writeback: optimize periodic bdi thread wakeups
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33 * Passed into wb_writeback(), essentially a subset of writeback_control
34 */
35 struct wb_writeback_work {
36 long nr_pages;
37 struct super_block *sb;
38 enum writeback_sync_modes sync_mode;
39 unsigned int for_kupdate:1;
40 unsigned int range_cyclic:1;
41 unsigned int for_background:1;
42
43 struct list_head list; /* pending work list */
44 struct completion *done; /* set if the caller waits */
45 };
46
47 /*
48 * Include the creation of the trace points after defining the
49 * wb_writeback_work structure so that the definition remains local to this
50 * file.
51 */
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/writeback.h>
54
55 #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
56
57 /*
58 * We don't actually have pdflush, but this one is exported though /proc...
59 */
60 int nr_pdflush_threads;
61
62 /**
63 * writeback_in_progress - determine whether there is writeback in progress
64 * @bdi: the device's backing_dev_info structure.
65 *
66 * Determine whether there is writeback waiting to be handled against a
67 * backing device.
68 */
69 int writeback_in_progress(struct backing_dev_info *bdi)
70 {
71 return !list_empty(&bdi->work_list);
72 }
73
74 static void bdi_queue_work(struct backing_dev_info *bdi,
75 struct wb_writeback_work *work)
76 {
77 trace_writeback_queue(bdi, work);
78
79 spin_lock_bh(&bdi->wb_lock);
80 list_add_tail(&work->list, &bdi->work_list);
81 if (bdi->wb.task) {
82 wake_up_process(bdi->wb.task);
83 } else {
84 /*
85 * The bdi thread isn't there, wake up the forker thread which
86 * will create and run it.
87 */
88 trace_writeback_nothread(bdi, work);
89 wake_up_process(default_backing_dev_info.wb.task);
90 }
91 spin_unlock_bh(&bdi->wb_lock);
92 }
93
94 static void
95 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
96 bool range_cyclic, bool for_background)
97 {
98 struct wb_writeback_work *work;
99
100 /*
101 * This is WB_SYNC_NONE writeback, so if allocation fails just
102 * wakeup the thread for old dirty data writeback
103 */
104 work = kzalloc(sizeof(*work), GFP_ATOMIC);
105 if (!work) {
106 if (bdi->wb.task) {
107 trace_writeback_nowork(bdi);
108 wake_up_process(bdi->wb.task);
109 }
110 return;
111 }
112
113 work->sync_mode = WB_SYNC_NONE;
114 work->nr_pages = nr_pages;
115 work->range_cyclic = range_cyclic;
116 work->for_background = for_background;
117
118 bdi_queue_work(bdi, work);
119 }
120
121 /**
122 * bdi_start_writeback - start writeback
123 * @bdi: the backing device to write from
124 * @nr_pages: the number of pages to write
125 *
126 * Description:
127 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
128 * started when this function returns, we make no guarentees on
129 * completion. Caller need not hold sb s_umount semaphore.
130 *
131 */
132 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
133 {
134 __bdi_start_writeback(bdi, nr_pages, true, false);
135 }
136
137 /**
138 * bdi_start_background_writeback - start background writeback
139 * @bdi: the backing device to write from
140 *
141 * Description:
142 * This does WB_SYNC_NONE background writeback. The IO is only
143 * started when this function returns, we make no guarentees on
144 * completion. Caller need not hold sb s_umount semaphore.
145 */
146 void bdi_start_background_writeback(struct backing_dev_info *bdi)
147 {
148 __bdi_start_writeback(bdi, LONG_MAX, true, true);
149 }
150
151 /*
152 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
153 * furthest end of its superblock's dirty-inode list.
154 *
155 * Before stamping the inode's ->dirtied_when, we check to see whether it is
156 * already the most-recently-dirtied inode on the b_dirty list. If that is
157 * the case then the inode must have been redirtied while it was being written
158 * out and we don't reset its dirtied_when.
159 */
160 static void redirty_tail(struct inode *inode)
161 {
162 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
163
164 if (!list_empty(&wb->b_dirty)) {
165 struct inode *tail;
166
167 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
168 if (time_before(inode->dirtied_when, tail->dirtied_when))
169 inode->dirtied_when = jiffies;
170 }
171 list_move(&inode->i_list, &wb->b_dirty);
172 }
173
174 /*
175 * requeue inode for re-scanning after bdi->b_io list is exhausted.
176 */
177 static void requeue_io(struct inode *inode)
178 {
179 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
180
181 list_move(&inode->i_list, &wb->b_more_io);
182 }
183
184 static void inode_sync_complete(struct inode *inode)
185 {
186 /*
187 * Prevent speculative execution through spin_unlock(&inode_lock);
188 */
189 smp_mb();
190 wake_up_bit(&inode->i_state, __I_SYNC);
191 }
192
193 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
194 {
195 bool ret = time_after(inode->dirtied_when, t);
196 #ifndef CONFIG_64BIT
197 /*
198 * For inodes being constantly redirtied, dirtied_when can get stuck.
199 * It _appears_ to be in the future, but is actually in distant past.
200 * This test is necessary to prevent such wrapped-around relative times
201 * from permanently stopping the whole bdi writeback.
202 */
203 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
204 #endif
205 return ret;
206 }
207
208 /*
209 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
210 */
211 static void move_expired_inodes(struct list_head *delaying_queue,
212 struct list_head *dispatch_queue,
213 unsigned long *older_than_this)
214 {
215 LIST_HEAD(tmp);
216 struct list_head *pos, *node;
217 struct super_block *sb = NULL;
218 struct inode *inode;
219 int do_sb_sort = 0;
220
221 while (!list_empty(delaying_queue)) {
222 inode = list_entry(delaying_queue->prev, struct inode, i_list);
223 if (older_than_this &&
224 inode_dirtied_after(inode, *older_than_this))
225 break;
226 if (sb && sb != inode->i_sb)
227 do_sb_sort = 1;
228 sb = inode->i_sb;
229 list_move(&inode->i_list, &tmp);
230 }
231
232 /* just one sb in list, splice to dispatch_queue and we're done */
233 if (!do_sb_sort) {
234 list_splice(&tmp, dispatch_queue);
235 return;
236 }
237
238 /* Move inodes from one superblock together */
239 while (!list_empty(&tmp)) {
240 inode = list_entry(tmp.prev, struct inode, i_list);
241 sb = inode->i_sb;
242 list_for_each_prev_safe(pos, node, &tmp) {
243 inode = list_entry(pos, struct inode, i_list);
244 if (inode->i_sb == sb)
245 list_move(&inode->i_list, dispatch_queue);
246 }
247 }
248 }
249
250 /*
251 * Queue all expired dirty inodes for io, eldest first.
252 */
253 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
254 {
255 list_splice_init(&wb->b_more_io, wb->b_io.prev);
256 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
257 }
258
259 static int write_inode(struct inode *inode, struct writeback_control *wbc)
260 {
261 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
262 return inode->i_sb->s_op->write_inode(inode, wbc);
263 return 0;
264 }
265
266 /*
267 * Wait for writeback on an inode to complete.
268 */
269 static void inode_wait_for_writeback(struct inode *inode)
270 {
271 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
272 wait_queue_head_t *wqh;
273
274 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
275 while (inode->i_state & I_SYNC) {
276 spin_unlock(&inode_lock);
277 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
278 spin_lock(&inode_lock);
279 }
280 }
281
282 /*
283 * Write out an inode's dirty pages. Called under inode_lock. Either the
284 * caller has ref on the inode (either via __iget or via syscall against an fd)
285 * or the inode has I_WILL_FREE set (via generic_forget_inode)
286 *
287 * If `wait' is set, wait on the writeout.
288 *
289 * The whole writeout design is quite complex and fragile. We want to avoid
290 * starvation of particular inodes when others are being redirtied, prevent
291 * livelocks, etc.
292 *
293 * Called under inode_lock.
294 */
295 static int
296 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
297 {
298 struct address_space *mapping = inode->i_mapping;
299 unsigned dirty;
300 int ret;
301
302 if (!atomic_read(&inode->i_count))
303 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
304 else
305 WARN_ON(inode->i_state & I_WILL_FREE);
306
307 if (inode->i_state & I_SYNC) {
308 /*
309 * If this inode is locked for writeback and we are not doing
310 * writeback-for-data-integrity, move it to b_more_io so that
311 * writeback can proceed with the other inodes on s_io.
312 *
313 * We'll have another go at writing back this inode when we
314 * completed a full scan of b_io.
315 */
316 if (wbc->sync_mode != WB_SYNC_ALL) {
317 requeue_io(inode);
318 return 0;
319 }
320
321 /*
322 * It's a data-integrity sync. We must wait.
323 */
324 inode_wait_for_writeback(inode);
325 }
326
327 BUG_ON(inode->i_state & I_SYNC);
328
329 /* Set I_SYNC, reset I_DIRTY_PAGES */
330 inode->i_state |= I_SYNC;
331 inode->i_state &= ~I_DIRTY_PAGES;
332 spin_unlock(&inode_lock);
333
334 ret = do_writepages(mapping, wbc);
335
336 /*
337 * Make sure to wait on the data before writing out the metadata.
338 * This is important for filesystems that modify metadata on data
339 * I/O completion.
340 */
341 if (wbc->sync_mode == WB_SYNC_ALL) {
342 int err = filemap_fdatawait(mapping);
343 if (ret == 0)
344 ret = err;
345 }
346
347 /*
348 * Some filesystems may redirty the inode during the writeback
349 * due to delalloc, clear dirty metadata flags right before
350 * write_inode()
351 */
352 spin_lock(&inode_lock);
353 dirty = inode->i_state & I_DIRTY;
354 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
355 spin_unlock(&inode_lock);
356 /* Don't write the inode if only I_DIRTY_PAGES was set */
357 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
358 int err = write_inode(inode, wbc);
359 if (ret == 0)
360 ret = err;
361 }
362
363 spin_lock(&inode_lock);
364 inode->i_state &= ~I_SYNC;
365 if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
366 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
367 /*
368 * More pages get dirtied by a fast dirtier.
369 */
370 goto select_queue;
371 } else if (inode->i_state & I_DIRTY) {
372 /*
373 * At least XFS will redirty the inode during the
374 * writeback (delalloc) and on io completion (isize).
375 */
376 redirty_tail(inode);
377 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
378 /*
379 * We didn't write back all the pages. nfs_writepages()
380 * sometimes bales out without doing anything. Redirty
381 * the inode; Move it from b_io onto b_more_io/b_dirty.
382 */
383 /*
384 * akpm: if the caller was the kupdate function we put
385 * this inode at the head of b_dirty so it gets first
386 * consideration. Otherwise, move it to the tail, for
387 * the reasons described there. I'm not really sure
388 * how much sense this makes. Presumably I had a good
389 * reasons for doing it this way, and I'd rather not
390 * muck with it at present.
391 */
392 if (wbc->for_kupdate) {
393 /*
394 * For the kupdate function we move the inode
395 * to b_more_io so it will get more writeout as
396 * soon as the queue becomes uncongested.
397 */
398 inode->i_state |= I_DIRTY_PAGES;
399 select_queue:
400 if (wbc->nr_to_write <= 0) {
401 /*
402 * slice used up: queue for next turn
403 */
404 requeue_io(inode);
405 } else {
406 /*
407 * somehow blocked: retry later
408 */
409 redirty_tail(inode);
410 }
411 } else {
412 /*
413 * Otherwise fully redirty the inode so that
414 * other inodes on this superblock will get some
415 * writeout. Otherwise heavy writing to one
416 * file would indefinitely suspend writeout of
417 * all the other files.
418 */
419 inode->i_state |= I_DIRTY_PAGES;
420 redirty_tail(inode);
421 }
422 } else if (atomic_read(&inode->i_count)) {
423 /*
424 * The inode is clean, inuse
425 */
426 list_move(&inode->i_list, &inode_in_use);
427 } else {
428 /*
429 * The inode is clean, unused
430 */
431 list_move(&inode->i_list, &inode_unused);
432 }
433 }
434 inode_sync_complete(inode);
435 return ret;
436 }
437
438 /*
439 * For background writeback the caller does not have the sb pinned
440 * before calling writeback. So make sure that we do pin it, so it doesn't
441 * go away while we are writing inodes from it.
442 */
443 static bool pin_sb_for_writeback(struct super_block *sb)
444 {
445 spin_lock(&sb_lock);
446 if (list_empty(&sb->s_instances)) {
447 spin_unlock(&sb_lock);
448 return false;
449 }
450
451 sb->s_count++;
452 spin_unlock(&sb_lock);
453
454 if (down_read_trylock(&sb->s_umount)) {
455 if (sb->s_root)
456 return true;
457 up_read(&sb->s_umount);
458 }
459
460 put_super(sb);
461 return false;
462 }
463
464 /*
465 * Write a portion of b_io inodes which belong to @sb.
466 *
467 * If @only_this_sb is true, then find and write all such
468 * inodes. Otherwise write only ones which go sequentially
469 * in reverse order.
470 *
471 * Return 1, if the caller writeback routine should be
472 * interrupted. Otherwise return 0.
473 */
474 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
475 struct writeback_control *wbc, bool only_this_sb)
476 {
477 while (!list_empty(&wb->b_io)) {
478 long pages_skipped;
479 struct inode *inode = list_entry(wb->b_io.prev,
480 struct inode, i_list);
481
482 if (inode->i_sb != sb) {
483 if (only_this_sb) {
484 /*
485 * We only want to write back data for this
486 * superblock, move all inodes not belonging
487 * to it back onto the dirty list.
488 */
489 redirty_tail(inode);
490 continue;
491 }
492
493 /*
494 * The inode belongs to a different superblock.
495 * Bounce back to the caller to unpin this and
496 * pin the next superblock.
497 */
498 return 0;
499 }
500
501 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
502 requeue_io(inode);
503 continue;
504 }
505 /*
506 * Was this inode dirtied after sync_sb_inodes was called?
507 * This keeps sync from extra jobs and livelock.
508 */
509 if (inode_dirtied_after(inode, wbc->wb_start))
510 return 1;
511
512 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
513 __iget(inode);
514 pages_skipped = wbc->pages_skipped;
515 writeback_single_inode(inode, wbc);
516 if (wbc->pages_skipped != pages_skipped) {
517 /*
518 * writeback is not making progress due to locked
519 * buffers. Skip this inode for now.
520 */
521 redirty_tail(inode);
522 }
523 spin_unlock(&inode_lock);
524 iput(inode);
525 cond_resched();
526 spin_lock(&inode_lock);
527 if (wbc->nr_to_write <= 0) {
528 wbc->more_io = 1;
529 return 1;
530 }
531 if (!list_empty(&wb->b_more_io))
532 wbc->more_io = 1;
533 }
534 /* b_io is empty */
535 return 1;
536 }
537
538 void writeback_inodes_wb(struct bdi_writeback *wb,
539 struct writeback_control *wbc)
540 {
541 int ret = 0;
542
543 wbc->wb_start = jiffies; /* livelock avoidance */
544 spin_lock(&inode_lock);
545 if (!wbc->for_kupdate || list_empty(&wb->b_io))
546 queue_io(wb, wbc->older_than_this);
547
548 while (!list_empty(&wb->b_io)) {
549 struct inode *inode = list_entry(wb->b_io.prev,
550 struct inode, i_list);
551 struct super_block *sb = inode->i_sb;
552
553 if (!pin_sb_for_writeback(sb)) {
554 requeue_io(inode);
555 continue;
556 }
557 ret = writeback_sb_inodes(sb, wb, wbc, false);
558 drop_super(sb);
559
560 if (ret)
561 break;
562 }
563 spin_unlock(&inode_lock);
564 /* Leave any unwritten inodes on b_io */
565 }
566
567 static void __writeback_inodes_sb(struct super_block *sb,
568 struct bdi_writeback *wb, struct writeback_control *wbc)
569 {
570 WARN_ON(!rwsem_is_locked(&sb->s_umount));
571
572 wbc->wb_start = jiffies; /* livelock avoidance */
573 spin_lock(&inode_lock);
574 if (!wbc->for_kupdate || list_empty(&wb->b_io))
575 queue_io(wb, wbc->older_than_this);
576 writeback_sb_inodes(sb, wb, wbc, true);
577 spin_unlock(&inode_lock);
578 }
579
580 /*
581 * The maximum number of pages to writeout in a single bdi flush/kupdate
582 * operation. We do this so we don't hold I_SYNC against an inode for
583 * enormous amounts of time, which would block a userspace task which has
584 * been forced to throttle against that inode. Also, the code reevaluates
585 * the dirty each time it has written this many pages.
586 */
587 #define MAX_WRITEBACK_PAGES 1024
588
589 static inline bool over_bground_thresh(void)
590 {
591 unsigned long background_thresh, dirty_thresh;
592
593 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
594
595 return (global_page_state(NR_FILE_DIRTY) +
596 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
597 }
598
599 /*
600 * Explicit flushing or periodic writeback of "old" data.
601 *
602 * Define "old": the first time one of an inode's pages is dirtied, we mark the
603 * dirtying-time in the inode's address_space. So this periodic writeback code
604 * just walks the superblock inode list, writing back any inodes which are
605 * older than a specific point in time.
606 *
607 * Try to run once per dirty_writeback_interval. But if a writeback event
608 * takes longer than a dirty_writeback_interval interval, then leave a
609 * one-second gap.
610 *
611 * older_than_this takes precedence over nr_to_write. So we'll only write back
612 * all dirty pages if they are all attached to "old" mappings.
613 */
614 static long wb_writeback(struct bdi_writeback *wb,
615 struct wb_writeback_work *work)
616 {
617 struct writeback_control wbc = {
618 .sync_mode = work->sync_mode,
619 .older_than_this = NULL,
620 .for_kupdate = work->for_kupdate,
621 .for_background = work->for_background,
622 .range_cyclic = work->range_cyclic,
623 };
624 unsigned long oldest_jif;
625 long wrote = 0;
626 struct inode *inode;
627
628 if (wbc.for_kupdate) {
629 wbc.older_than_this = &oldest_jif;
630 oldest_jif = jiffies -
631 msecs_to_jiffies(dirty_expire_interval * 10);
632 }
633 if (!wbc.range_cyclic) {
634 wbc.range_start = 0;
635 wbc.range_end = LLONG_MAX;
636 }
637
638 for (;;) {
639 /*
640 * Stop writeback when nr_pages has been consumed
641 */
642 if (work->nr_pages <= 0)
643 break;
644
645 /*
646 * For background writeout, stop when we are below the
647 * background dirty threshold
648 */
649 if (work->for_background && !over_bground_thresh())
650 break;
651
652 wbc.more_io = 0;
653 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
654 wbc.pages_skipped = 0;
655
656 trace_wbc_writeback_start(&wbc, wb->bdi);
657 if (work->sb)
658 __writeback_inodes_sb(work->sb, wb, &wbc);
659 else
660 writeback_inodes_wb(wb, &wbc);
661 trace_wbc_writeback_written(&wbc, wb->bdi);
662
663 work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
664 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
665
666 /*
667 * If we consumed everything, see if we have more
668 */
669 if (wbc.nr_to_write <= 0)
670 continue;
671 /*
672 * Didn't write everything and we don't have more IO, bail
673 */
674 if (!wbc.more_io)
675 break;
676 /*
677 * Did we write something? Try for more
678 */
679 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
680 continue;
681 /*
682 * Nothing written. Wait for some inode to
683 * become available for writeback. Otherwise
684 * we'll just busyloop.
685 */
686 spin_lock(&inode_lock);
687 if (!list_empty(&wb->b_more_io)) {
688 inode = list_entry(wb->b_more_io.prev,
689 struct inode, i_list);
690 trace_wbc_writeback_wait(&wbc, wb->bdi);
691 inode_wait_for_writeback(inode);
692 }
693 spin_unlock(&inode_lock);
694 }
695
696 return wrote;
697 }
698
699 /*
700 * Return the next wb_writeback_work struct that hasn't been processed yet.
701 */
702 static struct wb_writeback_work *
703 get_next_work_item(struct backing_dev_info *bdi)
704 {
705 struct wb_writeback_work *work = NULL;
706
707 spin_lock_bh(&bdi->wb_lock);
708 if (!list_empty(&bdi->work_list)) {
709 work = list_entry(bdi->work_list.next,
710 struct wb_writeback_work, list);
711 list_del_init(&work->list);
712 }
713 spin_unlock_bh(&bdi->wb_lock);
714 return work;
715 }
716
717 static long wb_check_old_data_flush(struct bdi_writeback *wb)
718 {
719 unsigned long expired;
720 long nr_pages;
721
722 /*
723 * When set to zero, disable periodic writeback
724 */
725 if (!dirty_writeback_interval)
726 return 0;
727
728 expired = wb->last_old_flush +
729 msecs_to_jiffies(dirty_writeback_interval * 10);
730 if (time_before(jiffies, expired))
731 return 0;
732
733 wb->last_old_flush = jiffies;
734 nr_pages = global_page_state(NR_FILE_DIRTY) +
735 global_page_state(NR_UNSTABLE_NFS) +
736 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
737
738 if (nr_pages) {
739 struct wb_writeback_work work = {
740 .nr_pages = nr_pages,
741 .sync_mode = WB_SYNC_NONE,
742 .for_kupdate = 1,
743 .range_cyclic = 1,
744 };
745
746 return wb_writeback(wb, &work);
747 }
748
749 return 0;
750 }
751
752 /*
753 * Retrieve work items and do the writeback they describe
754 */
755 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
756 {
757 struct backing_dev_info *bdi = wb->bdi;
758 struct wb_writeback_work *work;
759 long wrote = 0;
760
761 while ((work = get_next_work_item(bdi)) != NULL) {
762 /*
763 * Override sync mode, in case we must wait for completion
764 * because this thread is exiting now.
765 */
766 if (force_wait)
767 work->sync_mode = WB_SYNC_ALL;
768
769 trace_writeback_exec(bdi, work);
770
771 wrote += wb_writeback(wb, work);
772
773 /*
774 * Notify the caller of completion if this is a synchronous
775 * work item, otherwise just free it.
776 */
777 if (work->done)
778 complete(work->done);
779 else
780 kfree(work);
781 }
782
783 /*
784 * Check for periodic writeback, kupdated() style
785 */
786 wrote += wb_check_old_data_flush(wb);
787
788 return wrote;
789 }
790
791 /*
792 * Handle writeback of dirty data for the device backed by this bdi. Also
793 * wakes up periodically and does kupdated style flushing.
794 */
795 int bdi_writeback_thread(void *data)
796 {
797 struct bdi_writeback *wb = data;
798 struct backing_dev_info *bdi = wb->bdi;
799 long pages_written;
800
801 current->flags |= PF_FLUSHER | PF_SWAPWRITE;
802 set_freezable();
803 wb->last_active = jiffies;
804
805 /*
806 * Our parent may run at a different priority, just set us to normal
807 */
808 set_user_nice(current, 0);
809
810 trace_writeback_thread_start(bdi);
811
812 while (!kthread_should_stop()) {
813 /*
814 * Remove own delayed wake-up timer, since we are already awake
815 * and we'll take care of the preriodic write-back.
816 */
817 del_timer(&wb->wakeup_timer);
818
819 pages_written = wb_do_writeback(wb, 0);
820
821 trace_writeback_pages_written(pages_written);
822
823 if (pages_written)
824 wb->last_active = jiffies;
825
826 set_current_state(TASK_INTERRUPTIBLE);
827 if (!list_empty(&bdi->work_list)) {
828 __set_current_state(TASK_RUNNING);
829 continue;
830 }
831
832 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
833 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
834 else {
835 /*
836 * We have nothing to do, so can go sleep without any
837 * timeout and save power. When a work is queued or
838 * something is made dirty - we will be woken up.
839 */
840 schedule();
841 }
842
843 try_to_freeze();
844 }
845
846 /* Flush any work that raced with us exiting */
847 if (!list_empty(&bdi->work_list))
848 wb_do_writeback(wb, 1);
849
850 trace_writeback_thread_stop(bdi);
851 return 0;
852 }
853
854
855 /*
856 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
857 * the whole world.
858 */
859 void wakeup_flusher_threads(long nr_pages)
860 {
861 struct backing_dev_info *bdi;
862
863 if (!nr_pages) {
864 nr_pages = global_page_state(NR_FILE_DIRTY) +
865 global_page_state(NR_UNSTABLE_NFS);
866 }
867
868 rcu_read_lock();
869 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
870 if (!bdi_has_dirty_io(bdi))
871 continue;
872 __bdi_start_writeback(bdi, nr_pages, false, false);
873 }
874 rcu_read_unlock();
875 }
876
877 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
878 {
879 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
880 struct dentry *dentry;
881 const char *name = "?";
882
883 dentry = d_find_alias(inode);
884 if (dentry) {
885 spin_lock(&dentry->d_lock);
886 name = (const char *) dentry->d_name.name;
887 }
888 printk(KERN_DEBUG
889 "%s(%d): dirtied inode %lu (%s) on %s\n",
890 current->comm, task_pid_nr(current), inode->i_ino,
891 name, inode->i_sb->s_id);
892 if (dentry) {
893 spin_unlock(&dentry->d_lock);
894 dput(dentry);
895 }
896 }
897 }
898
899 /**
900 * __mark_inode_dirty - internal function
901 * @inode: inode to mark
902 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
903 * Mark an inode as dirty. Callers should use mark_inode_dirty or
904 * mark_inode_dirty_sync.
905 *
906 * Put the inode on the super block's dirty list.
907 *
908 * CAREFUL! We mark it dirty unconditionally, but move it onto the
909 * dirty list only if it is hashed or if it refers to a blockdev.
910 * If it was not hashed, it will never be added to the dirty list
911 * even if it is later hashed, as it will have been marked dirty already.
912 *
913 * In short, make sure you hash any inodes _before_ you start marking
914 * them dirty.
915 *
916 * This function *must* be atomic for the I_DIRTY_PAGES case -
917 * set_page_dirty() is called under spinlock in several places.
918 *
919 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
920 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
921 * the kernel-internal blockdev inode represents the dirtying time of the
922 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
923 * page->mapping->host, so the page-dirtying time is recorded in the internal
924 * blockdev inode.
925 */
926 void __mark_inode_dirty(struct inode *inode, int flags)
927 {
928 struct super_block *sb = inode->i_sb;
929 struct backing_dev_info *bdi = NULL;
930 bool wakeup_bdi = false;
931
932 /*
933 * Don't do this for I_DIRTY_PAGES - that doesn't actually
934 * dirty the inode itself
935 */
936 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
937 if (sb->s_op->dirty_inode)
938 sb->s_op->dirty_inode(inode);
939 }
940
941 /*
942 * make sure that changes are seen by all cpus before we test i_state
943 * -- mikulas
944 */
945 smp_mb();
946
947 /* avoid the locking if we can */
948 if ((inode->i_state & flags) == flags)
949 return;
950
951 if (unlikely(block_dump))
952 block_dump___mark_inode_dirty(inode);
953
954 spin_lock(&inode_lock);
955 if ((inode->i_state & flags) != flags) {
956 const int was_dirty = inode->i_state & I_DIRTY;
957
958 inode->i_state |= flags;
959
960 /*
961 * If the inode is being synced, just update its dirty state.
962 * The unlocker will place the inode on the appropriate
963 * superblock list, based upon its state.
964 */
965 if (inode->i_state & I_SYNC)
966 goto out;
967
968 /*
969 * Only add valid (hashed) inodes to the superblock's
970 * dirty list. Add blockdev inodes as well.
971 */
972 if (!S_ISBLK(inode->i_mode)) {
973 if (hlist_unhashed(&inode->i_hash))
974 goto out;
975 }
976 if (inode->i_state & (I_FREEING|I_CLEAR))
977 goto out;
978
979 /*
980 * If the inode was already on b_dirty/b_io/b_more_io, don't
981 * reposition it (that would break b_dirty time-ordering).
982 */
983 if (!was_dirty) {
984 bdi = inode_to_bdi(inode);
985
986 if (bdi_cap_writeback_dirty(bdi)) {
987 WARN(!test_bit(BDI_registered, &bdi->state),
988 "bdi-%s not registered\n", bdi->name);
989
990 /*
991 * If this is the first dirty inode for this
992 * bdi, we have to wake-up the corresponding
993 * bdi thread to make sure background
994 * write-back happens later.
995 */
996 if (!wb_has_dirty_io(&bdi->wb))
997 wakeup_bdi = true;
998 }
999
1000 inode->dirtied_when = jiffies;
1001 list_move(&inode->i_list, &bdi->wb.b_dirty);
1002 }
1003 }
1004 out:
1005 spin_unlock(&inode_lock);
1006
1007 if (wakeup_bdi)
1008 bdi_wakeup_thread_delayed(bdi);
1009 }
1010 EXPORT_SYMBOL(__mark_inode_dirty);
1011
1012 /*
1013 * Write out a superblock's list of dirty inodes. A wait will be performed
1014 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1015 *
1016 * If older_than_this is non-NULL, then only write out inodes which
1017 * had their first dirtying at a time earlier than *older_than_this.
1018 *
1019 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1020 * This function assumes that the blockdev superblock's inodes are backed by
1021 * a variety of queues, so all inodes are searched. For other superblocks,
1022 * assume that all inodes are backed by the same queue.
1023 *
1024 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1025 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1026 * on the writer throttling path, and we get decent balancing between many
1027 * throttled threads: we don't want them all piling up on inode_sync_wait.
1028 */
1029 static void wait_sb_inodes(struct super_block *sb)
1030 {
1031 struct inode *inode, *old_inode = NULL;
1032
1033 /*
1034 * We need to be protected against the filesystem going from
1035 * r/o to r/w or vice versa.
1036 */
1037 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1038
1039 spin_lock(&inode_lock);
1040
1041 /*
1042 * Data integrity sync. Must wait for all pages under writeback,
1043 * because there may have been pages dirtied before our sync
1044 * call, but which had writeout started before we write it out.
1045 * In which case, the inode may not be on the dirty list, but
1046 * we still have to wait for that writeout.
1047 */
1048 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1049 struct address_space *mapping;
1050
1051 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1052 continue;
1053 mapping = inode->i_mapping;
1054 if (mapping->nrpages == 0)
1055 continue;
1056 __iget(inode);
1057 spin_unlock(&inode_lock);
1058 /*
1059 * We hold a reference to 'inode' so it couldn't have
1060 * been removed from s_inodes list while we dropped the
1061 * inode_lock. We cannot iput the inode now as we can
1062 * be holding the last reference and we cannot iput it
1063 * under inode_lock. So we keep the reference and iput
1064 * it later.
1065 */
1066 iput(old_inode);
1067 old_inode = inode;
1068
1069 filemap_fdatawait(mapping);
1070
1071 cond_resched();
1072
1073 spin_lock(&inode_lock);
1074 }
1075 spin_unlock(&inode_lock);
1076 iput(old_inode);
1077 }
1078
1079 /**
1080 * writeback_inodes_sb - writeback dirty inodes from given super_block
1081 * @sb: the superblock
1082 *
1083 * Start writeback on some inodes on this super_block. No guarantees are made
1084 * on how many (if any) will be written, and this function does not wait
1085 * for IO completion of submitted IO. The number of pages submitted is
1086 * returned.
1087 */
1088 void writeback_inodes_sb(struct super_block *sb)
1089 {
1090 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1091 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1092 DECLARE_COMPLETION_ONSTACK(done);
1093 struct wb_writeback_work work = {
1094 .sb = sb,
1095 .sync_mode = WB_SYNC_NONE,
1096 .done = &done,
1097 };
1098
1099 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1100
1101 work.nr_pages = nr_dirty + nr_unstable +
1102 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
1103
1104 bdi_queue_work(sb->s_bdi, &work);
1105 wait_for_completion(&done);
1106 }
1107 EXPORT_SYMBOL(writeback_inodes_sb);
1108
1109 /**
1110 * writeback_inodes_sb_if_idle - start writeback if none underway
1111 * @sb: the superblock
1112 *
1113 * Invoke writeback_inodes_sb if no writeback is currently underway.
1114 * Returns 1 if writeback was started, 0 if not.
1115 */
1116 int writeback_inodes_sb_if_idle(struct super_block *sb)
1117 {
1118 if (!writeback_in_progress(sb->s_bdi)) {
1119 down_read(&sb->s_umount);
1120 writeback_inodes_sb(sb);
1121 up_read(&sb->s_umount);
1122 return 1;
1123 } else
1124 return 0;
1125 }
1126 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1127
1128 /**
1129 * sync_inodes_sb - sync sb inode pages
1130 * @sb: the superblock
1131 *
1132 * This function writes and waits on any dirty inode belonging to this
1133 * super_block. The number of pages synced is returned.
1134 */
1135 void sync_inodes_sb(struct super_block *sb)
1136 {
1137 DECLARE_COMPLETION_ONSTACK(done);
1138 struct wb_writeback_work work = {
1139 .sb = sb,
1140 .sync_mode = WB_SYNC_ALL,
1141 .nr_pages = LONG_MAX,
1142 .range_cyclic = 0,
1143 .done = &done,
1144 };
1145
1146 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1147
1148 bdi_queue_work(sb->s_bdi, &work);
1149 wait_for_completion(&done);
1150
1151 wait_sb_inodes(sb);
1152 }
1153 EXPORT_SYMBOL(sync_inodes_sb);
1154
1155 /**
1156 * write_inode_now - write an inode to disk
1157 * @inode: inode to write to disk
1158 * @sync: whether the write should be synchronous or not
1159 *
1160 * This function commits an inode to disk immediately if it is dirty. This is
1161 * primarily needed by knfsd.
1162 *
1163 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1164 */
1165 int write_inode_now(struct inode *inode, int sync)
1166 {
1167 int ret;
1168 struct writeback_control wbc = {
1169 .nr_to_write = LONG_MAX,
1170 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1171 .range_start = 0,
1172 .range_end = LLONG_MAX,
1173 };
1174
1175 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1176 wbc.nr_to_write = 0;
1177
1178 might_sleep();
1179 spin_lock(&inode_lock);
1180 ret = writeback_single_inode(inode, &wbc);
1181 spin_unlock(&inode_lock);
1182 if (sync)
1183 inode_sync_wait(inode);
1184 return ret;
1185 }
1186 EXPORT_SYMBOL(write_inode_now);
1187
1188 /**
1189 * sync_inode - write an inode and its pages to disk.
1190 * @inode: the inode to sync
1191 * @wbc: controls the writeback mode
1192 *
1193 * sync_inode() will write an inode and its pages to disk. It will also
1194 * correctly update the inode on its superblock's dirty inode lists and will
1195 * update inode->i_state.
1196 *
1197 * The caller must have a ref on the inode.
1198 */
1199 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1200 {
1201 int ret;
1202
1203 spin_lock(&inode_lock);
1204 ret = writeback_single_inode(inode, wbc);
1205 spin_unlock(&inode_lock);
1206 return ret;
1207 }
1208 EXPORT_SYMBOL(sync_inode);
This page took 0.116679 seconds and 5 git commands to generate.