Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34 * 4MB minimal write chunk size
35 */
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
38 struct wb_completion {
39 atomic_t cnt;
40 };
41
42 /*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
45 struct wb_writeback_work {
46 long nr_pages;
47 struct super_block *sb;
48 unsigned long *older_than_this;
49 enum writeback_sync_modes sync_mode;
50 unsigned int tagged_writepages:1;
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free:1; /* free on completion */
56 enum wb_reason reason; /* why was writeback initiated? */
57
58 struct list_head list; /* pending work list */
59 struct wb_completion *done; /* set if the caller waits */
60 };
61
62 /*
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
68 */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
72 }
73
74
75 /*
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
84 */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89 return list_entry(head, struct inode, i_io_list);
90 }
91
92 /*
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
96 */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104 if (wb_has_dirty_io(wb)) {
105 return false;
106 } else {
107 set_bit(WB_has_dirty_io, &wb->state);
108 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 atomic_long_add(wb->avg_write_bandwidth,
110 &wb->bdi->tot_write_bandwidth);
111 return true;
112 }
113 }
114
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 clear_bit(WB_has_dirty_io, &wb->state);
120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 &wb->bdi->tot_write_bandwidth) < 0);
122 }
123 }
124
125 /**
126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io}
130 *
131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
134 */
135 static bool inode_io_list_move_locked(struct inode *inode,
136 struct bdi_writeback *wb,
137 struct list_head *head)
138 {
139 assert_spin_locked(&wb->list_lock);
140
141 list_move(&inode->i_io_list, head);
142
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head != &wb->b_dirty_time)
145 return wb_io_lists_populated(wb);
146
147 wb_io_lists_depopulated(wb);
148 return false;
149 }
150
151 /**
152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
155 *
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
158 */
159 static void inode_io_list_del_locked(struct inode *inode,
160 struct bdi_writeback *wb)
161 {
162 assert_spin_locked(&wb->list_lock);
163
164 list_del_init(&inode->i_io_list);
165 wb_io_lists_depopulated(wb);
166 }
167
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170 spin_lock_bh(&wb->work_lock);
171 if (test_bit(WB_registered, &wb->state))
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 spin_unlock_bh(&wb->work_lock);
174 }
175
176 static void wb_queue_work(struct bdi_writeback *wb,
177 struct wb_writeback_work *work)
178 {
179 trace_writeback_queue(wb, work);
180
181 spin_lock_bh(&wb->work_lock);
182 if (!test_bit(WB_registered, &wb->state))
183 goto out_unlock;
184 if (work->done)
185 atomic_inc(&work->done->cnt);
186 list_add_tail(&work->list, &wb->work_list);
187 mod_delayed_work(bdi_wq, &wb->dwork, 0);
188 out_unlock:
189 spin_unlock_bh(&wb->work_lock);
190 }
191
192 /**
193 * wb_wait_for_completion - wait for completion of bdi_writeback_works
194 * @bdi: bdi work items were issued to
195 * @done: target wb_completion
196 *
197 * Wait for one or more work items issued to @bdi with their ->done field
198 * set to @done, which should have been defined with
199 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
200 * work items are completed. Work items which are waited upon aren't freed
201 * automatically on completion.
202 */
203 static void wb_wait_for_completion(struct backing_dev_info *bdi,
204 struct wb_completion *done)
205 {
206 atomic_dec(&done->cnt); /* put down the initial count */
207 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
208 }
209
210 #ifdef CONFIG_CGROUP_WRITEBACK
211
212 /* parameters for foreign inode detection, see wb_detach_inode() */
213 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
214 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
215 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
216 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
217
218 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
219 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
220 /* each slot's duration is 2s / 16 */
221 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
222 /* if foreign slots >= 8, switch */
223 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
224 /* one round can affect upto 5 slots */
225
226 void __inode_attach_wb(struct inode *inode, struct page *page)
227 {
228 struct backing_dev_info *bdi = inode_to_bdi(inode);
229 struct bdi_writeback *wb = NULL;
230
231 if (inode_cgwb_enabled(inode)) {
232 struct cgroup_subsys_state *memcg_css;
233
234 if (page) {
235 memcg_css = mem_cgroup_css_from_page(page);
236 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
237 } else {
238 /* must pin memcg_css, see wb_get_create() */
239 memcg_css = task_get_css(current, memory_cgrp_id);
240 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
241 css_put(memcg_css);
242 }
243 }
244
245 if (!wb)
246 wb = &bdi->wb;
247
248 /*
249 * There may be multiple instances of this function racing to
250 * update the same inode. Use cmpxchg() to tell the winner.
251 */
252 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
253 wb_put(wb);
254 }
255
256 /**
257 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
258 * @inode: inode of interest with i_lock held
259 *
260 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
261 * held on entry and is released on return. The returned wb is guaranteed
262 * to stay @inode's associated wb until its list_lock is released.
263 */
264 static struct bdi_writeback *
265 locked_inode_to_wb_and_lock_list(struct inode *inode)
266 __releases(&inode->i_lock)
267 __acquires(&wb->list_lock)
268 {
269 while (true) {
270 struct bdi_writeback *wb = inode_to_wb(inode);
271
272 /*
273 * inode_to_wb() association is protected by both
274 * @inode->i_lock and @wb->list_lock but list_lock nests
275 * outside i_lock. Drop i_lock and verify that the
276 * association hasn't changed after acquiring list_lock.
277 */
278 wb_get(wb);
279 spin_unlock(&inode->i_lock);
280 spin_lock(&wb->list_lock);
281 wb_put(wb); /* not gonna deref it anymore */
282
283 /* i_wb may have changed inbetween, can't use inode_to_wb() */
284 if (likely(wb == inode->i_wb))
285 return wb; /* @inode already has ref */
286
287 spin_unlock(&wb->list_lock);
288 cpu_relax();
289 spin_lock(&inode->i_lock);
290 }
291 }
292
293 /**
294 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
295 * @inode: inode of interest
296 *
297 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
298 * on entry.
299 */
300 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
301 __acquires(&wb->list_lock)
302 {
303 spin_lock(&inode->i_lock);
304 return locked_inode_to_wb_and_lock_list(inode);
305 }
306
307 struct inode_switch_wbs_context {
308 struct inode *inode;
309 struct bdi_writeback *new_wb;
310
311 struct rcu_head rcu_head;
312 struct work_struct work;
313 };
314
315 static void inode_switch_wbs_work_fn(struct work_struct *work)
316 {
317 struct inode_switch_wbs_context *isw =
318 container_of(work, struct inode_switch_wbs_context, work);
319 struct inode *inode = isw->inode;
320 struct super_block *sb = inode->i_sb;
321 struct address_space *mapping = inode->i_mapping;
322 struct bdi_writeback *old_wb = inode->i_wb;
323 struct bdi_writeback *new_wb = isw->new_wb;
324 struct radix_tree_iter iter;
325 bool switched = false;
326 void **slot;
327
328 /*
329 * By the time control reaches here, RCU grace period has passed
330 * since I_WB_SWITCH assertion and all wb stat update transactions
331 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
332 * synchronizing against mapping->tree_lock.
333 *
334 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
335 * gives us exclusion against all wb related operations on @inode
336 * including IO list manipulations and stat updates.
337 */
338 if (old_wb < new_wb) {
339 spin_lock(&old_wb->list_lock);
340 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
341 } else {
342 spin_lock(&new_wb->list_lock);
343 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
344 }
345 spin_lock(&inode->i_lock);
346 spin_lock_irq(&mapping->tree_lock);
347
348 /*
349 * Once I_FREEING is visible under i_lock, the eviction path owns
350 * the inode and we shouldn't modify ->i_io_list.
351 */
352 if (unlikely(inode->i_state & I_FREEING))
353 goto skip_switch;
354
355 /*
356 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
357 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
358 * pages actually under underwriteback.
359 */
360 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
361 PAGECACHE_TAG_DIRTY) {
362 struct page *page = radix_tree_deref_slot_protected(slot,
363 &mapping->tree_lock);
364 if (likely(page) && PageDirty(page)) {
365 __dec_wb_stat(old_wb, WB_RECLAIMABLE);
366 __inc_wb_stat(new_wb, WB_RECLAIMABLE);
367 }
368 }
369
370 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
371 PAGECACHE_TAG_WRITEBACK) {
372 struct page *page = radix_tree_deref_slot_protected(slot,
373 &mapping->tree_lock);
374 if (likely(page)) {
375 WARN_ON_ONCE(!PageWriteback(page));
376 __dec_wb_stat(old_wb, WB_WRITEBACK);
377 __inc_wb_stat(new_wb, WB_WRITEBACK);
378 }
379 }
380
381 wb_get(new_wb);
382
383 /*
384 * Transfer to @new_wb's IO list if necessary. The specific list
385 * @inode was on is ignored and the inode is put on ->b_dirty which
386 * is always correct including from ->b_dirty_time. The transfer
387 * preserves @inode->dirtied_when ordering.
388 */
389 if (!list_empty(&inode->i_io_list)) {
390 struct inode *pos;
391
392 inode_io_list_del_locked(inode, old_wb);
393 inode->i_wb = new_wb;
394 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
395 if (time_after_eq(inode->dirtied_when,
396 pos->dirtied_when))
397 break;
398 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
399 } else {
400 inode->i_wb = new_wb;
401 }
402
403 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
404 inode->i_wb_frn_winner = 0;
405 inode->i_wb_frn_avg_time = 0;
406 inode->i_wb_frn_history = 0;
407 switched = true;
408 skip_switch:
409 /*
410 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
411 * ensures that the new wb is visible if they see !I_WB_SWITCH.
412 */
413 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
414
415 spin_unlock_irq(&mapping->tree_lock);
416 spin_unlock(&inode->i_lock);
417 spin_unlock(&new_wb->list_lock);
418 spin_unlock(&old_wb->list_lock);
419
420 if (switched) {
421 wb_wakeup(new_wb);
422 wb_put(old_wb);
423 }
424 wb_put(new_wb);
425
426 iput(inode);
427 deactivate_super(sb);
428 kfree(isw);
429 }
430
431 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
432 {
433 struct inode_switch_wbs_context *isw = container_of(rcu_head,
434 struct inode_switch_wbs_context, rcu_head);
435
436 /* needs to grab bh-unsafe locks, bounce to work item */
437 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
438 schedule_work(&isw->work);
439 }
440
441 /**
442 * inode_switch_wbs - change the wb association of an inode
443 * @inode: target inode
444 * @new_wb_id: ID of the new wb
445 *
446 * Switch @inode's wb association to the wb identified by @new_wb_id. The
447 * switching is performed asynchronously and may fail silently.
448 */
449 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
450 {
451 struct backing_dev_info *bdi = inode_to_bdi(inode);
452 struct cgroup_subsys_state *memcg_css;
453 struct inode_switch_wbs_context *isw;
454
455 /* noop if seems to be already in progress */
456 if (inode->i_state & I_WB_SWITCH)
457 return;
458
459 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
460 if (!isw)
461 return;
462
463 /* find and pin the new wb */
464 rcu_read_lock();
465 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
466 if (memcg_css)
467 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
468 rcu_read_unlock();
469 if (!isw->new_wb)
470 goto out_free;
471
472 /* while holding I_WB_SWITCH, no one else can update the association */
473 spin_lock(&inode->i_lock);
474
475 if (inode->i_state & (I_WB_SWITCH | I_FREEING) ||
476 inode_to_wb(inode) == isw->new_wb)
477 goto out_unlock;
478
479 if (!atomic_inc_not_zero(&inode->i_sb->s_active))
480 goto out_unlock;
481
482 inode->i_state |= I_WB_SWITCH;
483 spin_unlock(&inode->i_lock);
484
485 ihold(inode);
486 isw->inode = inode;
487
488 /*
489 * In addition to synchronizing among switchers, I_WB_SWITCH tells
490 * the RCU protected stat update paths to grab the mapping's
491 * tree_lock so that stat transfer can synchronize against them.
492 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
493 */
494 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
495 return;
496
497 out_unlock:
498 spin_unlock(&inode->i_lock);
499 out_free:
500 if (isw->new_wb)
501 wb_put(isw->new_wb);
502 kfree(isw);
503 }
504
505 /**
506 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
507 * @wbc: writeback_control of interest
508 * @inode: target inode
509 *
510 * @inode is locked and about to be written back under the control of @wbc.
511 * Record @inode's writeback context into @wbc and unlock the i_lock. On
512 * writeback completion, wbc_detach_inode() should be called. This is used
513 * to track the cgroup writeback context.
514 */
515 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
516 struct inode *inode)
517 {
518 if (!inode_cgwb_enabled(inode)) {
519 spin_unlock(&inode->i_lock);
520 return;
521 }
522
523 wbc->wb = inode_to_wb(inode);
524 wbc->inode = inode;
525
526 wbc->wb_id = wbc->wb->memcg_css->id;
527 wbc->wb_lcand_id = inode->i_wb_frn_winner;
528 wbc->wb_tcand_id = 0;
529 wbc->wb_bytes = 0;
530 wbc->wb_lcand_bytes = 0;
531 wbc->wb_tcand_bytes = 0;
532
533 wb_get(wbc->wb);
534 spin_unlock(&inode->i_lock);
535
536 /*
537 * A dying wb indicates that the memcg-blkcg mapping has changed
538 * and a new wb is already serving the memcg. Switch immediately.
539 */
540 if (unlikely(wb_dying(wbc->wb)))
541 inode_switch_wbs(inode, wbc->wb_id);
542 }
543
544 /**
545 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
546 * @wbc: writeback_control of the just finished writeback
547 *
548 * To be called after a writeback attempt of an inode finishes and undoes
549 * wbc_attach_and_unlock_inode(). Can be called under any context.
550 *
551 * As concurrent write sharing of an inode is expected to be very rare and
552 * memcg only tracks page ownership on first-use basis severely confining
553 * the usefulness of such sharing, cgroup writeback tracks ownership
554 * per-inode. While the support for concurrent write sharing of an inode
555 * is deemed unnecessary, an inode being written to by different cgroups at
556 * different points in time is a lot more common, and, more importantly,
557 * charging only by first-use can too readily lead to grossly incorrect
558 * behaviors (single foreign page can lead to gigabytes of writeback to be
559 * incorrectly attributed).
560 *
561 * To resolve this issue, cgroup writeback detects the majority dirtier of
562 * an inode and transfers the ownership to it. To avoid unnnecessary
563 * oscillation, the detection mechanism keeps track of history and gives
564 * out the switch verdict only if the foreign usage pattern is stable over
565 * a certain amount of time and/or writeback attempts.
566 *
567 * On each writeback attempt, @wbc tries to detect the majority writer
568 * using Boyer-Moore majority vote algorithm. In addition to the byte
569 * count from the majority voting, it also counts the bytes written for the
570 * current wb and the last round's winner wb (max of last round's current
571 * wb, the winner from two rounds ago, and the last round's majority
572 * candidate). Keeping track of the historical winner helps the algorithm
573 * to semi-reliably detect the most active writer even when it's not the
574 * absolute majority.
575 *
576 * Once the winner of the round is determined, whether the winner is
577 * foreign or not and how much IO time the round consumed is recorded in
578 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
579 * over a certain threshold, the switch verdict is given.
580 */
581 void wbc_detach_inode(struct writeback_control *wbc)
582 {
583 struct bdi_writeback *wb = wbc->wb;
584 struct inode *inode = wbc->inode;
585 unsigned long avg_time, max_bytes, max_time;
586 u16 history;
587 int max_id;
588
589 if (!wb)
590 return;
591
592 history = inode->i_wb_frn_history;
593 avg_time = inode->i_wb_frn_avg_time;
594
595 /* pick the winner of this round */
596 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
597 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
598 max_id = wbc->wb_id;
599 max_bytes = wbc->wb_bytes;
600 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
601 max_id = wbc->wb_lcand_id;
602 max_bytes = wbc->wb_lcand_bytes;
603 } else {
604 max_id = wbc->wb_tcand_id;
605 max_bytes = wbc->wb_tcand_bytes;
606 }
607
608 /*
609 * Calculate the amount of IO time the winner consumed and fold it
610 * into the running average kept per inode. If the consumed IO
611 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
612 * deciding whether to switch or not. This is to prevent one-off
613 * small dirtiers from skewing the verdict.
614 */
615 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
616 wb->avg_write_bandwidth);
617 if (avg_time)
618 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
619 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
620 else
621 avg_time = max_time; /* immediate catch up on first run */
622
623 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
624 int slots;
625
626 /*
627 * The switch verdict is reached if foreign wb's consume
628 * more than a certain proportion of IO time in a
629 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
630 * history mask where each bit represents one sixteenth of
631 * the period. Determine the number of slots to shift into
632 * history from @max_time.
633 */
634 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
635 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
636 history <<= slots;
637 if (wbc->wb_id != max_id)
638 history |= (1U << slots) - 1;
639
640 /*
641 * Switch if the current wb isn't the consistent winner.
642 * If there are multiple closely competing dirtiers, the
643 * inode may switch across them repeatedly over time, which
644 * is okay. The main goal is avoiding keeping an inode on
645 * the wrong wb for an extended period of time.
646 */
647 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
648 inode_switch_wbs(inode, max_id);
649 }
650
651 /*
652 * Multiple instances of this function may race to update the
653 * following fields but we don't mind occassional inaccuracies.
654 */
655 inode->i_wb_frn_winner = max_id;
656 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
657 inode->i_wb_frn_history = history;
658
659 wb_put(wbc->wb);
660 wbc->wb = NULL;
661 }
662
663 /**
664 * wbc_account_io - account IO issued during writeback
665 * @wbc: writeback_control of the writeback in progress
666 * @page: page being written out
667 * @bytes: number of bytes being written out
668 *
669 * @bytes from @page are about to written out during the writeback
670 * controlled by @wbc. Keep the book for foreign inode detection. See
671 * wbc_detach_inode().
672 */
673 void wbc_account_io(struct writeback_control *wbc, struct page *page,
674 size_t bytes)
675 {
676 int id;
677
678 /*
679 * pageout() path doesn't attach @wbc to the inode being written
680 * out. This is intentional as we don't want the function to block
681 * behind a slow cgroup. Ultimately, we want pageout() to kick off
682 * regular writeback instead of writing things out itself.
683 */
684 if (!wbc->wb)
685 return;
686
687 id = mem_cgroup_css_from_page(page)->id;
688
689 if (id == wbc->wb_id) {
690 wbc->wb_bytes += bytes;
691 return;
692 }
693
694 if (id == wbc->wb_lcand_id)
695 wbc->wb_lcand_bytes += bytes;
696
697 /* Boyer-Moore majority vote algorithm */
698 if (!wbc->wb_tcand_bytes)
699 wbc->wb_tcand_id = id;
700 if (id == wbc->wb_tcand_id)
701 wbc->wb_tcand_bytes += bytes;
702 else
703 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
704 }
705 EXPORT_SYMBOL_GPL(wbc_account_io);
706
707 /**
708 * inode_congested - test whether an inode is congested
709 * @inode: inode to test for congestion (may be NULL)
710 * @cong_bits: mask of WB_[a]sync_congested bits to test
711 *
712 * Tests whether @inode is congested. @cong_bits is the mask of congestion
713 * bits to test and the return value is the mask of set bits.
714 *
715 * If cgroup writeback is enabled for @inode, the congestion state is
716 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
717 * associated with @inode is congested; otherwise, the root wb's congestion
718 * state is used.
719 *
720 * @inode is allowed to be NULL as this function is often called on
721 * mapping->host which is NULL for the swapper space.
722 */
723 int inode_congested(struct inode *inode, int cong_bits)
724 {
725 /*
726 * Once set, ->i_wb never becomes NULL while the inode is alive.
727 * Start transaction iff ->i_wb is visible.
728 */
729 if (inode && inode_to_wb_is_valid(inode)) {
730 struct bdi_writeback *wb;
731 bool locked, congested;
732
733 wb = unlocked_inode_to_wb_begin(inode, &locked);
734 congested = wb_congested(wb, cong_bits);
735 unlocked_inode_to_wb_end(inode, locked);
736 return congested;
737 }
738
739 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
740 }
741 EXPORT_SYMBOL_GPL(inode_congested);
742
743 /**
744 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
745 * @wb: target bdi_writeback to split @nr_pages to
746 * @nr_pages: number of pages to write for the whole bdi
747 *
748 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
749 * relation to the total write bandwidth of all wb's w/ dirty inodes on
750 * @wb->bdi.
751 */
752 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
753 {
754 unsigned long this_bw = wb->avg_write_bandwidth;
755 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
756
757 if (nr_pages == LONG_MAX)
758 return LONG_MAX;
759
760 /*
761 * This may be called on clean wb's and proportional distribution
762 * may not make sense, just use the original @nr_pages in those
763 * cases. In general, we wanna err on the side of writing more.
764 */
765 if (!tot_bw || this_bw >= tot_bw)
766 return nr_pages;
767 else
768 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
769 }
770
771 /**
772 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
773 * @bdi: target backing_dev_info
774 * @base_work: wb_writeback_work to issue
775 * @skip_if_busy: skip wb's which already have writeback in progress
776 *
777 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
778 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
779 * distributed to the busy wbs according to each wb's proportion in the
780 * total active write bandwidth of @bdi.
781 */
782 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
783 struct wb_writeback_work *base_work,
784 bool skip_if_busy)
785 {
786 struct bdi_writeback *last_wb = NULL;
787 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
788 struct bdi_writeback, bdi_node);
789
790 might_sleep();
791 restart:
792 rcu_read_lock();
793 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
794 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
795 struct wb_writeback_work fallback_work;
796 struct wb_writeback_work *work;
797 long nr_pages;
798
799 if (last_wb) {
800 wb_put(last_wb);
801 last_wb = NULL;
802 }
803
804 /* SYNC_ALL writes out I_DIRTY_TIME too */
805 if (!wb_has_dirty_io(wb) &&
806 (base_work->sync_mode == WB_SYNC_NONE ||
807 list_empty(&wb->b_dirty_time)))
808 continue;
809 if (skip_if_busy && writeback_in_progress(wb))
810 continue;
811
812 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
813
814 work = kmalloc(sizeof(*work), GFP_ATOMIC);
815 if (work) {
816 *work = *base_work;
817 work->nr_pages = nr_pages;
818 work->auto_free = 1;
819 wb_queue_work(wb, work);
820 continue;
821 }
822
823 /* alloc failed, execute synchronously using on-stack fallback */
824 work = &fallback_work;
825 *work = *base_work;
826 work->nr_pages = nr_pages;
827 work->auto_free = 0;
828 work->done = &fallback_work_done;
829
830 wb_queue_work(wb, work);
831
832 /*
833 * Pin @wb so that it stays on @bdi->wb_list. This allows
834 * continuing iteration from @wb after dropping and
835 * regrabbing rcu read lock.
836 */
837 wb_get(wb);
838 last_wb = wb;
839
840 rcu_read_unlock();
841 wb_wait_for_completion(bdi, &fallback_work_done);
842 goto restart;
843 }
844 rcu_read_unlock();
845
846 if (last_wb)
847 wb_put(last_wb);
848 }
849
850 #else /* CONFIG_CGROUP_WRITEBACK */
851
852 static struct bdi_writeback *
853 locked_inode_to_wb_and_lock_list(struct inode *inode)
854 __releases(&inode->i_lock)
855 __acquires(&wb->list_lock)
856 {
857 struct bdi_writeback *wb = inode_to_wb(inode);
858
859 spin_unlock(&inode->i_lock);
860 spin_lock(&wb->list_lock);
861 return wb;
862 }
863
864 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
865 __acquires(&wb->list_lock)
866 {
867 struct bdi_writeback *wb = inode_to_wb(inode);
868
869 spin_lock(&wb->list_lock);
870 return wb;
871 }
872
873 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
874 {
875 return nr_pages;
876 }
877
878 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
879 struct wb_writeback_work *base_work,
880 bool skip_if_busy)
881 {
882 might_sleep();
883
884 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
885 base_work->auto_free = 0;
886 wb_queue_work(&bdi->wb, base_work);
887 }
888 }
889
890 #endif /* CONFIG_CGROUP_WRITEBACK */
891
892 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
893 bool range_cyclic, enum wb_reason reason)
894 {
895 struct wb_writeback_work *work;
896
897 if (!wb_has_dirty_io(wb))
898 return;
899
900 /*
901 * This is WB_SYNC_NONE writeback, so if allocation fails just
902 * wakeup the thread for old dirty data writeback
903 */
904 work = kzalloc(sizeof(*work), GFP_ATOMIC);
905 if (!work) {
906 trace_writeback_nowork(wb);
907 wb_wakeup(wb);
908 return;
909 }
910
911 work->sync_mode = WB_SYNC_NONE;
912 work->nr_pages = nr_pages;
913 work->range_cyclic = range_cyclic;
914 work->reason = reason;
915 work->auto_free = 1;
916
917 wb_queue_work(wb, work);
918 }
919
920 /**
921 * wb_start_background_writeback - start background writeback
922 * @wb: bdi_writback to write from
923 *
924 * Description:
925 * This makes sure WB_SYNC_NONE background writeback happens. When
926 * this function returns, it is only guaranteed that for given wb
927 * some IO is happening if we are over background dirty threshold.
928 * Caller need not hold sb s_umount semaphore.
929 */
930 void wb_start_background_writeback(struct bdi_writeback *wb)
931 {
932 /*
933 * We just wake up the flusher thread. It will perform background
934 * writeback as soon as there is no other work to do.
935 */
936 trace_writeback_wake_background(wb);
937 wb_wakeup(wb);
938 }
939
940 /*
941 * Remove the inode from the writeback list it is on.
942 */
943 void inode_io_list_del(struct inode *inode)
944 {
945 struct bdi_writeback *wb;
946
947 wb = inode_to_wb_and_lock_list(inode);
948 inode_io_list_del_locked(inode, wb);
949 spin_unlock(&wb->list_lock);
950 }
951
952 /*
953 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
954 * furthest end of its superblock's dirty-inode list.
955 *
956 * Before stamping the inode's ->dirtied_when, we check to see whether it is
957 * already the most-recently-dirtied inode on the b_dirty list. If that is
958 * the case then the inode must have been redirtied while it was being written
959 * out and we don't reset its dirtied_when.
960 */
961 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
962 {
963 if (!list_empty(&wb->b_dirty)) {
964 struct inode *tail;
965
966 tail = wb_inode(wb->b_dirty.next);
967 if (time_before(inode->dirtied_when, tail->dirtied_when))
968 inode->dirtied_when = jiffies;
969 }
970 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
971 }
972
973 /*
974 * requeue inode for re-scanning after bdi->b_io list is exhausted.
975 */
976 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
977 {
978 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
979 }
980
981 static void inode_sync_complete(struct inode *inode)
982 {
983 inode->i_state &= ~I_SYNC;
984 /* If inode is clean an unused, put it into LRU now... */
985 inode_add_lru(inode);
986 /* Waiters must see I_SYNC cleared before being woken up */
987 smp_mb();
988 wake_up_bit(&inode->i_state, __I_SYNC);
989 }
990
991 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
992 {
993 bool ret = time_after(inode->dirtied_when, t);
994 #ifndef CONFIG_64BIT
995 /*
996 * For inodes being constantly redirtied, dirtied_when can get stuck.
997 * It _appears_ to be in the future, but is actually in distant past.
998 * This test is necessary to prevent such wrapped-around relative times
999 * from permanently stopping the whole bdi writeback.
1000 */
1001 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1002 #endif
1003 return ret;
1004 }
1005
1006 #define EXPIRE_DIRTY_ATIME 0x0001
1007
1008 /*
1009 * Move expired (dirtied before work->older_than_this) dirty inodes from
1010 * @delaying_queue to @dispatch_queue.
1011 */
1012 static int move_expired_inodes(struct list_head *delaying_queue,
1013 struct list_head *dispatch_queue,
1014 int flags,
1015 struct wb_writeback_work *work)
1016 {
1017 unsigned long *older_than_this = NULL;
1018 unsigned long expire_time;
1019 LIST_HEAD(tmp);
1020 struct list_head *pos, *node;
1021 struct super_block *sb = NULL;
1022 struct inode *inode;
1023 int do_sb_sort = 0;
1024 int moved = 0;
1025
1026 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1027 older_than_this = work->older_than_this;
1028 else if (!work->for_sync) {
1029 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1030 older_than_this = &expire_time;
1031 }
1032 while (!list_empty(delaying_queue)) {
1033 inode = wb_inode(delaying_queue->prev);
1034 if (older_than_this &&
1035 inode_dirtied_after(inode, *older_than_this))
1036 break;
1037 list_move(&inode->i_io_list, &tmp);
1038 moved++;
1039 if (flags & EXPIRE_DIRTY_ATIME)
1040 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1041 if (sb_is_blkdev_sb(inode->i_sb))
1042 continue;
1043 if (sb && sb != inode->i_sb)
1044 do_sb_sort = 1;
1045 sb = inode->i_sb;
1046 }
1047
1048 /* just one sb in list, splice to dispatch_queue and we're done */
1049 if (!do_sb_sort) {
1050 list_splice(&tmp, dispatch_queue);
1051 goto out;
1052 }
1053
1054 /* Move inodes from one superblock together */
1055 while (!list_empty(&tmp)) {
1056 sb = wb_inode(tmp.prev)->i_sb;
1057 list_for_each_prev_safe(pos, node, &tmp) {
1058 inode = wb_inode(pos);
1059 if (inode->i_sb == sb)
1060 list_move(&inode->i_io_list, dispatch_queue);
1061 }
1062 }
1063 out:
1064 return moved;
1065 }
1066
1067 /*
1068 * Queue all expired dirty inodes for io, eldest first.
1069 * Before
1070 * newly dirtied b_dirty b_io b_more_io
1071 * =============> gf edc BA
1072 * After
1073 * newly dirtied b_dirty b_io b_more_io
1074 * =============> g fBAedc
1075 * |
1076 * +--> dequeue for IO
1077 */
1078 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1079 {
1080 int moved;
1081
1082 assert_spin_locked(&wb->list_lock);
1083 list_splice_init(&wb->b_more_io, &wb->b_io);
1084 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1085 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1086 EXPIRE_DIRTY_ATIME, work);
1087 if (moved)
1088 wb_io_lists_populated(wb);
1089 trace_writeback_queue_io(wb, work, moved);
1090 }
1091
1092 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1093 {
1094 int ret;
1095
1096 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1097 trace_writeback_write_inode_start(inode, wbc);
1098 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1099 trace_writeback_write_inode(inode, wbc);
1100 return ret;
1101 }
1102 return 0;
1103 }
1104
1105 /*
1106 * Wait for writeback on an inode to complete. Called with i_lock held.
1107 * Caller must make sure inode cannot go away when we drop i_lock.
1108 */
1109 static void __inode_wait_for_writeback(struct inode *inode)
1110 __releases(inode->i_lock)
1111 __acquires(inode->i_lock)
1112 {
1113 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1114 wait_queue_head_t *wqh;
1115
1116 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1117 while (inode->i_state & I_SYNC) {
1118 spin_unlock(&inode->i_lock);
1119 __wait_on_bit(wqh, &wq, bit_wait,
1120 TASK_UNINTERRUPTIBLE);
1121 spin_lock(&inode->i_lock);
1122 }
1123 }
1124
1125 /*
1126 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1127 */
1128 void inode_wait_for_writeback(struct inode *inode)
1129 {
1130 spin_lock(&inode->i_lock);
1131 __inode_wait_for_writeback(inode);
1132 spin_unlock(&inode->i_lock);
1133 }
1134
1135 /*
1136 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1137 * held and drops it. It is aimed for callers not holding any inode reference
1138 * so once i_lock is dropped, inode can go away.
1139 */
1140 static void inode_sleep_on_writeback(struct inode *inode)
1141 __releases(inode->i_lock)
1142 {
1143 DEFINE_WAIT(wait);
1144 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1145 int sleep;
1146
1147 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1148 sleep = inode->i_state & I_SYNC;
1149 spin_unlock(&inode->i_lock);
1150 if (sleep)
1151 schedule();
1152 finish_wait(wqh, &wait);
1153 }
1154
1155 /*
1156 * Find proper writeback list for the inode depending on its current state and
1157 * possibly also change of its state while we were doing writeback. Here we
1158 * handle things such as livelock prevention or fairness of writeback among
1159 * inodes. This function can be called only by flusher thread - noone else
1160 * processes all inodes in writeback lists and requeueing inodes behind flusher
1161 * thread's back can have unexpected consequences.
1162 */
1163 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1164 struct writeback_control *wbc)
1165 {
1166 if (inode->i_state & I_FREEING)
1167 return;
1168
1169 /*
1170 * Sync livelock prevention. Each inode is tagged and synced in one
1171 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1172 * the dirty time to prevent enqueue and sync it again.
1173 */
1174 if ((inode->i_state & I_DIRTY) &&
1175 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1176 inode->dirtied_when = jiffies;
1177
1178 if (wbc->pages_skipped) {
1179 /*
1180 * writeback is not making progress due to locked
1181 * buffers. Skip this inode for now.
1182 */
1183 redirty_tail(inode, wb);
1184 return;
1185 }
1186
1187 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1188 /*
1189 * We didn't write back all the pages. nfs_writepages()
1190 * sometimes bales out without doing anything.
1191 */
1192 if (wbc->nr_to_write <= 0) {
1193 /* Slice used up. Queue for next turn. */
1194 requeue_io(inode, wb);
1195 } else {
1196 /*
1197 * Writeback blocked by something other than
1198 * congestion. Delay the inode for some time to
1199 * avoid spinning on the CPU (100% iowait)
1200 * retrying writeback of the dirty page/inode
1201 * that cannot be performed immediately.
1202 */
1203 redirty_tail(inode, wb);
1204 }
1205 } else if (inode->i_state & I_DIRTY) {
1206 /*
1207 * Filesystems can dirty the inode during writeback operations,
1208 * such as delayed allocation during submission or metadata
1209 * updates after data IO completion.
1210 */
1211 redirty_tail(inode, wb);
1212 } else if (inode->i_state & I_DIRTY_TIME) {
1213 inode->dirtied_when = jiffies;
1214 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1215 } else {
1216 /* The inode is clean. Remove from writeback lists. */
1217 inode_io_list_del_locked(inode, wb);
1218 }
1219 }
1220
1221 /*
1222 * Write out an inode and its dirty pages. Do not update the writeback list
1223 * linkage. That is left to the caller. The caller is also responsible for
1224 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1225 */
1226 static int
1227 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1228 {
1229 struct address_space *mapping = inode->i_mapping;
1230 long nr_to_write = wbc->nr_to_write;
1231 unsigned dirty;
1232 int ret;
1233
1234 WARN_ON(!(inode->i_state & I_SYNC));
1235
1236 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1237
1238 ret = do_writepages(mapping, wbc);
1239
1240 /*
1241 * Make sure to wait on the data before writing out the metadata.
1242 * This is important for filesystems that modify metadata on data
1243 * I/O completion. We don't do it for sync(2) writeback because it has a
1244 * separate, external IO completion path and ->sync_fs for guaranteeing
1245 * inode metadata is written back correctly.
1246 */
1247 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1248 int err = filemap_fdatawait(mapping);
1249 if (ret == 0)
1250 ret = err;
1251 }
1252
1253 /*
1254 * Some filesystems may redirty the inode during the writeback
1255 * due to delalloc, clear dirty metadata flags right before
1256 * write_inode()
1257 */
1258 spin_lock(&inode->i_lock);
1259
1260 dirty = inode->i_state & I_DIRTY;
1261 if (inode->i_state & I_DIRTY_TIME) {
1262 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1263 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1264 unlikely(time_after(jiffies,
1265 (inode->dirtied_time_when +
1266 dirtytime_expire_interval * HZ)))) {
1267 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1268 trace_writeback_lazytime(inode);
1269 }
1270 } else
1271 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1272 inode->i_state &= ~dirty;
1273
1274 /*
1275 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1276 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1277 * either they see the I_DIRTY bits cleared or we see the dirtied
1278 * inode.
1279 *
1280 * I_DIRTY_PAGES is always cleared together above even if @mapping
1281 * still has dirty pages. The flag is reinstated after smp_mb() if
1282 * necessary. This guarantees that either __mark_inode_dirty()
1283 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1284 */
1285 smp_mb();
1286
1287 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1288 inode->i_state |= I_DIRTY_PAGES;
1289
1290 spin_unlock(&inode->i_lock);
1291
1292 if (dirty & I_DIRTY_TIME)
1293 mark_inode_dirty_sync(inode);
1294 /* Don't write the inode if only I_DIRTY_PAGES was set */
1295 if (dirty & ~I_DIRTY_PAGES) {
1296 int err = write_inode(inode, wbc);
1297 if (ret == 0)
1298 ret = err;
1299 }
1300 trace_writeback_single_inode(inode, wbc, nr_to_write);
1301 return ret;
1302 }
1303
1304 /*
1305 * Write out an inode's dirty pages. Either the caller has an active reference
1306 * on the inode or the inode has I_WILL_FREE set.
1307 *
1308 * This function is designed to be called for writing back one inode which
1309 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1310 * and does more profound writeback list handling in writeback_sb_inodes().
1311 */
1312 static int
1313 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
1314 struct writeback_control *wbc)
1315 {
1316 int ret = 0;
1317
1318 spin_lock(&inode->i_lock);
1319 if (!atomic_read(&inode->i_count))
1320 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1321 else
1322 WARN_ON(inode->i_state & I_WILL_FREE);
1323
1324 if (inode->i_state & I_SYNC) {
1325 if (wbc->sync_mode != WB_SYNC_ALL)
1326 goto out;
1327 /*
1328 * It's a data-integrity sync. We must wait. Since callers hold
1329 * inode reference or inode has I_WILL_FREE set, it cannot go
1330 * away under us.
1331 */
1332 __inode_wait_for_writeback(inode);
1333 }
1334 WARN_ON(inode->i_state & I_SYNC);
1335 /*
1336 * Skip inode if it is clean and we have no outstanding writeback in
1337 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1338 * function since flusher thread may be doing for example sync in
1339 * parallel and if we move the inode, it could get skipped. So here we
1340 * make sure inode is on some writeback list and leave it there unless
1341 * we have completely cleaned the inode.
1342 */
1343 if (!(inode->i_state & I_DIRTY_ALL) &&
1344 (wbc->sync_mode != WB_SYNC_ALL ||
1345 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1346 goto out;
1347 inode->i_state |= I_SYNC;
1348 wbc_attach_and_unlock_inode(wbc, inode);
1349
1350 ret = __writeback_single_inode(inode, wbc);
1351
1352 wbc_detach_inode(wbc);
1353 spin_lock(&wb->list_lock);
1354 spin_lock(&inode->i_lock);
1355 /*
1356 * If inode is clean, remove it from writeback lists. Otherwise don't
1357 * touch it. See comment above for explanation.
1358 */
1359 if (!(inode->i_state & I_DIRTY_ALL))
1360 inode_io_list_del_locked(inode, wb);
1361 spin_unlock(&wb->list_lock);
1362 inode_sync_complete(inode);
1363 out:
1364 spin_unlock(&inode->i_lock);
1365 return ret;
1366 }
1367
1368 static long writeback_chunk_size(struct bdi_writeback *wb,
1369 struct wb_writeback_work *work)
1370 {
1371 long pages;
1372
1373 /*
1374 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1375 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1376 * here avoids calling into writeback_inodes_wb() more than once.
1377 *
1378 * The intended call sequence for WB_SYNC_ALL writeback is:
1379 *
1380 * wb_writeback()
1381 * writeback_sb_inodes() <== called only once
1382 * write_cache_pages() <== called once for each inode
1383 * (quickly) tag currently dirty pages
1384 * (maybe slowly) sync all tagged pages
1385 */
1386 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1387 pages = LONG_MAX;
1388 else {
1389 pages = min(wb->avg_write_bandwidth / 2,
1390 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1391 pages = min(pages, work->nr_pages);
1392 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1393 MIN_WRITEBACK_PAGES);
1394 }
1395
1396 return pages;
1397 }
1398
1399 /*
1400 * Write a portion of b_io inodes which belong to @sb.
1401 *
1402 * Return the number of pages and/or inodes written.
1403 *
1404 * NOTE! This is called with wb->list_lock held, and will
1405 * unlock and relock that for each inode it ends up doing
1406 * IO for.
1407 */
1408 static long writeback_sb_inodes(struct super_block *sb,
1409 struct bdi_writeback *wb,
1410 struct wb_writeback_work *work)
1411 {
1412 struct writeback_control wbc = {
1413 .sync_mode = work->sync_mode,
1414 .tagged_writepages = work->tagged_writepages,
1415 .for_kupdate = work->for_kupdate,
1416 .for_background = work->for_background,
1417 .for_sync = work->for_sync,
1418 .range_cyclic = work->range_cyclic,
1419 .range_start = 0,
1420 .range_end = LLONG_MAX,
1421 };
1422 unsigned long start_time = jiffies;
1423 long write_chunk;
1424 long wrote = 0; /* count both pages and inodes */
1425
1426 while (!list_empty(&wb->b_io)) {
1427 struct inode *inode = wb_inode(wb->b_io.prev);
1428
1429 if (inode->i_sb != sb) {
1430 if (work->sb) {
1431 /*
1432 * We only want to write back data for this
1433 * superblock, move all inodes not belonging
1434 * to it back onto the dirty list.
1435 */
1436 redirty_tail(inode, wb);
1437 continue;
1438 }
1439
1440 /*
1441 * The inode belongs to a different superblock.
1442 * Bounce back to the caller to unpin this and
1443 * pin the next superblock.
1444 */
1445 break;
1446 }
1447
1448 /*
1449 * Don't bother with new inodes or inodes being freed, first
1450 * kind does not need periodic writeout yet, and for the latter
1451 * kind writeout is handled by the freer.
1452 */
1453 spin_lock(&inode->i_lock);
1454 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1455 spin_unlock(&inode->i_lock);
1456 redirty_tail(inode, wb);
1457 continue;
1458 }
1459 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1460 /*
1461 * If this inode is locked for writeback and we are not
1462 * doing writeback-for-data-integrity, move it to
1463 * b_more_io so that writeback can proceed with the
1464 * other inodes on s_io.
1465 *
1466 * We'll have another go at writing back this inode
1467 * when we completed a full scan of b_io.
1468 */
1469 spin_unlock(&inode->i_lock);
1470 requeue_io(inode, wb);
1471 trace_writeback_sb_inodes_requeue(inode);
1472 continue;
1473 }
1474 spin_unlock(&wb->list_lock);
1475
1476 /*
1477 * We already requeued the inode if it had I_SYNC set and we
1478 * are doing WB_SYNC_NONE writeback. So this catches only the
1479 * WB_SYNC_ALL case.
1480 */
1481 if (inode->i_state & I_SYNC) {
1482 /* Wait for I_SYNC. This function drops i_lock... */
1483 inode_sleep_on_writeback(inode);
1484 /* Inode may be gone, start again */
1485 spin_lock(&wb->list_lock);
1486 continue;
1487 }
1488 inode->i_state |= I_SYNC;
1489 wbc_attach_and_unlock_inode(&wbc, inode);
1490
1491 write_chunk = writeback_chunk_size(wb, work);
1492 wbc.nr_to_write = write_chunk;
1493 wbc.pages_skipped = 0;
1494
1495 /*
1496 * We use I_SYNC to pin the inode in memory. While it is set
1497 * evict_inode() will wait so the inode cannot be freed.
1498 */
1499 __writeback_single_inode(inode, &wbc);
1500
1501 wbc_detach_inode(&wbc);
1502 work->nr_pages -= write_chunk - wbc.nr_to_write;
1503 wrote += write_chunk - wbc.nr_to_write;
1504
1505 if (need_resched()) {
1506 /*
1507 * We're trying to balance between building up a nice
1508 * long list of IOs to improve our merge rate, and
1509 * getting those IOs out quickly for anyone throttling
1510 * in balance_dirty_pages(). cond_resched() doesn't
1511 * unplug, so get our IOs out the door before we
1512 * give up the CPU.
1513 */
1514 blk_flush_plug(current);
1515 cond_resched();
1516 }
1517
1518
1519 spin_lock(&wb->list_lock);
1520 spin_lock(&inode->i_lock);
1521 if (!(inode->i_state & I_DIRTY_ALL))
1522 wrote++;
1523 requeue_inode(inode, wb, &wbc);
1524 inode_sync_complete(inode);
1525 spin_unlock(&inode->i_lock);
1526
1527 /*
1528 * bail out to wb_writeback() often enough to check
1529 * background threshold and other termination conditions.
1530 */
1531 if (wrote) {
1532 if (time_is_before_jiffies(start_time + HZ / 10UL))
1533 break;
1534 if (work->nr_pages <= 0)
1535 break;
1536 }
1537 }
1538 return wrote;
1539 }
1540
1541 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1542 struct wb_writeback_work *work)
1543 {
1544 unsigned long start_time = jiffies;
1545 long wrote = 0;
1546
1547 while (!list_empty(&wb->b_io)) {
1548 struct inode *inode = wb_inode(wb->b_io.prev);
1549 struct super_block *sb = inode->i_sb;
1550
1551 if (!trylock_super(sb)) {
1552 /*
1553 * trylock_super() may fail consistently due to
1554 * s_umount being grabbed by someone else. Don't use
1555 * requeue_io() to avoid busy retrying the inode/sb.
1556 */
1557 redirty_tail(inode, wb);
1558 continue;
1559 }
1560 wrote += writeback_sb_inodes(sb, wb, work);
1561 up_read(&sb->s_umount);
1562
1563 /* refer to the same tests at the end of writeback_sb_inodes */
1564 if (wrote) {
1565 if (time_is_before_jiffies(start_time + HZ / 10UL))
1566 break;
1567 if (work->nr_pages <= 0)
1568 break;
1569 }
1570 }
1571 /* Leave any unwritten inodes on b_io */
1572 return wrote;
1573 }
1574
1575 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1576 enum wb_reason reason)
1577 {
1578 struct wb_writeback_work work = {
1579 .nr_pages = nr_pages,
1580 .sync_mode = WB_SYNC_NONE,
1581 .range_cyclic = 1,
1582 .reason = reason,
1583 };
1584 struct blk_plug plug;
1585
1586 blk_start_plug(&plug);
1587 spin_lock(&wb->list_lock);
1588 if (list_empty(&wb->b_io))
1589 queue_io(wb, &work);
1590 __writeback_inodes_wb(wb, &work);
1591 spin_unlock(&wb->list_lock);
1592 blk_finish_plug(&plug);
1593
1594 return nr_pages - work.nr_pages;
1595 }
1596
1597 /*
1598 * Explicit flushing or periodic writeback of "old" data.
1599 *
1600 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1601 * dirtying-time in the inode's address_space. So this periodic writeback code
1602 * just walks the superblock inode list, writing back any inodes which are
1603 * older than a specific point in time.
1604 *
1605 * Try to run once per dirty_writeback_interval. But if a writeback event
1606 * takes longer than a dirty_writeback_interval interval, then leave a
1607 * one-second gap.
1608 *
1609 * older_than_this takes precedence over nr_to_write. So we'll only write back
1610 * all dirty pages if they are all attached to "old" mappings.
1611 */
1612 static long wb_writeback(struct bdi_writeback *wb,
1613 struct wb_writeback_work *work)
1614 {
1615 unsigned long wb_start = jiffies;
1616 long nr_pages = work->nr_pages;
1617 unsigned long oldest_jif;
1618 struct inode *inode;
1619 long progress;
1620 struct blk_plug plug;
1621
1622 oldest_jif = jiffies;
1623 work->older_than_this = &oldest_jif;
1624
1625 blk_start_plug(&plug);
1626 spin_lock(&wb->list_lock);
1627 for (;;) {
1628 /*
1629 * Stop writeback when nr_pages has been consumed
1630 */
1631 if (work->nr_pages <= 0)
1632 break;
1633
1634 /*
1635 * Background writeout and kupdate-style writeback may
1636 * run forever. Stop them if there is other work to do
1637 * so that e.g. sync can proceed. They'll be restarted
1638 * after the other works are all done.
1639 */
1640 if ((work->for_background || work->for_kupdate) &&
1641 !list_empty(&wb->work_list))
1642 break;
1643
1644 /*
1645 * For background writeout, stop when we are below the
1646 * background dirty threshold
1647 */
1648 if (work->for_background && !wb_over_bg_thresh(wb))
1649 break;
1650
1651 /*
1652 * Kupdate and background works are special and we want to
1653 * include all inodes that need writing. Livelock avoidance is
1654 * handled by these works yielding to any other work so we are
1655 * safe.
1656 */
1657 if (work->for_kupdate) {
1658 oldest_jif = jiffies -
1659 msecs_to_jiffies(dirty_expire_interval * 10);
1660 } else if (work->for_background)
1661 oldest_jif = jiffies;
1662
1663 trace_writeback_start(wb, work);
1664 if (list_empty(&wb->b_io))
1665 queue_io(wb, work);
1666 if (work->sb)
1667 progress = writeback_sb_inodes(work->sb, wb, work);
1668 else
1669 progress = __writeback_inodes_wb(wb, work);
1670 trace_writeback_written(wb, work);
1671
1672 wb_update_bandwidth(wb, wb_start);
1673
1674 /*
1675 * Did we write something? Try for more
1676 *
1677 * Dirty inodes are moved to b_io for writeback in batches.
1678 * The completion of the current batch does not necessarily
1679 * mean the overall work is done. So we keep looping as long
1680 * as made some progress on cleaning pages or inodes.
1681 */
1682 if (progress)
1683 continue;
1684 /*
1685 * No more inodes for IO, bail
1686 */
1687 if (list_empty(&wb->b_more_io))
1688 break;
1689 /*
1690 * Nothing written. Wait for some inode to
1691 * become available for writeback. Otherwise
1692 * we'll just busyloop.
1693 */
1694 if (!list_empty(&wb->b_more_io)) {
1695 trace_writeback_wait(wb, work);
1696 inode = wb_inode(wb->b_more_io.prev);
1697 spin_lock(&inode->i_lock);
1698 spin_unlock(&wb->list_lock);
1699 /* This function drops i_lock... */
1700 inode_sleep_on_writeback(inode);
1701 spin_lock(&wb->list_lock);
1702 }
1703 }
1704 spin_unlock(&wb->list_lock);
1705 blk_finish_plug(&plug);
1706
1707 return nr_pages - work->nr_pages;
1708 }
1709
1710 /*
1711 * Return the next wb_writeback_work struct that hasn't been processed yet.
1712 */
1713 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1714 {
1715 struct wb_writeback_work *work = NULL;
1716
1717 spin_lock_bh(&wb->work_lock);
1718 if (!list_empty(&wb->work_list)) {
1719 work = list_entry(wb->work_list.next,
1720 struct wb_writeback_work, list);
1721 list_del_init(&work->list);
1722 }
1723 spin_unlock_bh(&wb->work_lock);
1724 return work;
1725 }
1726
1727 /*
1728 * Add in the number of potentially dirty inodes, because each inode
1729 * write can dirty pagecache in the underlying blockdev.
1730 */
1731 static unsigned long get_nr_dirty_pages(void)
1732 {
1733 return global_page_state(NR_FILE_DIRTY) +
1734 global_page_state(NR_UNSTABLE_NFS) +
1735 get_nr_dirty_inodes();
1736 }
1737
1738 static long wb_check_background_flush(struct bdi_writeback *wb)
1739 {
1740 if (wb_over_bg_thresh(wb)) {
1741
1742 struct wb_writeback_work work = {
1743 .nr_pages = LONG_MAX,
1744 .sync_mode = WB_SYNC_NONE,
1745 .for_background = 1,
1746 .range_cyclic = 1,
1747 .reason = WB_REASON_BACKGROUND,
1748 };
1749
1750 return wb_writeback(wb, &work);
1751 }
1752
1753 return 0;
1754 }
1755
1756 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1757 {
1758 unsigned long expired;
1759 long nr_pages;
1760
1761 /*
1762 * When set to zero, disable periodic writeback
1763 */
1764 if (!dirty_writeback_interval)
1765 return 0;
1766
1767 expired = wb->last_old_flush +
1768 msecs_to_jiffies(dirty_writeback_interval * 10);
1769 if (time_before(jiffies, expired))
1770 return 0;
1771
1772 wb->last_old_flush = jiffies;
1773 nr_pages = get_nr_dirty_pages();
1774
1775 if (nr_pages) {
1776 struct wb_writeback_work work = {
1777 .nr_pages = nr_pages,
1778 .sync_mode = WB_SYNC_NONE,
1779 .for_kupdate = 1,
1780 .range_cyclic = 1,
1781 .reason = WB_REASON_PERIODIC,
1782 };
1783
1784 return wb_writeback(wb, &work);
1785 }
1786
1787 return 0;
1788 }
1789
1790 /*
1791 * Retrieve work items and do the writeback they describe
1792 */
1793 static long wb_do_writeback(struct bdi_writeback *wb)
1794 {
1795 struct wb_writeback_work *work;
1796 long wrote = 0;
1797
1798 set_bit(WB_writeback_running, &wb->state);
1799 while ((work = get_next_work_item(wb)) != NULL) {
1800 struct wb_completion *done = work->done;
1801
1802 trace_writeback_exec(wb, work);
1803
1804 wrote += wb_writeback(wb, work);
1805
1806 if (work->auto_free)
1807 kfree(work);
1808 if (done && atomic_dec_and_test(&done->cnt))
1809 wake_up_all(&wb->bdi->wb_waitq);
1810 }
1811
1812 /*
1813 * Check for periodic writeback, kupdated() style
1814 */
1815 wrote += wb_check_old_data_flush(wb);
1816 wrote += wb_check_background_flush(wb);
1817 clear_bit(WB_writeback_running, &wb->state);
1818
1819 return wrote;
1820 }
1821
1822 /*
1823 * Handle writeback of dirty data for the device backed by this bdi. Also
1824 * reschedules periodically and does kupdated style flushing.
1825 */
1826 void wb_workfn(struct work_struct *work)
1827 {
1828 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1829 struct bdi_writeback, dwork);
1830 long pages_written;
1831
1832 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1833 current->flags |= PF_SWAPWRITE;
1834
1835 if (likely(!current_is_workqueue_rescuer() ||
1836 !test_bit(WB_registered, &wb->state))) {
1837 /*
1838 * The normal path. Keep writing back @wb until its
1839 * work_list is empty. Note that this path is also taken
1840 * if @wb is shutting down even when we're running off the
1841 * rescuer as work_list needs to be drained.
1842 */
1843 do {
1844 pages_written = wb_do_writeback(wb);
1845 trace_writeback_pages_written(pages_written);
1846 } while (!list_empty(&wb->work_list));
1847 } else {
1848 /*
1849 * bdi_wq can't get enough workers and we're running off
1850 * the emergency worker. Don't hog it. Hopefully, 1024 is
1851 * enough for efficient IO.
1852 */
1853 pages_written = writeback_inodes_wb(wb, 1024,
1854 WB_REASON_FORKER_THREAD);
1855 trace_writeback_pages_written(pages_written);
1856 }
1857
1858 if (!list_empty(&wb->work_list))
1859 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1860 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1861 wb_wakeup_delayed(wb);
1862
1863 current->flags &= ~PF_SWAPWRITE;
1864 }
1865
1866 /*
1867 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1868 * the whole world.
1869 */
1870 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1871 {
1872 struct backing_dev_info *bdi;
1873
1874 if (!nr_pages)
1875 nr_pages = get_nr_dirty_pages();
1876
1877 rcu_read_lock();
1878 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1879 struct bdi_writeback *wb;
1880
1881 if (!bdi_has_dirty_io(bdi))
1882 continue;
1883
1884 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1885 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1886 false, reason);
1887 }
1888 rcu_read_unlock();
1889 }
1890
1891 /*
1892 * Wake up bdi's periodically to make sure dirtytime inodes gets
1893 * written back periodically. We deliberately do *not* check the
1894 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1895 * kernel to be constantly waking up once there are any dirtytime
1896 * inodes on the system. So instead we define a separate delayed work
1897 * function which gets called much more rarely. (By default, only
1898 * once every 12 hours.)
1899 *
1900 * If there is any other write activity going on in the file system,
1901 * this function won't be necessary. But if the only thing that has
1902 * happened on the file system is a dirtytime inode caused by an atime
1903 * update, we need this infrastructure below to make sure that inode
1904 * eventually gets pushed out to disk.
1905 */
1906 static void wakeup_dirtytime_writeback(struct work_struct *w);
1907 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1908
1909 static void wakeup_dirtytime_writeback(struct work_struct *w)
1910 {
1911 struct backing_dev_info *bdi;
1912
1913 rcu_read_lock();
1914 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1915 struct bdi_writeback *wb;
1916
1917 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1918 if (!list_empty(&wb->b_dirty_time))
1919 wb_wakeup(wb);
1920 }
1921 rcu_read_unlock();
1922 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1923 }
1924
1925 static int __init start_dirtytime_writeback(void)
1926 {
1927 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1928 return 0;
1929 }
1930 __initcall(start_dirtytime_writeback);
1931
1932 int dirtytime_interval_handler(struct ctl_table *table, int write,
1933 void __user *buffer, size_t *lenp, loff_t *ppos)
1934 {
1935 int ret;
1936
1937 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1938 if (ret == 0 && write)
1939 mod_delayed_work(system_wq, &dirtytime_work, 0);
1940 return ret;
1941 }
1942
1943 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1944 {
1945 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1946 struct dentry *dentry;
1947 const char *name = "?";
1948
1949 dentry = d_find_alias(inode);
1950 if (dentry) {
1951 spin_lock(&dentry->d_lock);
1952 name = (const char *) dentry->d_name.name;
1953 }
1954 printk(KERN_DEBUG
1955 "%s(%d): dirtied inode %lu (%s) on %s\n",
1956 current->comm, task_pid_nr(current), inode->i_ino,
1957 name, inode->i_sb->s_id);
1958 if (dentry) {
1959 spin_unlock(&dentry->d_lock);
1960 dput(dentry);
1961 }
1962 }
1963 }
1964
1965 /**
1966 * __mark_inode_dirty - internal function
1967 * @inode: inode to mark
1968 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1969 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1970 * mark_inode_dirty_sync.
1971 *
1972 * Put the inode on the super block's dirty list.
1973 *
1974 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1975 * dirty list only if it is hashed or if it refers to a blockdev.
1976 * If it was not hashed, it will never be added to the dirty list
1977 * even if it is later hashed, as it will have been marked dirty already.
1978 *
1979 * In short, make sure you hash any inodes _before_ you start marking
1980 * them dirty.
1981 *
1982 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1983 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1984 * the kernel-internal blockdev inode represents the dirtying time of the
1985 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1986 * page->mapping->host, so the page-dirtying time is recorded in the internal
1987 * blockdev inode.
1988 */
1989 void __mark_inode_dirty(struct inode *inode, int flags)
1990 {
1991 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1992 struct super_block *sb = inode->i_sb;
1993 int dirtytime;
1994
1995 trace_writeback_mark_inode_dirty(inode, flags);
1996
1997 /*
1998 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1999 * dirty the inode itself
2000 */
2001 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2002 trace_writeback_dirty_inode_start(inode, flags);
2003
2004 if (sb->s_op->dirty_inode)
2005 sb->s_op->dirty_inode(inode, flags);
2006
2007 trace_writeback_dirty_inode(inode, flags);
2008 }
2009 if (flags & I_DIRTY_INODE)
2010 flags &= ~I_DIRTY_TIME;
2011 dirtytime = flags & I_DIRTY_TIME;
2012
2013 /*
2014 * Paired with smp_mb() in __writeback_single_inode() for the
2015 * following lockless i_state test. See there for details.
2016 */
2017 smp_mb();
2018
2019 if (((inode->i_state & flags) == flags) ||
2020 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2021 return;
2022
2023 if (unlikely(block_dump))
2024 block_dump___mark_inode_dirty(inode);
2025
2026 spin_lock(&inode->i_lock);
2027 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2028 goto out_unlock_inode;
2029 if ((inode->i_state & flags) != flags) {
2030 const int was_dirty = inode->i_state & I_DIRTY;
2031
2032 inode_attach_wb(inode, NULL);
2033
2034 if (flags & I_DIRTY_INODE)
2035 inode->i_state &= ~I_DIRTY_TIME;
2036 inode->i_state |= flags;
2037
2038 /*
2039 * If the inode is being synced, just update its dirty state.
2040 * The unlocker will place the inode on the appropriate
2041 * superblock list, based upon its state.
2042 */
2043 if (inode->i_state & I_SYNC)
2044 goto out_unlock_inode;
2045
2046 /*
2047 * Only add valid (hashed) inodes to the superblock's
2048 * dirty list. Add blockdev inodes as well.
2049 */
2050 if (!S_ISBLK(inode->i_mode)) {
2051 if (inode_unhashed(inode))
2052 goto out_unlock_inode;
2053 }
2054 if (inode->i_state & I_FREEING)
2055 goto out_unlock_inode;
2056
2057 /*
2058 * If the inode was already on b_dirty/b_io/b_more_io, don't
2059 * reposition it (that would break b_dirty time-ordering).
2060 */
2061 if (!was_dirty) {
2062 struct bdi_writeback *wb;
2063 struct list_head *dirty_list;
2064 bool wakeup_bdi = false;
2065
2066 wb = locked_inode_to_wb_and_lock_list(inode);
2067
2068 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2069 !test_bit(WB_registered, &wb->state),
2070 "bdi-%s not registered\n", wb->bdi->name);
2071
2072 inode->dirtied_when = jiffies;
2073 if (dirtytime)
2074 inode->dirtied_time_when = jiffies;
2075
2076 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2077 dirty_list = &wb->b_dirty;
2078 else
2079 dirty_list = &wb->b_dirty_time;
2080
2081 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2082 dirty_list);
2083
2084 spin_unlock(&wb->list_lock);
2085 trace_writeback_dirty_inode_enqueue(inode);
2086
2087 /*
2088 * If this is the first dirty inode for this bdi,
2089 * we have to wake-up the corresponding bdi thread
2090 * to make sure background write-back happens
2091 * later.
2092 */
2093 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2094 wb_wakeup_delayed(wb);
2095 return;
2096 }
2097 }
2098 out_unlock_inode:
2099 spin_unlock(&inode->i_lock);
2100
2101 #undef I_DIRTY_INODE
2102 }
2103 EXPORT_SYMBOL(__mark_inode_dirty);
2104
2105 /*
2106 * The @s_sync_lock is used to serialise concurrent sync operations
2107 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2108 * Concurrent callers will block on the s_sync_lock rather than doing contending
2109 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2110 * has been issued up to the time this function is enter is guaranteed to be
2111 * completed by the time we have gained the lock and waited for all IO that is
2112 * in progress regardless of the order callers are granted the lock.
2113 */
2114 static void wait_sb_inodes(struct super_block *sb)
2115 {
2116 struct inode *inode, *old_inode = NULL;
2117
2118 /*
2119 * We need to be protected against the filesystem going from
2120 * r/o to r/w or vice versa.
2121 */
2122 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2123
2124 mutex_lock(&sb->s_sync_lock);
2125 spin_lock(&sb->s_inode_list_lock);
2126
2127 /*
2128 * Data integrity sync. Must wait for all pages under writeback,
2129 * because there may have been pages dirtied before our sync
2130 * call, but which had writeout started before we write it out.
2131 * In which case, the inode may not be on the dirty list, but
2132 * we still have to wait for that writeout.
2133 */
2134 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2135 struct address_space *mapping = inode->i_mapping;
2136
2137 spin_lock(&inode->i_lock);
2138 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2139 (mapping->nrpages == 0)) {
2140 spin_unlock(&inode->i_lock);
2141 continue;
2142 }
2143 __iget(inode);
2144 spin_unlock(&inode->i_lock);
2145 spin_unlock(&sb->s_inode_list_lock);
2146
2147 /*
2148 * We hold a reference to 'inode' so it couldn't have been
2149 * removed from s_inodes list while we dropped the
2150 * s_inode_list_lock. We cannot iput the inode now as we can
2151 * be holding the last reference and we cannot iput it under
2152 * s_inode_list_lock. So we keep the reference and iput it
2153 * later.
2154 */
2155 iput(old_inode);
2156 old_inode = inode;
2157
2158 /*
2159 * We keep the error status of individual mapping so that
2160 * applications can catch the writeback error using fsync(2).
2161 * See filemap_fdatawait_keep_errors() for details.
2162 */
2163 filemap_fdatawait_keep_errors(mapping);
2164
2165 cond_resched();
2166
2167 spin_lock(&sb->s_inode_list_lock);
2168 }
2169 spin_unlock(&sb->s_inode_list_lock);
2170 iput(old_inode);
2171 mutex_unlock(&sb->s_sync_lock);
2172 }
2173
2174 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2175 enum wb_reason reason, bool skip_if_busy)
2176 {
2177 DEFINE_WB_COMPLETION_ONSTACK(done);
2178 struct wb_writeback_work work = {
2179 .sb = sb,
2180 .sync_mode = WB_SYNC_NONE,
2181 .tagged_writepages = 1,
2182 .done = &done,
2183 .nr_pages = nr,
2184 .reason = reason,
2185 };
2186 struct backing_dev_info *bdi = sb->s_bdi;
2187
2188 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2189 return;
2190 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2191
2192 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2193 wb_wait_for_completion(bdi, &done);
2194 }
2195
2196 /**
2197 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2198 * @sb: the superblock
2199 * @nr: the number of pages to write
2200 * @reason: reason why some writeback work initiated
2201 *
2202 * Start writeback on some inodes on this super_block. No guarantees are made
2203 * on how many (if any) will be written, and this function does not wait
2204 * for IO completion of submitted IO.
2205 */
2206 void writeback_inodes_sb_nr(struct super_block *sb,
2207 unsigned long nr,
2208 enum wb_reason reason)
2209 {
2210 __writeback_inodes_sb_nr(sb, nr, reason, false);
2211 }
2212 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2213
2214 /**
2215 * writeback_inodes_sb - writeback dirty inodes from given super_block
2216 * @sb: the superblock
2217 * @reason: reason why some writeback work was initiated
2218 *
2219 * Start writeback on some inodes on this super_block. No guarantees are made
2220 * on how many (if any) will be written, and this function does not wait
2221 * for IO completion of submitted IO.
2222 */
2223 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2224 {
2225 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2226 }
2227 EXPORT_SYMBOL(writeback_inodes_sb);
2228
2229 /**
2230 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2231 * @sb: the superblock
2232 * @nr: the number of pages to write
2233 * @reason: the reason of writeback
2234 *
2235 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2236 * Returns 1 if writeback was started, 0 if not.
2237 */
2238 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2239 enum wb_reason reason)
2240 {
2241 if (!down_read_trylock(&sb->s_umount))
2242 return false;
2243
2244 __writeback_inodes_sb_nr(sb, nr, reason, true);
2245 up_read(&sb->s_umount);
2246 return true;
2247 }
2248 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2249
2250 /**
2251 * try_to_writeback_inodes_sb - try to start writeback if none underway
2252 * @sb: the superblock
2253 * @reason: reason why some writeback work was initiated
2254 *
2255 * Implement by try_to_writeback_inodes_sb_nr()
2256 * Returns 1 if writeback was started, 0 if not.
2257 */
2258 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2259 {
2260 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2261 }
2262 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2263
2264 /**
2265 * sync_inodes_sb - sync sb inode pages
2266 * @sb: the superblock
2267 *
2268 * This function writes and waits on any dirty inode belonging to this
2269 * super_block.
2270 */
2271 void sync_inodes_sb(struct super_block *sb)
2272 {
2273 DEFINE_WB_COMPLETION_ONSTACK(done);
2274 struct wb_writeback_work work = {
2275 .sb = sb,
2276 .sync_mode = WB_SYNC_ALL,
2277 .nr_pages = LONG_MAX,
2278 .range_cyclic = 0,
2279 .done = &done,
2280 .reason = WB_REASON_SYNC,
2281 .for_sync = 1,
2282 };
2283 struct backing_dev_info *bdi = sb->s_bdi;
2284
2285 /*
2286 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2287 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2288 * bdi_has_dirty() need to be written out too.
2289 */
2290 if (bdi == &noop_backing_dev_info)
2291 return;
2292 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2293
2294 bdi_split_work_to_wbs(bdi, &work, false);
2295 wb_wait_for_completion(bdi, &done);
2296
2297 wait_sb_inodes(sb);
2298 }
2299 EXPORT_SYMBOL(sync_inodes_sb);
2300
2301 /**
2302 * write_inode_now - write an inode to disk
2303 * @inode: inode to write to disk
2304 * @sync: whether the write should be synchronous or not
2305 *
2306 * This function commits an inode to disk immediately if it is dirty. This is
2307 * primarily needed by knfsd.
2308 *
2309 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2310 */
2311 int write_inode_now(struct inode *inode, int sync)
2312 {
2313 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
2314 struct writeback_control wbc = {
2315 .nr_to_write = LONG_MAX,
2316 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2317 .range_start = 0,
2318 .range_end = LLONG_MAX,
2319 };
2320
2321 if (!mapping_cap_writeback_dirty(inode->i_mapping))
2322 wbc.nr_to_write = 0;
2323
2324 might_sleep();
2325 return writeback_single_inode(inode, wb, &wbc);
2326 }
2327 EXPORT_SYMBOL(write_inode_now);
2328
2329 /**
2330 * sync_inode - write an inode and its pages to disk.
2331 * @inode: the inode to sync
2332 * @wbc: controls the writeback mode
2333 *
2334 * sync_inode() will write an inode and its pages to disk. It will also
2335 * correctly update the inode on its superblock's dirty inode lists and will
2336 * update inode->i_state.
2337 *
2338 * The caller must have a ref on the inode.
2339 */
2340 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2341 {
2342 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
2343 }
2344 EXPORT_SYMBOL(sync_inode);
2345
2346 /**
2347 * sync_inode_metadata - write an inode to disk
2348 * @inode: the inode to sync
2349 * @wait: wait for I/O to complete.
2350 *
2351 * Write an inode to disk and adjust its dirty state after completion.
2352 *
2353 * Note: only writes the actual inode, no associated data or other metadata.
2354 */
2355 int sync_inode_metadata(struct inode *inode, int wait)
2356 {
2357 struct writeback_control wbc = {
2358 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2359 .nr_to_write = 0, /* metadata-only */
2360 };
2361
2362 return sync_inode(inode, &wbc);
2363 }
2364 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.089106 seconds and 6 git commands to generate.