(start_time + HZ / 10UL))
1537 break;
1538 if (work->nr_pages <= 0)
1539 break;
1540 }
1541 }
1542 blk_finish_plug(&plug);
1543 return wrote;
1544 }
1545
1546 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1547 struct wb_writeback_work *work)
1548 {
1549 unsigned long start_time = jiffies;
1550 long wrote = 0;
1551
1552 while (!list_empty(&wb->b_io)) {
1553 struct inode *inode = wb_inode(wb->b_io.prev);
1554 struct super_block *sb = inode->i_sb;
1555
1556 if (!trylock_super(sb)) {
1557 /*
1558 * trylock_super() may fail consistently due to
1559 * s_umount being grabbed by someone else. Don't use
1560 * requeue_io() to avoid busy retrying the inode/sb.
1561 */
1562 redirty_tail(inode, wb);
1563 continue;
1564 }
1565 wrote += writeback_sb_inodes(sb, wb, work);
1566 up_read(&sb->s_umount);
1567
1568 /* refer to the same tests at the end of writeback_sb_inodes */
1569 if (wrote) {
1570 if (time_is_before_jiffies(start_time + HZ / 10UL))
1571 break;
1572 if (work->nr_pages <= 0)
1573 break;
1574 }
1575 }
1576 /* Leave any unwritten inodes on b_io */
1577 return wrote;
1578 }
1579
1580 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1581 enum wb_reason reason)
1582 {
1583 struct wb_writeback_work work = {
1584 .nr_pages = nr_pages,
1585 .sync_mode = WB_SYNC_NONE,
1586 .range_cyclic = 1,
1587 .reason = reason,
1588 };
1589
1590 spin_lock(&wb->list_lock);
1591 if (list_empty(&wb->b_io))
1592 queue_io(wb, &work);
1593 __writeback_inodes_wb(wb, &work);
1594 spin_unlock(&wb->list_lock);
1595
1596 return nr_pages - work.nr_pages;
1597 }
1598
1599 /*
1600 * Explicit flushing or periodic writeback of "old" data.
1601 *
1602 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1603 * dirtying-time in the inode's address_space. So this periodic writeback code
1604 * just walks the superblock inode list, writing back any inodes which are
1605 * older than a specific point in time.
1606 *
1607 * Try to run once per dirty_writeback_interval. But if a writeback event
1608 * takes longer than a dirty_writeback_interval interval, then leave a
1609 * one-second gap.
1610 *
1611 * older_than_this takes precedence over nr_to_write. So we'll only write back
1612 * all dirty pages if they are all attached to "old" mappings.
1613 */
1614 static long wb_writeback(struct bdi_writeback *wb,
1615 struct wb_writeback_work *work)
1616 {
1617 unsigned long wb_start = jiffies;
1618 long nr_pages = work->nr_pages;
1619 unsigned long oldest_jif;
1620 struct inode *inode;
1621 long progress;
1622
1623 oldest_jif = jiffies;
1624 work->older_than_this = &oldest_jif;
1625
1626 spin_lock(&wb->list_lock);
1627 for (;;) {
1628 /*
1629 * Stop writeback when nr_pages has been consumed
1630 */
1631 if (work->nr_pages <= 0)
1632 break;
1633
1634 /*
1635 * Background writeout and kupdate-style writeback may
1636 * run forever. Stop them if there is other work to do
1637 * so that e.g. sync can proceed. They'll be restarted
1638 * after the other works are all done.
1639 */
1640 if ((work->for_background || work->for_kupdate) &&
1641 !list_empty(&wb->work_list))
1642 break;
1643
1644 /*
1645 * For background writeout, stop when we are below the
1646 * background dirty threshold
1647 */
1648 if (work->for_background && !wb_over_bg_thresh(wb))
1649 break;
1650
1651 /*
1652 * Kupdate and background works are special and we want to
1653 * include all inodes that need writing. Livelock avoidance is
1654 * handled by these works yielding to any other work so we are
1655 * safe.
1656 */
1657 if (work->for_kupdate) {
1658 oldest_jif = jiffies -
1659 msecs_to_jiffies(dirty_expire_interval * 10);
1660 } else if (work->for_background)
1661 oldest_jif = jiffies;
1662
1663 trace_writeback_start(wb->bdi, work);
1664 if (list_empty(&wb->b_io))
1665 queue_io(wb, work);
1666 if (work->sb)
1667 progress = writeback_sb_inodes(work->sb, wb, work);
1668 else
1669 progress = __writeback_inodes_wb(wb, work);
1670 trace_writeback_written(wb->bdi, work);
1671
1672 wb_update_bandwidth(wb, wb_start);
1673
1674 /*
1675 * Did we write something? Try for more
1676 *
1677 * Dirty inodes are moved to b_io for writeback in batches.
1678 * The completion of the current batch does not necessarily
1679 * mean the overall work is done. So we keep looping as long
1680 * as made some progress on cleaning pages or inodes.
1681 */
1682 if (progress)
1683 continue;
1684 /*
1685 * No more inodes for IO, bail
1686 */
1687 if (list_empty(&wb->b_more_io))
1688 break;
1689 /*
1690 * Nothing written. Wait for some inode to
1691 * become available for writeback. Otherwise
1692 * we'll just busyloop.
1693 */
1694 if (!list_empty(&wb->b_more_io)) {
1695 trace_writeback_wait(wb->bdi, work);
1696 inode = wb_inode(wb->b_more_io.prev);
1697 spin_lock(&inode->i_lock);
1698 spin_unlock(&wb->list_lock);
1699 /* This function drops i_lock... */
1700 inode_sleep_on_writeback(inode);
1701 spin_lock(&wb->list_lock);
1702 }
1703 }
1704 spin_unlock(&wb->list_lock);
1705
1706 return nr_pages - work->nr_pages;
1707 }
1708
1709 /*
1710 * Return the next wb_writeback_work struct that hasn't been processed yet.
1711 */
1712 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1713 {
1714 struct wb_writeback_work *work = NULL;
1715
1716 spin_lock_bh(&wb->work_lock);
1717 if (!list_empty(&wb->work_list)) {
1718 work = list_entry(wb->work_list.next,
1719 struct wb_writeback_work, list);
1720 list_del_init(&work->list);
1721 }
1722 spin_unlock_bh(&wb->work_lock);
1723 return work;
1724 }
1725
1726 /*
1727 * Add in the number of potentially dirty inodes, because each inode
1728 * write can dirty pagecache in the underlying blockdev.
1729 */
1730 static unsigned long get_nr_dirty_pages(void)
1731 {
1732 return global_page_state(NR_FILE_DIRTY) +
1733 global_page_state(NR_UNSTABLE_NFS) +
1734 get_nr_dirty_inodes();
1735 }
1736
1737 static long wb_check_background_flush(struct bdi_writeback *wb)
1738 {
1739 if (wb_over_bg_thresh(wb)) {
1740
1741 struct wb_writeback_work work = {
1742 .nr_pages = LONG_MAX,
1743 .sync_mode = WB_SYNC_NONE,
1744 .for_background = 1,
1745 .range_cyclic = 1,
1746 .reason = WB_REASON_BACKGROUND,
1747 };
1748
1749 return wb_writeback(wb, &work);
1750 }
1751
1752 return 0;
1753 }
1754
1755 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1756 {
1757 unsigned long expired;
1758 long nr_pages;
1759
1760 /*
1761 * When set to zero, disable periodic writeback
1762 */
1763 if (!dirty_writeback_interval)
1764 return 0;
1765
1766 expired = wb->last_old_flush +
1767 msecs_to_jiffies(dirty_writeback_interval * 10);
1768 if (time_before(jiffies, expired))
1769 return 0;
1770
1771 wb->last_old_flush = jiffies;
1772 nr_pages = get_nr_dirty_pages();
1773
1774 if (nr_pages) {
1775 struct wb_writeback_work work = {
1776 .nr_pages = nr_pages,
1777 .sync_mode = WB_SYNC_NONE,
1778 .for_kupdate = 1,
1779 .range_cyclic = 1,
1780 .reason = WB_REASON_PERIODIC,
1781 };
1782
1783 return wb_writeback(wb, &work);
1784 }
1785
1786 return 0;
1787 }
1788
1789 /*
1790 * Retrieve work items and do the writeback they describe
1791 */
1792 static long wb_do_writeback(struct bdi_writeback *wb)
1793 {
1794 struct wb_writeback_work *work;
1795 long wrote = 0;
1796
1797 set_bit(WB_writeback_running, &wb->state);
1798 while ((work = get_next_work_item(wb)) != NULL) {
1799 struct wb_completion *done = work->done;
1800 bool need_wake_up = false;
1801
1802 trace_writeback_exec(wb->bdi, work);
1803
1804 wrote += wb_writeback(wb, work);
1805
1806 if (work->single_wait) {
1807 WARN_ON_ONCE(work->auto_free);
1808 /* paired w/ rmb in wb_wait_for_single_work() */
1809 smp_wmb();
1810 work->single_done = 1;
1811 need_wake_up = true;
1812 } else if (work->auto_free) {
1813 kfree(work);
1814 }
1815
1816 if (done && atomic_dec_and_test(&done->cnt))
1817 need_wake_up = true;
1818
1819 if (need_wake_up)
1820 wake_up_all(&wb->bdi->wb_waitq);
1821 }
1822
1823 /*
1824 * Check for periodic writeback, kupdated() style
1825 */
1826 wrote += wb_check_old_data_flush(wb);
1827 wrote += wb_check_background_flush(wb);
1828 clear_bit(WB_writeback_running, &wb->state);
1829
1830 return wrote;
1831 }
1832
1833 /*
1834 * Handle writeback of dirty data for the device backed by this bdi. Also
1835 * reschedules periodically and does kupdated style flushing.
1836 */
1837 void wb_workfn(struct work_struct *work)
1838 {
1839 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1840 struct bdi_writeback, dwork);
1841 long pages_written;
1842
1843 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1844 current->flags |= PF_SWAPWRITE;
1845
1846 if (likely(!current_is_workqueue_rescuer() ||
1847 !test_bit(WB_registered, &wb->state))) {
1848 /*
1849 * The normal path. Keep writing back @wb until its
1850 * work_list is empty. Note that this path is also taken
1851 * if @wb is shutting down even when we're running off the
1852 * rescuer as work_list needs to be drained.
1853 */
1854 do {
1855 pages_written = wb_do_writeback(wb);
1856 trace_writeback_pages_written(pages_written);
1857 } while (!list_empty(&wb->work_list));
1858 } else {
1859 /*
1860 * bdi_wq can't get enough workers and we're running off
1861 * the emergency worker. Don't hog it. Hopefully, 1024 is
1862 * enough for efficient IO.
1863 */
1864 pages_written = writeback_inodes_wb(wb, 1024,
1865 WB_REASON_FORKER_THREAD);
1866 trace_writeback_pages_written(pages_written);
1867 }
1868
1869 if (!list_empty(&wb->work_list))
1870 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1871 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1872 wb_wakeup_delayed(wb);
1873
1874 current->flags &= ~PF_SWAPWRITE;
1875 }
1876
1877 /*
1878 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1879 * the whole world.
1880 */
1881 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1882 {
1883 struct backing_dev_info *bdi;
1884
1885 if (!nr_pages)
1886 nr_pages = get_nr_dirty_pages();
1887
1888 rcu_read_lock();
1889 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1890 struct bdi_writeback *wb;
1891 struct wb_iter iter;
1892
1893 if (!bdi_has_dirty_io(bdi))
1894 continue;
1895
1896 bdi_for_each_wb(wb, bdi, &iter, 0)
1897 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1898 false, reason);
1899 }
1900 rcu_read_unlock();
1901 }
1902
1903 /*
1904 * Wake up bdi's periodically to make sure dirtytime inodes gets
1905 * written back periodically. We deliberately do *not* check the
1906 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1907 * kernel to be constantly waking up once there are any dirtytime
1908 * inodes on the system. So instead we define a separate delayed work
1909 * function which gets called much more rarely. (By default, only
1910 * once every 12 hours.)
1911 *
1912 * If there is any other write activity going on in the file system,
1913 * this function won't be necessary. But if the only thing that has
1914 * happened on the file system is a dirtytime inode caused by an atime
1915 * update, we need this infrastructure below to make sure that inode
1916 * eventually gets pushed out to disk.
1917 */
1918 static void wakeup_dirtytime_writeback(struct work_struct *w);
1919 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1920
1921 static void wakeup_dirtytime_writeback(struct work_struct *w)
1922 {
1923 struct backing_dev_info *bdi;
1924
1925 rcu_read_lock();
1926 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1927 struct bdi_writeback *wb;
1928 struct wb_iter iter;
1929
1930 bdi_for_each_wb(wb, bdi, &iter, 0)
1931 if (!list_empty(&bdi->wb.b_dirty_time))
1932 wb_wakeup(&bdi->wb);
1933 }
1934 rcu_read_unlock();
1935 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1936 }
1937
1938 static int __init start_dirtytime_writeback(void)
1939 {
1940 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1941 return 0;
1942 }
1943 __initcall(start_dirtytime_writeback);
1944
1945 int dirtytime_interval_handler(struct ctl_table *table, int write,
1946 void __user *buffer, size_t *lenp, loff_t *ppos)
1947 {
1948 int ret;
1949
1950 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1951 if (ret == 0 && write)
1952 mod_delayed_work(system_wq, &dirtytime_work, 0);
1953 return ret;
1954 }
1955
1956 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1957 {
1958 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1959 struct dentry *dentry;
1960 const char *name = "?";
1961
1962 dentry = d_find_alias(inode);
1963 if (dentry) {
1964 spin_lock(&dentry->d_lock);
1965 name = (const char *) dentry->d_name.name;
1966 }
1967 printk(KERN_DEBUG
1968 "%s(%d): dirtied inode %lu (%s) on %s\n",
1969 current->comm, task_pid_nr(current), inode->i_ino,
1970 name, inode->i_sb->s_id);
1971 if (dentry) {
1972 spin_unlock(&dentry->d_lock);
1973 dput(dentry);
1974 }
1975 }
1976 }
1977
1978 /**
1979 * __mark_inode_dirty - internal function
1980 * @inode: inode to mark
1981 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1982 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1983 * mark_inode_dirty_sync.
1984 *
1985 * Put the inode on the super block's dirty list.
1986 *
1987 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1988 * dirty list only if it is hashed or if it refers to a blockdev.
1989 * If it was not hashed, it will never be added to the dirty list
1990 * even if it is later hashed, as it will have been marked dirty already.
1991 *
1992 * In short, make sure you hash any inodes _before_ you start marking
1993 * them dirty.
1994 *
1995 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1996 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1997 * the kernel-internal blockdev inode represents the dirtying time of the
1998 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1999 * page->mapping->host, so the page-dirtying time is recorded in the internal
2000 * blockdev inode.
2001 */
2002 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2003 void __mark_inode_dirty(struct inode *inode, int flags)
2004 {
2005 struct super_block *sb = inode->i_sb;
2006 int dirtytime;
2007
2008 trace_writeback_mark_inode_dirty(inode, flags);
2009
2010 /*
2011 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2012 * dirty the inode itself
2013 */
2014 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2015 trace_writeback_dirty_inode_start(inode, flags);
2016
2017 if (sb->s_op->dirty_inode)
2018 sb->s_op->dirty_inode(inode, flags);
2019
2020 trace_writeback_dirty_inode(inode, flags);
2021 }
2022 if (flags & I_DIRTY_INODE)
2023 flags &= ~I_DIRTY_TIME;
2024 dirtytime = flags & I_DIRTY_TIME;
2025
2026 /*
2027 * Paired with smp_mb() in __writeback_single_inode() for the
2028 * following lockless i_state test. See there for details.
2029 */
2030 smp_mb();
2031
2032 if (((inode->i_state & flags) == flags) ||
2033 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2034 return;
2035
2036 if (unlikely(block_dump))
2037 block_dump___mark_inode_dirty(inode);
2038
2039 spin_lock(&inode->i_lock);
2040 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2041 goto out_unlock_inode;
2042 if ((inode->i_state & flags) != flags) {
2043 const int was_dirty = inode->i_state & I_DIRTY;
2044
2045 inode_attach_wb(inode, NULL);
2046
2047 if (flags & I_DIRTY_INODE)
2048 inode->i_state &= ~I_DIRTY_TIME;
2049 inode->i_state |= flags;
2050
2051 /*
2052 * If the inode is being synced, just update its dirty state.
2053 * The unlocker will place the inode on the appropriate
2054 * superblock list, based upon its state.
2055 */
2056 if (inode->i_state & I_SYNC)
2057 goto out_unlock_inode;
2058
2059 /*
2060 * Only add valid (hashed) inodes to the superblock's
2061 * dirty list. Add blockdev inodes as well.
2062 */
2063 if (!S_ISBLK(inode->i_mode)) {
2064 if (inode_unhashed(inode))
2065 goto out_unlock_inode;
2066 }
2067 if (inode->i_state & I_FREEING)
2068 goto out_unlock_inode;
2069
2070 /*
2071 * If the inode was already on b_dirty/b_io/b_more_io, don't
2072 * reposition it (that would break b_dirty time-ordering).
2073 */
2074 if (!was_dirty) {
2075 struct bdi_writeback *wb;
2076 struct list_head *dirty_list;
2077 bool wakeup_bdi = false;
2078
2079 wb = locked_inode_to_wb_and_lock_list(inode);
2080
2081 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2082 !test_bit(WB_registered, &wb->state),
2083 "bdi-%s not registered\n", wb->bdi->name);
2084
2085 inode->dirtied_when = jiffies;
2086 if (dirtytime)
2087 inode->dirtied_time_when = jiffies;
2088
2089 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2090 dirty_list = &wb->b_dirty;
2091 else
2092 dirty_list = &wb->b_dirty_time;
2093
2094 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2095 dirty_list);
2096
2097 spin_unlock(&wb->list_lock);
2098 trace_writeback_dirty_inode_enqueue(inode);
2099
2100 /*
2101 * If this is the first dirty inode for this bdi,
2102 * we have to wake-up the corresponding bdi thread
2103 * to make sure background write-back happens
2104 * later.
2105 */
2106 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2107 wb_wakeup_delayed(wb);
2108 return;
2109 }
2110 }
2111 out_unlock_inode:
2112 spin_unlock(&inode->i_lock);
2113
2114 }
2115 EXPORT_SYMBOL(__mark_inode_dirty);
2116
2117 /*
2118 * The @s_sync_lock is used to serialise concurrent sync operations
2119 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2120 * Concurrent callers will block on the s_sync_lock rather than doing contending
2121 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2122 * has been issued up to the time this function is enter is guaranteed to be
2123 * completed by the time we have gained the lock and waited for all IO that is
2124 * in progress regardless of the order callers are granted the lock.
2125 */
2126 static void wait_sb_inodes(struct super_block *sb)
2127 {
2128 struct inode *inode, *old_inode = NULL;
2129
2130 /*
2131 * We need to be protected against the filesystem going from
2132 * r/o to r/w or vice versa.
2133 */
2134 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2135
2136 mutex_lock(&sb->s_sync_lock);
2137 spin_lock(&sb->s_inode_list_lock);
2138
2139 /*
2140 * Data integrity sync. Must wait for all pages under writeback,
2141 * because there may have been pages dirtied before our sync
2142 * call, but which had writeout started before we write it out.
2143 * In which case, the inode may not be on the dirty list, but
2144 * we still have to wait for that writeout.
2145 */
2146 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2147 struct address_space *mapping = inode->i_mapping;
2148
2149 spin_lock(&inode->i_lock);
2150 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2151 (mapping->nrpages == 0)) {
2152 spin_unlock(&inode->i_lock);
2153 continue;
2154 }
2155 __iget(inode);
2156 spin_unlock(&inode->i_lock);
2157 spin_unlock(&sb->s_inode_list_lock);
2158
2159 /*
2160 * We hold a reference to 'inode' so it couldn't have been
2161 * removed from s_inodes list while we dropped the
2162 * s_inode_list_lock. We cannot iput the inode now as we can
2163 * be holding the last reference and we cannot iput it under
2164 * s_inode_list_lock. So we keep the reference and iput it
2165 * later.
2166 */
2167 iput(old_inode);
2168 old_inode = inode;
2169
2170 filemap_fdatawait(mapping);
2171
2172 cond_resched();
2173
2174 spin_lock(&sb->s_inode_list_lock);
2175 }
2176 spin_unlock(&sb->s_inode_list_lock);
2177 iput(old_inode);
2178 mutex_unlock(&sb->s_sync_lock);
2179 }
2180
2181 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2182 enum wb_reason reason, bool skip_if_busy)
2183 {
2184 DEFINE_WB_COMPLETION_ONSTACK(done);
2185 struct wb_writeback_work work = {
2186 .sb = sb,
2187 .sync_mode = WB_SYNC_NONE,
2188 .tagged_writepages = 1,
2189 .done = &done,
2190 .nr_pages = nr,
2191 .reason = reason,
2192 };
2193 struct backing_dev_info *bdi = sb->s_bdi;
2194
2195 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2196 return;
2197 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2198
2199 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2200 wb_wait_for_completion(bdi, &done);
2201 }
2202
2203 /**
2204 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2205 * @sb: the superblock
2206 * @nr: the number of pages to write
2207 * @reason: reason why some writeback work initiated
2208 *
2209 * Start writeback on some inodes on this super_block. No guarantees are made
2210 * on how many (if any) will be written, and this function does not wait
2211 * for IO completion of submitted IO.
2212 */
2213 void writeback_inodes_sb_nr(struct super_block *sb,
2214 unsigned long nr,
2215 enum wb_reason reason)
2216 {
2217 __writeback_inodes_sb_nr(sb, nr, reason, false);
2218 }
2219 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2220
2221 /**
2222 * writeback_inodes_sb - writeback dirty inodes from given super_block
2223 * @sb: the superblock
2224 * @reason: reason why some writeback work was initiated
2225 *
2226 * Start writeback on some inodes on this super_block. No guarantees are made
2227 * on how many (if any) will be written, and this function does not wait
2228 * for IO completion of submitted IO.
2229 */
2230 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2231 {
2232 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2233 }
2234 EXPORT_SYMBOL(writeback_inodes_sb);
2235
2236 /**
2237 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2238 * @sb: the superblock
2239 * @nr: the number of pages to write
2240 * @reason: the reason of writeback
2241 *
2242 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2243 * Returns 1 if writeback was started, 0 if not.
2244 */
2245 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2246 enum wb_reason reason)
2247 {
2248 if (!down_read_trylock(&sb->s_umount))
2249 return false;
2250
2251 __writeback_inodes_sb_nr(sb, nr, reason, true);
2252 up_read(&sb->s_umount);
2253 return true;
2254 }
2255 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2256
2257 /**
2258 * try_to_writeback_inodes_sb - try to start writeback if none underway
2259 * @sb: the superblock
2260 * @reason: reason why some writeback work was initiated
2261 *
2262 * Implement by try_to_writeback_inodes_sb_nr()
2263 * Returns 1 if writeback was started, 0 if not.
2264 */
2265 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2266 {
2267 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2268 }
2269 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2270
2271 /**
2272 * sync_inodes_sb - sync sb inode pages
2273 * @sb: the superblock
2274 *
2275 * This function writes and waits on any dirty inode belonging to this
2276 * super_block.
2277 */
2278 void sync_inodes_sb(struct super_block *sb)
2279 {
2280 DEFINE_WB_COMPLETION_ONSTACK(done);
2281 struct wb_writeback_work work = {
2282 .sb = sb,
2283 .sync_mode = WB_SYNC_ALL,
2284 .nr_pages = LONG_MAX,
2285 .range_cyclic = 0,
2286 .done = &done,
2287 .reason = WB_REASON_SYNC,
2288 .for_sync = 1,
2289 };
2290 struct backing_dev_info *bdi = sb->s_bdi;
2291
2292 /*
2293 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2294 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2295 * bdi_has_dirty() need to be written out too.
2296 */
2297 if (bdi == &noop_backing_dev_info)
2298 return;
2299 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2300
2301 bdi_split_work_to_wbs(bdi, &work, false);
2302 wb_wait_for_completion(bdi, &done);
2303
2304 wait_sb_inodes(sb);
2305 }
2306 EXPORT_SYMBOL(sync_inodes_sb);
2307
2308 /**
2309 * write_inode_now - write an inode to disk
2310 * @inode: inode to write to disk
2311 * @sync: whether the write should be synchronous or not
2312 *
2313 * This function commits an inode to disk immediately if it is dirty. This is
2314 * primarily needed by knfsd.
2315 *
2316 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2317 */
2318 int write_inode_now(struct inode *inode, int sync)
2319 {
2320 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
2321 struct writeback_control wbc = {
2322 .nr_to_write = LONG_MAX,
2323 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2324 .range_start = 0,
2325 .range_end = LLONG_MAX,
2326 };
2327
2328 if (!mapping_cap_writeback_dirty(inode->i_mapping))
2329 wbc.nr_to_write = 0;
2330
2331 might_sleep();
2332 return writeback_single_inode(inode, wb, &wbc);
2333 }
2334 EXPORT_SYMBOL(write_inode_now);
2335
2336 /**
2337 * sync_inode - write an inode and its pages to disk.
2338 * @inode: the inode to sync
2339 * @wbc: controls the writeback mode
2340 *
2341 * sync_inode() will write an inode and its pages to disk. It will also
2342 * correctly update the inode on its superblock's dirty inode lists and will
2343 * update inode->i_state.
2344 *
2345 * The caller must have a ref on the inode.
2346 */
2347 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2348 {
2349 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
2350 }
2351 EXPORT_SYMBOL(sync_inode);
2352
2353 /**
2354 * sync_inode_metadata - write an inode to disk
2355 * @inode: the inode to sync
2356 * @wait: wait for I/O to complete.
2357 *
2358 * Write an inode to disk and adjust its dirty state after completion.
2359 *
2360 * Note: only writes the actual inode, no associated data or other metadata.
2361 */
2362 int sync_inode_metadata(struct inode *inode, int wait)
2363 {
2364 struct writeback_control wbc = {
2365 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2366 .nr_to_write = 0, /* metadata-only */
2367 };
2368
2369 return sync_inode(inode, &wbc);
2370 }
2371 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.091586 seconds and 5 git commands to generate.