Merge remote-tracking branches 'regulator/fix/bcm590xx', 'regulator/fix/s2m' and...
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31
32 /*
33 * 4MB minimal write chunk size
34 */
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
50 enum wb_reason reason; /* why was writeback initiated? */
51
52 struct list_head list; /* pending work list */
53 struct completion *done; /* set if the caller waits */
54 };
55
56 /**
57 * writeback_in_progress - determine whether there is writeback in progress
58 * @bdi: the device's backing_dev_info structure.
59 *
60 * Determine whether there is writeback waiting to be handled against a
61 * backing device.
62 */
63 int writeback_in_progress(struct backing_dev_info *bdi)
64 {
65 return test_bit(BDI_writeback_running, &bdi->state);
66 }
67 EXPORT_SYMBOL(writeback_in_progress);
68
69 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
70 {
71 struct super_block *sb = inode->i_sb;
72
73 if (sb_is_blkdev_sb(sb))
74 return inode->i_mapping->backing_dev_info;
75
76 return sb->s_bdi;
77 }
78
79 static inline struct inode *wb_inode(struct list_head *head)
80 {
81 return list_entry(head, struct inode, i_wb_list);
82 }
83
84 /*
85 * Include the creation of the trace points after defining the
86 * wb_writeback_work structure and inline functions so that the definition
87 * remains local to this file.
88 */
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/writeback.h>
91
92 static void bdi_queue_work(struct backing_dev_info *bdi,
93 struct wb_writeback_work *work)
94 {
95 trace_writeback_queue(bdi, work);
96
97 spin_lock_bh(&bdi->wb_lock);
98 list_add_tail(&work->list, &bdi->work_list);
99 spin_unlock_bh(&bdi->wb_lock);
100
101 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
102 }
103
104 static void
105 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
106 bool range_cyclic, enum wb_reason reason)
107 {
108 struct wb_writeback_work *work;
109
110 /*
111 * This is WB_SYNC_NONE writeback, so if allocation fails just
112 * wakeup the thread for old dirty data writeback
113 */
114 work = kzalloc(sizeof(*work), GFP_ATOMIC);
115 if (!work) {
116 trace_writeback_nowork(bdi);
117 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
118 return;
119 }
120
121 work->sync_mode = WB_SYNC_NONE;
122 work->nr_pages = nr_pages;
123 work->range_cyclic = range_cyclic;
124 work->reason = reason;
125
126 bdi_queue_work(bdi, work);
127 }
128
129 /**
130 * bdi_start_writeback - start writeback
131 * @bdi: the backing device to write from
132 * @nr_pages: the number of pages to write
133 * @reason: reason why some writeback work was initiated
134 *
135 * Description:
136 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
137 * started when this function returns, we make no guarantees on
138 * completion. Caller need not hold sb s_umount semaphore.
139 *
140 */
141 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
142 enum wb_reason reason)
143 {
144 __bdi_start_writeback(bdi, nr_pages, true, reason);
145 }
146
147 /**
148 * bdi_start_background_writeback - start background writeback
149 * @bdi: the backing device to write from
150 *
151 * Description:
152 * This makes sure WB_SYNC_NONE background writeback happens. When
153 * this function returns, it is only guaranteed that for given BDI
154 * some IO is happening if we are over background dirty threshold.
155 * Caller need not hold sb s_umount semaphore.
156 */
157 void bdi_start_background_writeback(struct backing_dev_info *bdi)
158 {
159 /*
160 * We just wake up the flusher thread. It will perform background
161 * writeback as soon as there is no other work to do.
162 */
163 trace_writeback_wake_background(bdi);
164 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
165 }
166
167 /*
168 * Remove the inode from the writeback list it is on.
169 */
170 void inode_wb_list_del(struct inode *inode)
171 {
172 struct backing_dev_info *bdi = inode_to_bdi(inode);
173
174 spin_lock(&bdi->wb.list_lock);
175 list_del_init(&inode->i_wb_list);
176 spin_unlock(&bdi->wb.list_lock);
177 }
178
179 /*
180 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
181 * furthest end of its superblock's dirty-inode list.
182 *
183 * Before stamping the inode's ->dirtied_when, we check to see whether it is
184 * already the most-recently-dirtied inode on the b_dirty list. If that is
185 * the case then the inode must have been redirtied while it was being written
186 * out and we don't reset its dirtied_when.
187 */
188 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
189 {
190 assert_spin_locked(&wb->list_lock);
191 if (!list_empty(&wb->b_dirty)) {
192 struct inode *tail;
193
194 tail = wb_inode(wb->b_dirty.next);
195 if (time_before(inode->dirtied_when, tail->dirtied_when))
196 inode->dirtied_when = jiffies;
197 }
198 list_move(&inode->i_wb_list, &wb->b_dirty);
199 }
200
201 /*
202 * requeue inode for re-scanning after bdi->b_io list is exhausted.
203 */
204 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
205 {
206 assert_spin_locked(&wb->list_lock);
207 list_move(&inode->i_wb_list, &wb->b_more_io);
208 }
209
210 static void inode_sync_complete(struct inode *inode)
211 {
212 inode->i_state &= ~I_SYNC;
213 /* If inode is clean an unused, put it into LRU now... */
214 inode_add_lru(inode);
215 /* Waiters must see I_SYNC cleared before being woken up */
216 smp_mb();
217 wake_up_bit(&inode->i_state, __I_SYNC);
218 }
219
220 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
221 {
222 bool ret = time_after(inode->dirtied_when, t);
223 #ifndef CONFIG_64BIT
224 /*
225 * For inodes being constantly redirtied, dirtied_when can get stuck.
226 * It _appears_ to be in the future, but is actually in distant past.
227 * This test is necessary to prevent such wrapped-around relative times
228 * from permanently stopping the whole bdi writeback.
229 */
230 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
231 #endif
232 return ret;
233 }
234
235 /*
236 * Move expired (dirtied before work->older_than_this) dirty inodes from
237 * @delaying_queue to @dispatch_queue.
238 */
239 static int move_expired_inodes(struct list_head *delaying_queue,
240 struct list_head *dispatch_queue,
241 struct wb_writeback_work *work)
242 {
243 LIST_HEAD(tmp);
244 struct list_head *pos, *node;
245 struct super_block *sb = NULL;
246 struct inode *inode;
247 int do_sb_sort = 0;
248 int moved = 0;
249
250 while (!list_empty(delaying_queue)) {
251 inode = wb_inode(delaying_queue->prev);
252 if (work->older_than_this &&
253 inode_dirtied_after(inode, *work->older_than_this))
254 break;
255 list_move(&inode->i_wb_list, &tmp);
256 moved++;
257 if (sb_is_blkdev_sb(inode->i_sb))
258 continue;
259 if (sb && sb != inode->i_sb)
260 do_sb_sort = 1;
261 sb = inode->i_sb;
262 }
263
264 /* just one sb in list, splice to dispatch_queue and we're done */
265 if (!do_sb_sort) {
266 list_splice(&tmp, dispatch_queue);
267 goto out;
268 }
269
270 /* Move inodes from one superblock together */
271 while (!list_empty(&tmp)) {
272 sb = wb_inode(tmp.prev)->i_sb;
273 list_for_each_prev_safe(pos, node, &tmp) {
274 inode = wb_inode(pos);
275 if (inode->i_sb == sb)
276 list_move(&inode->i_wb_list, dispatch_queue);
277 }
278 }
279 out:
280 return moved;
281 }
282
283 /*
284 * Queue all expired dirty inodes for io, eldest first.
285 * Before
286 * newly dirtied b_dirty b_io b_more_io
287 * =============> gf edc BA
288 * After
289 * newly dirtied b_dirty b_io b_more_io
290 * =============> g fBAedc
291 * |
292 * +--> dequeue for IO
293 */
294 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
295 {
296 int moved;
297 assert_spin_locked(&wb->list_lock);
298 list_splice_init(&wb->b_more_io, &wb->b_io);
299 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
300 trace_writeback_queue_io(wb, work, moved);
301 }
302
303 static int write_inode(struct inode *inode, struct writeback_control *wbc)
304 {
305 int ret;
306
307 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
308 trace_writeback_write_inode_start(inode, wbc);
309 ret = inode->i_sb->s_op->write_inode(inode, wbc);
310 trace_writeback_write_inode(inode, wbc);
311 return ret;
312 }
313 return 0;
314 }
315
316 /*
317 * Wait for writeback on an inode to complete. Called with i_lock held.
318 * Caller must make sure inode cannot go away when we drop i_lock.
319 */
320 static void __inode_wait_for_writeback(struct inode *inode)
321 __releases(inode->i_lock)
322 __acquires(inode->i_lock)
323 {
324 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
325 wait_queue_head_t *wqh;
326
327 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
328 while (inode->i_state & I_SYNC) {
329 spin_unlock(&inode->i_lock);
330 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
331 spin_lock(&inode->i_lock);
332 }
333 }
334
335 /*
336 * Wait for writeback on an inode to complete. Caller must have inode pinned.
337 */
338 void inode_wait_for_writeback(struct inode *inode)
339 {
340 spin_lock(&inode->i_lock);
341 __inode_wait_for_writeback(inode);
342 spin_unlock(&inode->i_lock);
343 }
344
345 /*
346 * Sleep until I_SYNC is cleared. This function must be called with i_lock
347 * held and drops it. It is aimed for callers not holding any inode reference
348 * so once i_lock is dropped, inode can go away.
349 */
350 static void inode_sleep_on_writeback(struct inode *inode)
351 __releases(inode->i_lock)
352 {
353 DEFINE_WAIT(wait);
354 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
355 int sleep;
356
357 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
358 sleep = inode->i_state & I_SYNC;
359 spin_unlock(&inode->i_lock);
360 if (sleep)
361 schedule();
362 finish_wait(wqh, &wait);
363 }
364
365 /*
366 * Find proper writeback list for the inode depending on its current state and
367 * possibly also change of its state while we were doing writeback. Here we
368 * handle things such as livelock prevention or fairness of writeback among
369 * inodes. This function can be called only by flusher thread - noone else
370 * processes all inodes in writeback lists and requeueing inodes behind flusher
371 * thread's back can have unexpected consequences.
372 */
373 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
374 struct writeback_control *wbc)
375 {
376 if (inode->i_state & I_FREEING)
377 return;
378
379 /*
380 * Sync livelock prevention. Each inode is tagged and synced in one
381 * shot. If still dirty, it will be redirty_tail()'ed below. Update
382 * the dirty time to prevent enqueue and sync it again.
383 */
384 if ((inode->i_state & I_DIRTY) &&
385 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
386 inode->dirtied_when = jiffies;
387
388 if (wbc->pages_skipped) {
389 /*
390 * writeback is not making progress due to locked
391 * buffers. Skip this inode for now.
392 */
393 redirty_tail(inode, wb);
394 return;
395 }
396
397 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
398 /*
399 * We didn't write back all the pages. nfs_writepages()
400 * sometimes bales out without doing anything.
401 */
402 if (wbc->nr_to_write <= 0) {
403 /* Slice used up. Queue for next turn. */
404 requeue_io(inode, wb);
405 } else {
406 /*
407 * Writeback blocked by something other than
408 * congestion. Delay the inode for some time to
409 * avoid spinning on the CPU (100% iowait)
410 * retrying writeback of the dirty page/inode
411 * that cannot be performed immediately.
412 */
413 redirty_tail(inode, wb);
414 }
415 } else if (inode->i_state & I_DIRTY) {
416 /*
417 * Filesystems can dirty the inode during writeback operations,
418 * such as delayed allocation during submission or metadata
419 * updates after data IO completion.
420 */
421 redirty_tail(inode, wb);
422 } else {
423 /* The inode is clean. Remove from writeback lists. */
424 list_del_init(&inode->i_wb_list);
425 }
426 }
427
428 /*
429 * Write out an inode and its dirty pages. Do not update the writeback list
430 * linkage. That is left to the caller. The caller is also responsible for
431 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
432 */
433 static int
434 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
435 {
436 struct address_space *mapping = inode->i_mapping;
437 long nr_to_write = wbc->nr_to_write;
438 unsigned dirty;
439 int ret;
440
441 WARN_ON(!(inode->i_state & I_SYNC));
442
443 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
444
445 ret = do_writepages(mapping, wbc);
446
447 /*
448 * Make sure to wait on the data before writing out the metadata.
449 * This is important for filesystems that modify metadata on data
450 * I/O completion. We don't do it for sync(2) writeback because it has a
451 * separate, external IO completion path and ->sync_fs for guaranteeing
452 * inode metadata is written back correctly.
453 */
454 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
455 int err = filemap_fdatawait(mapping);
456 if (ret == 0)
457 ret = err;
458 }
459
460 /*
461 * Some filesystems may redirty the inode during the writeback
462 * due to delalloc, clear dirty metadata flags right before
463 * write_inode()
464 */
465 spin_lock(&inode->i_lock);
466 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
467 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
468 inode->i_state &= ~I_DIRTY_PAGES;
469 dirty = inode->i_state & I_DIRTY;
470 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
471 spin_unlock(&inode->i_lock);
472 /* Don't write the inode if only I_DIRTY_PAGES was set */
473 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
474 int err = write_inode(inode, wbc);
475 if (ret == 0)
476 ret = err;
477 }
478 trace_writeback_single_inode(inode, wbc, nr_to_write);
479 return ret;
480 }
481
482 /*
483 * Write out an inode's dirty pages. Either the caller has an active reference
484 * on the inode or the inode has I_WILL_FREE set.
485 *
486 * This function is designed to be called for writing back one inode which
487 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
488 * and does more profound writeback list handling in writeback_sb_inodes().
489 */
490 static int
491 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
492 struct writeback_control *wbc)
493 {
494 int ret = 0;
495
496 spin_lock(&inode->i_lock);
497 if (!atomic_read(&inode->i_count))
498 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
499 else
500 WARN_ON(inode->i_state & I_WILL_FREE);
501
502 if (inode->i_state & I_SYNC) {
503 if (wbc->sync_mode != WB_SYNC_ALL)
504 goto out;
505 /*
506 * It's a data-integrity sync. We must wait. Since callers hold
507 * inode reference or inode has I_WILL_FREE set, it cannot go
508 * away under us.
509 */
510 __inode_wait_for_writeback(inode);
511 }
512 WARN_ON(inode->i_state & I_SYNC);
513 /*
514 * Skip inode if it is clean and we have no outstanding writeback in
515 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
516 * function since flusher thread may be doing for example sync in
517 * parallel and if we move the inode, it could get skipped. So here we
518 * make sure inode is on some writeback list and leave it there unless
519 * we have completely cleaned the inode.
520 */
521 if (!(inode->i_state & I_DIRTY) &&
522 (wbc->sync_mode != WB_SYNC_ALL ||
523 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
524 goto out;
525 inode->i_state |= I_SYNC;
526 spin_unlock(&inode->i_lock);
527
528 ret = __writeback_single_inode(inode, wbc);
529
530 spin_lock(&wb->list_lock);
531 spin_lock(&inode->i_lock);
532 /*
533 * If inode is clean, remove it from writeback lists. Otherwise don't
534 * touch it. See comment above for explanation.
535 */
536 if (!(inode->i_state & I_DIRTY))
537 list_del_init(&inode->i_wb_list);
538 spin_unlock(&wb->list_lock);
539 inode_sync_complete(inode);
540 out:
541 spin_unlock(&inode->i_lock);
542 return ret;
543 }
544
545 static long writeback_chunk_size(struct backing_dev_info *bdi,
546 struct wb_writeback_work *work)
547 {
548 long pages;
549
550 /*
551 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
552 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
553 * here avoids calling into writeback_inodes_wb() more than once.
554 *
555 * The intended call sequence for WB_SYNC_ALL writeback is:
556 *
557 * wb_writeback()
558 * writeback_sb_inodes() <== called only once
559 * write_cache_pages() <== called once for each inode
560 * (quickly) tag currently dirty pages
561 * (maybe slowly) sync all tagged pages
562 */
563 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
564 pages = LONG_MAX;
565 else {
566 pages = min(bdi->avg_write_bandwidth / 2,
567 global_dirty_limit / DIRTY_SCOPE);
568 pages = min(pages, work->nr_pages);
569 pages = round_down(pages + MIN_WRITEBACK_PAGES,
570 MIN_WRITEBACK_PAGES);
571 }
572
573 return pages;
574 }
575
576 /*
577 * Write a portion of b_io inodes which belong to @sb.
578 *
579 * Return the number of pages and/or inodes written.
580 */
581 static long writeback_sb_inodes(struct super_block *sb,
582 struct bdi_writeback *wb,
583 struct wb_writeback_work *work)
584 {
585 struct writeback_control wbc = {
586 .sync_mode = work->sync_mode,
587 .tagged_writepages = work->tagged_writepages,
588 .for_kupdate = work->for_kupdate,
589 .for_background = work->for_background,
590 .for_sync = work->for_sync,
591 .range_cyclic = work->range_cyclic,
592 .range_start = 0,
593 .range_end = LLONG_MAX,
594 };
595 unsigned long start_time = jiffies;
596 long write_chunk;
597 long wrote = 0; /* count both pages and inodes */
598
599 while (!list_empty(&wb->b_io)) {
600 struct inode *inode = wb_inode(wb->b_io.prev);
601
602 if (inode->i_sb != sb) {
603 if (work->sb) {
604 /*
605 * We only want to write back data for this
606 * superblock, move all inodes not belonging
607 * to it back onto the dirty list.
608 */
609 redirty_tail(inode, wb);
610 continue;
611 }
612
613 /*
614 * The inode belongs to a different superblock.
615 * Bounce back to the caller to unpin this and
616 * pin the next superblock.
617 */
618 break;
619 }
620
621 /*
622 * Don't bother with new inodes or inodes being freed, first
623 * kind does not need periodic writeout yet, and for the latter
624 * kind writeout is handled by the freer.
625 */
626 spin_lock(&inode->i_lock);
627 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
628 spin_unlock(&inode->i_lock);
629 redirty_tail(inode, wb);
630 continue;
631 }
632 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
633 /*
634 * If this inode is locked for writeback and we are not
635 * doing writeback-for-data-integrity, move it to
636 * b_more_io so that writeback can proceed with the
637 * other inodes on s_io.
638 *
639 * We'll have another go at writing back this inode
640 * when we completed a full scan of b_io.
641 */
642 spin_unlock(&inode->i_lock);
643 requeue_io(inode, wb);
644 trace_writeback_sb_inodes_requeue(inode);
645 continue;
646 }
647 spin_unlock(&wb->list_lock);
648
649 /*
650 * We already requeued the inode if it had I_SYNC set and we
651 * are doing WB_SYNC_NONE writeback. So this catches only the
652 * WB_SYNC_ALL case.
653 */
654 if (inode->i_state & I_SYNC) {
655 /* Wait for I_SYNC. This function drops i_lock... */
656 inode_sleep_on_writeback(inode);
657 /* Inode may be gone, start again */
658 spin_lock(&wb->list_lock);
659 continue;
660 }
661 inode->i_state |= I_SYNC;
662 spin_unlock(&inode->i_lock);
663
664 write_chunk = writeback_chunk_size(wb->bdi, work);
665 wbc.nr_to_write = write_chunk;
666 wbc.pages_skipped = 0;
667
668 /*
669 * We use I_SYNC to pin the inode in memory. While it is set
670 * evict_inode() will wait so the inode cannot be freed.
671 */
672 __writeback_single_inode(inode, &wbc);
673
674 work->nr_pages -= write_chunk - wbc.nr_to_write;
675 wrote += write_chunk - wbc.nr_to_write;
676 spin_lock(&wb->list_lock);
677 spin_lock(&inode->i_lock);
678 if (!(inode->i_state & I_DIRTY))
679 wrote++;
680 requeue_inode(inode, wb, &wbc);
681 inode_sync_complete(inode);
682 spin_unlock(&inode->i_lock);
683 cond_resched_lock(&wb->list_lock);
684 /*
685 * bail out to wb_writeback() often enough to check
686 * background threshold and other termination conditions.
687 */
688 if (wrote) {
689 if (time_is_before_jiffies(start_time + HZ / 10UL))
690 break;
691 if (work->nr_pages <= 0)
692 break;
693 }
694 }
695 return wrote;
696 }
697
698 static long __writeback_inodes_wb(struct bdi_writeback *wb,
699 struct wb_writeback_work *work)
700 {
701 unsigned long start_time = jiffies;
702 long wrote = 0;
703
704 while (!list_empty(&wb->b_io)) {
705 struct inode *inode = wb_inode(wb->b_io.prev);
706 struct super_block *sb = inode->i_sb;
707
708 if (!grab_super_passive(sb)) {
709 /*
710 * grab_super_passive() may fail consistently due to
711 * s_umount being grabbed by someone else. Don't use
712 * requeue_io() to avoid busy retrying the inode/sb.
713 */
714 redirty_tail(inode, wb);
715 continue;
716 }
717 wrote += writeback_sb_inodes(sb, wb, work);
718 drop_super(sb);
719
720 /* refer to the same tests at the end of writeback_sb_inodes */
721 if (wrote) {
722 if (time_is_before_jiffies(start_time + HZ / 10UL))
723 break;
724 if (work->nr_pages <= 0)
725 break;
726 }
727 }
728 /* Leave any unwritten inodes on b_io */
729 return wrote;
730 }
731
732 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
733 enum wb_reason reason)
734 {
735 struct wb_writeback_work work = {
736 .nr_pages = nr_pages,
737 .sync_mode = WB_SYNC_NONE,
738 .range_cyclic = 1,
739 .reason = reason,
740 };
741
742 spin_lock(&wb->list_lock);
743 if (list_empty(&wb->b_io))
744 queue_io(wb, &work);
745 __writeback_inodes_wb(wb, &work);
746 spin_unlock(&wb->list_lock);
747
748 return nr_pages - work.nr_pages;
749 }
750
751 static bool over_bground_thresh(struct backing_dev_info *bdi)
752 {
753 unsigned long background_thresh, dirty_thresh;
754
755 global_dirty_limits(&background_thresh, &dirty_thresh);
756
757 if (global_page_state(NR_FILE_DIRTY) +
758 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
759 return true;
760
761 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
762 bdi_dirty_limit(bdi, background_thresh))
763 return true;
764
765 return false;
766 }
767
768 /*
769 * Called under wb->list_lock. If there are multiple wb per bdi,
770 * only the flusher working on the first wb should do it.
771 */
772 static void wb_update_bandwidth(struct bdi_writeback *wb,
773 unsigned long start_time)
774 {
775 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
776 }
777
778 /*
779 * Explicit flushing or periodic writeback of "old" data.
780 *
781 * Define "old": the first time one of an inode's pages is dirtied, we mark the
782 * dirtying-time in the inode's address_space. So this periodic writeback code
783 * just walks the superblock inode list, writing back any inodes which are
784 * older than a specific point in time.
785 *
786 * Try to run once per dirty_writeback_interval. But if a writeback event
787 * takes longer than a dirty_writeback_interval interval, then leave a
788 * one-second gap.
789 *
790 * older_than_this takes precedence over nr_to_write. So we'll only write back
791 * all dirty pages if they are all attached to "old" mappings.
792 */
793 static long wb_writeback(struct bdi_writeback *wb,
794 struct wb_writeback_work *work)
795 {
796 unsigned long wb_start = jiffies;
797 long nr_pages = work->nr_pages;
798 unsigned long oldest_jif;
799 struct inode *inode;
800 long progress;
801
802 oldest_jif = jiffies;
803 work->older_than_this = &oldest_jif;
804
805 spin_lock(&wb->list_lock);
806 for (;;) {
807 /*
808 * Stop writeback when nr_pages has been consumed
809 */
810 if (work->nr_pages <= 0)
811 break;
812
813 /*
814 * Background writeout and kupdate-style writeback may
815 * run forever. Stop them if there is other work to do
816 * so that e.g. sync can proceed. They'll be restarted
817 * after the other works are all done.
818 */
819 if ((work->for_background || work->for_kupdate) &&
820 !list_empty(&wb->bdi->work_list))
821 break;
822
823 /*
824 * For background writeout, stop when we are below the
825 * background dirty threshold
826 */
827 if (work->for_background && !over_bground_thresh(wb->bdi))
828 break;
829
830 /*
831 * Kupdate and background works are special and we want to
832 * include all inodes that need writing. Livelock avoidance is
833 * handled by these works yielding to any other work so we are
834 * safe.
835 */
836 if (work->for_kupdate) {
837 oldest_jif = jiffies -
838 msecs_to_jiffies(dirty_expire_interval * 10);
839 } else if (work->for_background)
840 oldest_jif = jiffies;
841
842 trace_writeback_start(wb->bdi, work);
843 if (list_empty(&wb->b_io))
844 queue_io(wb, work);
845 if (work->sb)
846 progress = writeback_sb_inodes(work->sb, wb, work);
847 else
848 progress = __writeback_inodes_wb(wb, work);
849 trace_writeback_written(wb->bdi, work);
850
851 wb_update_bandwidth(wb, wb_start);
852
853 /*
854 * Did we write something? Try for more
855 *
856 * Dirty inodes are moved to b_io for writeback in batches.
857 * The completion of the current batch does not necessarily
858 * mean the overall work is done. So we keep looping as long
859 * as made some progress on cleaning pages or inodes.
860 */
861 if (progress)
862 continue;
863 /*
864 * No more inodes for IO, bail
865 */
866 if (list_empty(&wb->b_more_io))
867 break;
868 /*
869 * Nothing written. Wait for some inode to
870 * become available for writeback. Otherwise
871 * we'll just busyloop.
872 */
873 if (!list_empty(&wb->b_more_io)) {
874 trace_writeback_wait(wb->bdi, work);
875 inode = wb_inode(wb->b_more_io.prev);
876 spin_lock(&inode->i_lock);
877 spin_unlock(&wb->list_lock);
878 /* This function drops i_lock... */
879 inode_sleep_on_writeback(inode);
880 spin_lock(&wb->list_lock);
881 }
882 }
883 spin_unlock(&wb->list_lock);
884
885 return nr_pages - work->nr_pages;
886 }
887
888 /*
889 * Return the next wb_writeback_work struct that hasn't been processed yet.
890 */
891 static struct wb_writeback_work *
892 get_next_work_item(struct backing_dev_info *bdi)
893 {
894 struct wb_writeback_work *work = NULL;
895
896 spin_lock_bh(&bdi->wb_lock);
897 if (!list_empty(&bdi->work_list)) {
898 work = list_entry(bdi->work_list.next,
899 struct wb_writeback_work, list);
900 list_del_init(&work->list);
901 }
902 spin_unlock_bh(&bdi->wb_lock);
903 return work;
904 }
905
906 /*
907 * Add in the number of potentially dirty inodes, because each inode
908 * write can dirty pagecache in the underlying blockdev.
909 */
910 static unsigned long get_nr_dirty_pages(void)
911 {
912 return global_page_state(NR_FILE_DIRTY) +
913 global_page_state(NR_UNSTABLE_NFS) +
914 get_nr_dirty_inodes();
915 }
916
917 static long wb_check_background_flush(struct bdi_writeback *wb)
918 {
919 if (over_bground_thresh(wb->bdi)) {
920
921 struct wb_writeback_work work = {
922 .nr_pages = LONG_MAX,
923 .sync_mode = WB_SYNC_NONE,
924 .for_background = 1,
925 .range_cyclic = 1,
926 .reason = WB_REASON_BACKGROUND,
927 };
928
929 return wb_writeback(wb, &work);
930 }
931
932 return 0;
933 }
934
935 static long wb_check_old_data_flush(struct bdi_writeback *wb)
936 {
937 unsigned long expired;
938 long nr_pages;
939
940 /*
941 * When set to zero, disable periodic writeback
942 */
943 if (!dirty_writeback_interval)
944 return 0;
945
946 expired = wb->last_old_flush +
947 msecs_to_jiffies(dirty_writeback_interval * 10);
948 if (time_before(jiffies, expired))
949 return 0;
950
951 wb->last_old_flush = jiffies;
952 nr_pages = get_nr_dirty_pages();
953
954 if (nr_pages) {
955 struct wb_writeback_work work = {
956 .nr_pages = nr_pages,
957 .sync_mode = WB_SYNC_NONE,
958 .for_kupdate = 1,
959 .range_cyclic = 1,
960 .reason = WB_REASON_PERIODIC,
961 };
962
963 return wb_writeback(wb, &work);
964 }
965
966 return 0;
967 }
968
969 /*
970 * Retrieve work items and do the writeback they describe
971 */
972 static long wb_do_writeback(struct bdi_writeback *wb)
973 {
974 struct backing_dev_info *bdi = wb->bdi;
975 struct wb_writeback_work *work;
976 long wrote = 0;
977
978 set_bit(BDI_writeback_running, &wb->bdi->state);
979 while ((work = get_next_work_item(bdi)) != NULL) {
980
981 trace_writeback_exec(bdi, work);
982
983 wrote += wb_writeback(wb, work);
984
985 /*
986 * Notify the caller of completion if this is a synchronous
987 * work item, otherwise just free it.
988 */
989 if (work->done)
990 complete(work->done);
991 else
992 kfree(work);
993 }
994
995 /*
996 * Check for periodic writeback, kupdated() style
997 */
998 wrote += wb_check_old_data_flush(wb);
999 wrote += wb_check_background_flush(wb);
1000 clear_bit(BDI_writeback_running, &wb->bdi->state);
1001
1002 return wrote;
1003 }
1004
1005 /*
1006 * Handle writeback of dirty data for the device backed by this bdi. Also
1007 * reschedules periodically and does kupdated style flushing.
1008 */
1009 void bdi_writeback_workfn(struct work_struct *work)
1010 {
1011 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1012 struct bdi_writeback, dwork);
1013 struct backing_dev_info *bdi = wb->bdi;
1014 long pages_written;
1015
1016 set_worker_desc("flush-%s", dev_name(bdi->dev));
1017 current->flags |= PF_SWAPWRITE;
1018
1019 if (likely(!current_is_workqueue_rescuer() ||
1020 list_empty(&bdi->bdi_list))) {
1021 /*
1022 * The normal path. Keep writing back @bdi until its
1023 * work_list is empty. Note that this path is also taken
1024 * if @bdi is shutting down even when we're running off the
1025 * rescuer as work_list needs to be drained.
1026 */
1027 do {
1028 pages_written = wb_do_writeback(wb);
1029 trace_writeback_pages_written(pages_written);
1030 } while (!list_empty(&bdi->work_list));
1031 } else {
1032 /*
1033 * bdi_wq can't get enough workers and we're running off
1034 * the emergency worker. Don't hog it. Hopefully, 1024 is
1035 * enough for efficient IO.
1036 */
1037 pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1038 WB_REASON_FORKER_THREAD);
1039 trace_writeback_pages_written(pages_written);
1040 }
1041
1042 if (!list_empty(&bdi->work_list) ||
1043 (wb_has_dirty_io(wb) && dirty_writeback_interval))
1044 queue_delayed_work(bdi_wq, &wb->dwork,
1045 msecs_to_jiffies(dirty_writeback_interval * 10));
1046
1047 current->flags &= ~PF_SWAPWRITE;
1048 }
1049
1050 /*
1051 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1052 * the whole world.
1053 */
1054 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1055 {
1056 struct backing_dev_info *bdi;
1057
1058 if (!nr_pages)
1059 nr_pages = get_nr_dirty_pages();
1060
1061 rcu_read_lock();
1062 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1063 if (!bdi_has_dirty_io(bdi))
1064 continue;
1065 __bdi_start_writeback(bdi, nr_pages, false, reason);
1066 }
1067 rcu_read_unlock();
1068 }
1069
1070 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1071 {
1072 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1073 struct dentry *dentry;
1074 const char *name = "?";
1075
1076 dentry = d_find_alias(inode);
1077 if (dentry) {
1078 spin_lock(&dentry->d_lock);
1079 name = (const char *) dentry->d_name.name;
1080 }
1081 printk(KERN_DEBUG
1082 "%s(%d): dirtied inode %lu (%s) on %s\n",
1083 current->comm, task_pid_nr(current), inode->i_ino,
1084 name, inode->i_sb->s_id);
1085 if (dentry) {
1086 spin_unlock(&dentry->d_lock);
1087 dput(dentry);
1088 }
1089 }
1090 }
1091
1092 /**
1093 * __mark_inode_dirty - internal function
1094 * @inode: inode to mark
1095 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1096 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1097 * mark_inode_dirty_sync.
1098 *
1099 * Put the inode on the super block's dirty list.
1100 *
1101 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1102 * dirty list only if it is hashed or if it refers to a blockdev.
1103 * If it was not hashed, it will never be added to the dirty list
1104 * even if it is later hashed, as it will have been marked dirty already.
1105 *
1106 * In short, make sure you hash any inodes _before_ you start marking
1107 * them dirty.
1108 *
1109 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1110 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1111 * the kernel-internal blockdev inode represents the dirtying time of the
1112 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1113 * page->mapping->host, so the page-dirtying time is recorded in the internal
1114 * blockdev inode.
1115 */
1116 void __mark_inode_dirty(struct inode *inode, int flags)
1117 {
1118 struct super_block *sb = inode->i_sb;
1119 struct backing_dev_info *bdi = NULL;
1120
1121 /*
1122 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1123 * dirty the inode itself
1124 */
1125 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1126 trace_writeback_dirty_inode_start(inode, flags);
1127
1128 if (sb->s_op->dirty_inode)
1129 sb->s_op->dirty_inode(inode, flags);
1130
1131 trace_writeback_dirty_inode(inode, flags);
1132 }
1133
1134 /*
1135 * make sure that changes are seen by all cpus before we test i_state
1136 * -- mikulas
1137 */
1138 smp_mb();
1139
1140 /* avoid the locking if we can */
1141 if ((inode->i_state & flags) == flags)
1142 return;
1143
1144 if (unlikely(block_dump))
1145 block_dump___mark_inode_dirty(inode);
1146
1147 spin_lock(&inode->i_lock);
1148 if ((inode->i_state & flags) != flags) {
1149 const int was_dirty = inode->i_state & I_DIRTY;
1150
1151 inode->i_state |= flags;
1152
1153 /*
1154 * If the inode is being synced, just update its dirty state.
1155 * The unlocker will place the inode on the appropriate
1156 * superblock list, based upon its state.
1157 */
1158 if (inode->i_state & I_SYNC)
1159 goto out_unlock_inode;
1160
1161 /*
1162 * Only add valid (hashed) inodes to the superblock's
1163 * dirty list. Add blockdev inodes as well.
1164 */
1165 if (!S_ISBLK(inode->i_mode)) {
1166 if (inode_unhashed(inode))
1167 goto out_unlock_inode;
1168 }
1169 if (inode->i_state & I_FREEING)
1170 goto out_unlock_inode;
1171
1172 /*
1173 * If the inode was already on b_dirty/b_io/b_more_io, don't
1174 * reposition it (that would break b_dirty time-ordering).
1175 */
1176 if (!was_dirty) {
1177 bool wakeup_bdi = false;
1178 bdi = inode_to_bdi(inode);
1179
1180 spin_unlock(&inode->i_lock);
1181 spin_lock(&bdi->wb.list_lock);
1182 if (bdi_cap_writeback_dirty(bdi)) {
1183 WARN(!test_bit(BDI_registered, &bdi->state),
1184 "bdi-%s not registered\n", bdi->name);
1185
1186 /*
1187 * If this is the first dirty inode for this
1188 * bdi, we have to wake-up the corresponding
1189 * bdi thread to make sure background
1190 * write-back happens later.
1191 */
1192 if (!wb_has_dirty_io(&bdi->wb))
1193 wakeup_bdi = true;
1194 }
1195
1196 inode->dirtied_when = jiffies;
1197 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1198 spin_unlock(&bdi->wb.list_lock);
1199
1200 if (wakeup_bdi)
1201 bdi_wakeup_thread_delayed(bdi);
1202 return;
1203 }
1204 }
1205 out_unlock_inode:
1206 spin_unlock(&inode->i_lock);
1207
1208 }
1209 EXPORT_SYMBOL(__mark_inode_dirty);
1210
1211 static void wait_sb_inodes(struct super_block *sb)
1212 {
1213 struct inode *inode, *old_inode = NULL;
1214
1215 /*
1216 * We need to be protected against the filesystem going from
1217 * r/o to r/w or vice versa.
1218 */
1219 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1220
1221 spin_lock(&inode_sb_list_lock);
1222
1223 /*
1224 * Data integrity sync. Must wait for all pages under writeback,
1225 * because there may have been pages dirtied before our sync
1226 * call, but which had writeout started before we write it out.
1227 * In which case, the inode may not be on the dirty list, but
1228 * we still have to wait for that writeout.
1229 */
1230 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1231 struct address_space *mapping = inode->i_mapping;
1232
1233 spin_lock(&inode->i_lock);
1234 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1235 (mapping->nrpages == 0)) {
1236 spin_unlock(&inode->i_lock);
1237 continue;
1238 }
1239 __iget(inode);
1240 spin_unlock(&inode->i_lock);
1241 spin_unlock(&inode_sb_list_lock);
1242
1243 /*
1244 * We hold a reference to 'inode' so it couldn't have been
1245 * removed from s_inodes list while we dropped the
1246 * inode_sb_list_lock. We cannot iput the inode now as we can
1247 * be holding the last reference and we cannot iput it under
1248 * inode_sb_list_lock. So we keep the reference and iput it
1249 * later.
1250 */
1251 iput(old_inode);
1252 old_inode = inode;
1253
1254 filemap_fdatawait(mapping);
1255
1256 cond_resched();
1257
1258 spin_lock(&inode_sb_list_lock);
1259 }
1260 spin_unlock(&inode_sb_list_lock);
1261 iput(old_inode);
1262 }
1263
1264 /**
1265 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1266 * @sb: the superblock
1267 * @nr: the number of pages to write
1268 * @reason: reason why some writeback work initiated
1269 *
1270 * Start writeback on some inodes on this super_block. No guarantees are made
1271 * on how many (if any) will be written, and this function does not wait
1272 * for IO completion of submitted IO.
1273 */
1274 void writeback_inodes_sb_nr(struct super_block *sb,
1275 unsigned long nr,
1276 enum wb_reason reason)
1277 {
1278 DECLARE_COMPLETION_ONSTACK(done);
1279 struct wb_writeback_work work = {
1280 .sb = sb,
1281 .sync_mode = WB_SYNC_NONE,
1282 .tagged_writepages = 1,
1283 .done = &done,
1284 .nr_pages = nr,
1285 .reason = reason,
1286 };
1287
1288 if (sb->s_bdi == &noop_backing_dev_info)
1289 return;
1290 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1291 bdi_queue_work(sb->s_bdi, &work);
1292 wait_for_completion(&done);
1293 }
1294 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1295
1296 /**
1297 * writeback_inodes_sb - writeback dirty inodes from given super_block
1298 * @sb: the superblock
1299 * @reason: reason why some writeback work was initiated
1300 *
1301 * Start writeback on some inodes on this super_block. No guarantees are made
1302 * on how many (if any) will be written, and this function does not wait
1303 * for IO completion of submitted IO.
1304 */
1305 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1306 {
1307 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1308 }
1309 EXPORT_SYMBOL(writeback_inodes_sb);
1310
1311 /**
1312 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1313 * @sb: the superblock
1314 * @nr: the number of pages to write
1315 * @reason: the reason of writeback
1316 *
1317 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1318 * Returns 1 if writeback was started, 0 if not.
1319 */
1320 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1321 unsigned long nr,
1322 enum wb_reason reason)
1323 {
1324 if (writeback_in_progress(sb->s_bdi))
1325 return 1;
1326
1327 if (!down_read_trylock(&sb->s_umount))
1328 return 0;
1329
1330 writeback_inodes_sb_nr(sb, nr, reason);
1331 up_read(&sb->s_umount);
1332 return 1;
1333 }
1334 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1335
1336 /**
1337 * try_to_writeback_inodes_sb - try to start writeback if none underway
1338 * @sb: the superblock
1339 * @reason: reason why some writeback work was initiated
1340 *
1341 * Implement by try_to_writeback_inodes_sb_nr()
1342 * Returns 1 if writeback was started, 0 if not.
1343 */
1344 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1345 {
1346 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1347 }
1348 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1349
1350 /**
1351 * sync_inodes_sb - sync sb inode pages
1352 * @sb: the superblock
1353 *
1354 * This function writes and waits on any dirty inode belonging to this
1355 * super_block.
1356 */
1357 void sync_inodes_sb(struct super_block *sb)
1358 {
1359 DECLARE_COMPLETION_ONSTACK(done);
1360 struct wb_writeback_work work = {
1361 .sb = sb,
1362 .sync_mode = WB_SYNC_ALL,
1363 .nr_pages = LONG_MAX,
1364 .range_cyclic = 0,
1365 .done = &done,
1366 .reason = WB_REASON_SYNC,
1367 .for_sync = 1,
1368 };
1369
1370 /* Nothing to do? */
1371 if (sb->s_bdi == &noop_backing_dev_info)
1372 return;
1373 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1374
1375 bdi_queue_work(sb->s_bdi, &work);
1376 wait_for_completion(&done);
1377
1378 wait_sb_inodes(sb);
1379 }
1380 EXPORT_SYMBOL(sync_inodes_sb);
1381
1382 /**
1383 * write_inode_now - write an inode to disk
1384 * @inode: inode to write to disk
1385 * @sync: whether the write should be synchronous or not
1386 *
1387 * This function commits an inode to disk immediately if it is dirty. This is
1388 * primarily needed by knfsd.
1389 *
1390 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1391 */
1392 int write_inode_now(struct inode *inode, int sync)
1393 {
1394 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1395 struct writeback_control wbc = {
1396 .nr_to_write = LONG_MAX,
1397 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1398 .range_start = 0,
1399 .range_end = LLONG_MAX,
1400 };
1401
1402 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1403 wbc.nr_to_write = 0;
1404
1405 might_sleep();
1406 return writeback_single_inode(inode, wb, &wbc);
1407 }
1408 EXPORT_SYMBOL(write_inode_now);
1409
1410 /**
1411 * sync_inode - write an inode and its pages to disk.
1412 * @inode: the inode to sync
1413 * @wbc: controls the writeback mode
1414 *
1415 * sync_inode() will write an inode and its pages to disk. It will also
1416 * correctly update the inode on its superblock's dirty inode lists and will
1417 * update inode->i_state.
1418 *
1419 * The caller must have a ref on the inode.
1420 */
1421 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1422 {
1423 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1424 }
1425 EXPORT_SYMBOL(sync_inode);
1426
1427 /**
1428 * sync_inode_metadata - write an inode to disk
1429 * @inode: the inode to sync
1430 * @wait: wait for I/O to complete.
1431 *
1432 * Write an inode to disk and adjust its dirty state after completion.
1433 *
1434 * Note: only writes the actual inode, no associated data or other metadata.
1435 */
1436 int sync_inode_metadata(struct inode *inode, int wait)
1437 {
1438 struct writeback_control wbc = {
1439 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1440 .nr_to_write = 0, /* metadata-only */
1441 };
1442
1443 return sync_inode(inode, &wbc);
1444 }
1445 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.060399 seconds and 5 git commands to generate.