writeback: relocate wb[_try]_get(), wb_put(), inode_{attach|detach}_wb()
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34 * 4MB minimal write chunk size
35 */
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
38 struct wb_completion {
39 atomic_t cnt;
40 };
41
42 /*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
45 struct wb_writeback_work {
46 long nr_pages;
47 struct super_block *sb;
48 unsigned long *older_than_this;
49 enum writeback_sync_modes sync_mode;
50 unsigned int tagged_writepages:1;
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free:1; /* free on completion */
56 unsigned int single_wait:1;
57 unsigned int single_done:1;
58 enum wb_reason reason; /* why was writeback initiated? */
59
60 struct list_head list; /* pending work list */
61 struct wb_completion *done; /* set if the caller waits */
62 };
63
64 /*
65 * If one wants to wait for one or more wb_writeback_works, each work's
66 * ->done should be set to a wb_completion defined using the following
67 * macro. Once all work items are issued with wb_queue_work(), the caller
68 * can wait for the completion of all using wb_wait_for_completion(). Work
69 * items which are waited upon aren't freed automatically on completion.
70 */
71 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
72 struct wb_completion cmpl = { \
73 .cnt = ATOMIC_INIT(1), \
74 }
75
76
77 /*
78 * If an inode is constantly having its pages dirtied, but then the
79 * updates stop dirtytime_expire_interval seconds in the past, it's
80 * possible for the worst case time between when an inode has its
81 * timestamps updated and when they finally get written out to be two
82 * dirtytime_expire_intervals. We set the default to 12 hours (in
83 * seconds), which means most of the time inodes will have their
84 * timestamps written to disk after 12 hours, but in the worst case a
85 * few inodes might not their timestamps updated for 24 hours.
86 */
87 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
88
89 static inline struct inode *wb_inode(struct list_head *head)
90 {
91 return list_entry(head, struct inode, i_wb_list);
92 }
93
94 /*
95 * Include the creation of the trace points after defining the
96 * wb_writeback_work structure and inline functions so that the definition
97 * remains local to this file.
98 */
99 #define CREATE_TRACE_POINTS
100 #include <trace/events/writeback.h>
101
102 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
103
104 static bool wb_io_lists_populated(struct bdi_writeback *wb)
105 {
106 if (wb_has_dirty_io(wb)) {
107 return false;
108 } else {
109 set_bit(WB_has_dirty_io, &wb->state);
110 WARN_ON_ONCE(!wb->avg_write_bandwidth);
111 atomic_long_add(wb->avg_write_bandwidth,
112 &wb->bdi->tot_write_bandwidth);
113 return true;
114 }
115 }
116
117 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
118 {
119 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
120 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
121 clear_bit(WB_has_dirty_io, &wb->state);
122 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
123 &wb->bdi->tot_write_bandwidth) < 0);
124 }
125 }
126
127 /**
128 * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
129 * @inode: inode to be moved
130 * @wb: target bdi_writeback
131 * @head: one of @wb->b_{dirty|io|more_io}
132 *
133 * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
134 * Returns %true if @inode is the first occupant of the !dirty_time IO
135 * lists; otherwise, %false.
136 */
137 static bool inode_wb_list_move_locked(struct inode *inode,
138 struct bdi_writeback *wb,
139 struct list_head *head)
140 {
141 assert_spin_locked(&wb->list_lock);
142
143 list_move(&inode->i_wb_list, head);
144
145 /* dirty_time doesn't count as dirty_io until expiration */
146 if (head != &wb->b_dirty_time)
147 return wb_io_lists_populated(wb);
148
149 wb_io_lists_depopulated(wb);
150 return false;
151 }
152
153 /**
154 * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
155 * @inode: inode to be removed
156 * @wb: bdi_writeback @inode is being removed from
157 *
158 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
159 * clear %WB_has_dirty_io if all are empty afterwards.
160 */
161 static void inode_wb_list_del_locked(struct inode *inode,
162 struct bdi_writeback *wb)
163 {
164 assert_spin_locked(&wb->list_lock);
165
166 list_del_init(&inode->i_wb_list);
167 wb_io_lists_depopulated(wb);
168 }
169
170 static void wb_wakeup(struct bdi_writeback *wb)
171 {
172 spin_lock_bh(&wb->work_lock);
173 if (test_bit(WB_registered, &wb->state))
174 mod_delayed_work(bdi_wq, &wb->dwork, 0);
175 spin_unlock_bh(&wb->work_lock);
176 }
177
178 static void wb_queue_work(struct bdi_writeback *wb,
179 struct wb_writeback_work *work)
180 {
181 trace_writeback_queue(wb->bdi, work);
182
183 spin_lock_bh(&wb->work_lock);
184 if (!test_bit(WB_registered, &wb->state)) {
185 if (work->single_wait)
186 work->single_done = 1;
187 goto out_unlock;
188 }
189 if (work->done)
190 atomic_inc(&work->done->cnt);
191 list_add_tail(&work->list, &wb->work_list);
192 mod_delayed_work(bdi_wq, &wb->dwork, 0);
193 out_unlock:
194 spin_unlock_bh(&wb->work_lock);
195 }
196
197 /**
198 * wb_wait_for_completion - wait for completion of bdi_writeback_works
199 * @bdi: bdi work items were issued to
200 * @done: target wb_completion
201 *
202 * Wait for one or more work items issued to @bdi with their ->done field
203 * set to @done, which should have been defined with
204 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
205 * work items are completed. Work items which are waited upon aren't freed
206 * automatically on completion.
207 */
208 static void wb_wait_for_completion(struct backing_dev_info *bdi,
209 struct wb_completion *done)
210 {
211 atomic_dec(&done->cnt); /* put down the initial count */
212 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
213 }
214
215 #ifdef CONFIG_CGROUP_WRITEBACK
216
217 void __inode_attach_wb(struct inode *inode, struct page *page)
218 {
219 struct backing_dev_info *bdi = inode_to_bdi(inode);
220 struct bdi_writeback *wb = NULL;
221
222 if (inode_cgwb_enabled(inode)) {
223 struct cgroup_subsys_state *memcg_css;
224
225 if (page) {
226 memcg_css = mem_cgroup_css_from_page(page);
227 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
228 } else {
229 /* must pin memcg_css, see wb_get_create() */
230 memcg_css = task_get_css(current, memory_cgrp_id);
231 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
232 css_put(memcg_css);
233 }
234 }
235
236 if (!wb)
237 wb = &bdi->wb;
238
239 /*
240 * There may be multiple instances of this function racing to
241 * update the same inode. Use cmpxchg() to tell the winner.
242 */
243 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
244 wb_put(wb);
245 }
246
247 /**
248 * inode_congested - test whether an inode is congested
249 * @inode: inode to test for congestion
250 * @cong_bits: mask of WB_[a]sync_congested bits to test
251 *
252 * Tests whether @inode is congested. @cong_bits is the mask of congestion
253 * bits to test and the return value is the mask of set bits.
254 *
255 * If cgroup writeback is enabled for @inode, the congestion state is
256 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
257 * associated with @inode is congested; otherwise, the root wb's congestion
258 * state is used.
259 */
260 int inode_congested(struct inode *inode, int cong_bits)
261 {
262 if (inode) {
263 struct bdi_writeback *wb = inode_to_wb(inode);
264 if (wb)
265 return wb_congested(wb, cong_bits);
266 }
267
268 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
269 }
270 EXPORT_SYMBOL_GPL(inode_congested);
271
272 /**
273 * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
274 * @bdi: bdi the work item was issued to
275 * @work: work item to wait for
276 *
277 * Wait for the completion of @work which was issued to one of @bdi's
278 * bdi_writeback's. The caller must have set @work->single_wait before
279 * issuing it. This wait operates independently fo
280 * wb_wait_for_completion() and also disables automatic freeing of @work.
281 */
282 static void wb_wait_for_single_work(struct backing_dev_info *bdi,
283 struct wb_writeback_work *work)
284 {
285 if (WARN_ON_ONCE(!work->single_wait))
286 return;
287
288 wait_event(bdi->wb_waitq, work->single_done);
289
290 /*
291 * Paired with smp_wmb() in wb_do_writeback() and ensures that all
292 * modifications to @work prior to assertion of ->single_done is
293 * visible to the caller once this function returns.
294 */
295 smp_rmb();
296 }
297
298 /**
299 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
300 * @wb: target bdi_writeback to split @nr_pages to
301 * @nr_pages: number of pages to write for the whole bdi
302 *
303 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
304 * relation to the total write bandwidth of all wb's w/ dirty inodes on
305 * @wb->bdi.
306 */
307 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
308 {
309 unsigned long this_bw = wb->avg_write_bandwidth;
310 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
311
312 if (nr_pages == LONG_MAX)
313 return LONG_MAX;
314
315 /*
316 * This may be called on clean wb's and proportional distribution
317 * may not make sense, just use the original @nr_pages in those
318 * cases. In general, we wanna err on the side of writing more.
319 */
320 if (!tot_bw || this_bw >= tot_bw)
321 return nr_pages;
322 else
323 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
324 }
325
326 /**
327 * wb_clone_and_queue_work - clone a wb_writeback_work and issue it to a wb
328 * @wb: target bdi_writeback
329 * @base_work: source wb_writeback_work
330 *
331 * Try to make a clone of @base_work and issue it to @wb. If cloning
332 * succeeds, %true is returned; otherwise, @base_work is issued directly
333 * and %false is returned. In the latter case, the caller is required to
334 * wait for @base_work's completion using wb_wait_for_single_work().
335 *
336 * A clone is auto-freed on completion. @base_work never is.
337 */
338 static bool wb_clone_and_queue_work(struct bdi_writeback *wb,
339 struct wb_writeback_work *base_work)
340 {
341 struct wb_writeback_work *work;
342
343 work = kmalloc(sizeof(*work), GFP_ATOMIC);
344 if (work) {
345 *work = *base_work;
346 work->auto_free = 1;
347 work->single_wait = 0;
348 } else {
349 work = base_work;
350 work->auto_free = 0;
351 work->single_wait = 1;
352 }
353 work->single_done = 0;
354 wb_queue_work(wb, work);
355 return work != base_work;
356 }
357
358 /**
359 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
360 * @bdi: target backing_dev_info
361 * @base_work: wb_writeback_work to issue
362 * @skip_if_busy: skip wb's which already have writeback in progress
363 *
364 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
365 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
366 * distributed to the busy wbs according to each wb's proportion in the
367 * total active write bandwidth of @bdi.
368 */
369 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
370 struct wb_writeback_work *base_work,
371 bool skip_if_busy)
372 {
373 long nr_pages = base_work->nr_pages;
374 int next_blkcg_id = 0;
375 struct bdi_writeback *wb;
376 struct wb_iter iter;
377
378 might_sleep();
379
380 if (!bdi_has_dirty_io(bdi))
381 return;
382 restart:
383 rcu_read_lock();
384 bdi_for_each_wb(wb, bdi, &iter, next_blkcg_id) {
385 if (!wb_has_dirty_io(wb) ||
386 (skip_if_busy && writeback_in_progress(wb)))
387 continue;
388
389 base_work->nr_pages = wb_split_bdi_pages(wb, nr_pages);
390 if (!wb_clone_and_queue_work(wb, base_work)) {
391 next_blkcg_id = wb->blkcg_css->id + 1;
392 rcu_read_unlock();
393 wb_wait_for_single_work(bdi, base_work);
394 goto restart;
395 }
396 }
397 rcu_read_unlock();
398 }
399
400 #else /* CONFIG_CGROUP_WRITEBACK */
401
402 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
403 {
404 return nr_pages;
405 }
406
407 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
408 struct wb_writeback_work *base_work,
409 bool skip_if_busy)
410 {
411 might_sleep();
412
413 if (bdi_has_dirty_io(bdi) &&
414 (!skip_if_busy || !writeback_in_progress(&bdi->wb))) {
415 base_work->auto_free = 0;
416 base_work->single_wait = 0;
417 base_work->single_done = 0;
418 wb_queue_work(&bdi->wb, base_work);
419 }
420 }
421
422 #endif /* CONFIG_CGROUP_WRITEBACK */
423
424 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
425 bool range_cyclic, enum wb_reason reason)
426 {
427 struct wb_writeback_work *work;
428
429 if (!wb_has_dirty_io(wb))
430 return;
431
432 /*
433 * This is WB_SYNC_NONE writeback, so if allocation fails just
434 * wakeup the thread for old dirty data writeback
435 */
436 work = kzalloc(sizeof(*work), GFP_ATOMIC);
437 if (!work) {
438 trace_writeback_nowork(wb->bdi);
439 wb_wakeup(wb);
440 return;
441 }
442
443 work->sync_mode = WB_SYNC_NONE;
444 work->nr_pages = nr_pages;
445 work->range_cyclic = range_cyclic;
446 work->reason = reason;
447 work->auto_free = 1;
448
449 wb_queue_work(wb, work);
450 }
451
452 /**
453 * wb_start_background_writeback - start background writeback
454 * @wb: bdi_writback to write from
455 *
456 * Description:
457 * This makes sure WB_SYNC_NONE background writeback happens. When
458 * this function returns, it is only guaranteed that for given wb
459 * some IO is happening if we are over background dirty threshold.
460 * Caller need not hold sb s_umount semaphore.
461 */
462 void wb_start_background_writeback(struct bdi_writeback *wb)
463 {
464 /*
465 * We just wake up the flusher thread. It will perform background
466 * writeback as soon as there is no other work to do.
467 */
468 trace_writeback_wake_background(wb->bdi);
469 wb_wakeup(wb);
470 }
471
472 /*
473 * Remove the inode from the writeback list it is on.
474 */
475 void inode_wb_list_del(struct inode *inode)
476 {
477 struct bdi_writeback *wb = inode_to_wb(inode);
478
479 spin_lock(&wb->list_lock);
480 inode_wb_list_del_locked(inode, wb);
481 spin_unlock(&wb->list_lock);
482 }
483
484 /*
485 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
486 * furthest end of its superblock's dirty-inode list.
487 *
488 * Before stamping the inode's ->dirtied_when, we check to see whether it is
489 * already the most-recently-dirtied inode on the b_dirty list. If that is
490 * the case then the inode must have been redirtied while it was being written
491 * out and we don't reset its dirtied_when.
492 */
493 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
494 {
495 if (!list_empty(&wb->b_dirty)) {
496 struct inode *tail;
497
498 tail = wb_inode(wb->b_dirty.next);
499 if (time_before(inode->dirtied_when, tail->dirtied_when))
500 inode->dirtied_when = jiffies;
501 }
502 inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
503 }
504
505 /*
506 * requeue inode for re-scanning after bdi->b_io list is exhausted.
507 */
508 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
509 {
510 inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
511 }
512
513 static void inode_sync_complete(struct inode *inode)
514 {
515 inode->i_state &= ~I_SYNC;
516 /* If inode is clean an unused, put it into LRU now... */
517 inode_add_lru(inode);
518 /* Waiters must see I_SYNC cleared before being woken up */
519 smp_mb();
520 wake_up_bit(&inode->i_state, __I_SYNC);
521 }
522
523 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
524 {
525 bool ret = time_after(inode->dirtied_when, t);
526 #ifndef CONFIG_64BIT
527 /*
528 * For inodes being constantly redirtied, dirtied_when can get stuck.
529 * It _appears_ to be in the future, but is actually in distant past.
530 * This test is necessary to prevent such wrapped-around relative times
531 * from permanently stopping the whole bdi writeback.
532 */
533 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
534 #endif
535 return ret;
536 }
537
538 #define EXPIRE_DIRTY_ATIME 0x0001
539
540 /*
541 * Move expired (dirtied before work->older_than_this) dirty inodes from
542 * @delaying_queue to @dispatch_queue.
543 */
544 static int move_expired_inodes(struct list_head *delaying_queue,
545 struct list_head *dispatch_queue,
546 int flags,
547 struct wb_writeback_work *work)
548 {
549 unsigned long *older_than_this = NULL;
550 unsigned long expire_time;
551 LIST_HEAD(tmp);
552 struct list_head *pos, *node;
553 struct super_block *sb = NULL;
554 struct inode *inode;
555 int do_sb_sort = 0;
556 int moved = 0;
557
558 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
559 older_than_this = work->older_than_this;
560 else if (!work->for_sync) {
561 expire_time = jiffies - (dirtytime_expire_interval * HZ);
562 older_than_this = &expire_time;
563 }
564 while (!list_empty(delaying_queue)) {
565 inode = wb_inode(delaying_queue->prev);
566 if (older_than_this &&
567 inode_dirtied_after(inode, *older_than_this))
568 break;
569 list_move(&inode->i_wb_list, &tmp);
570 moved++;
571 if (flags & EXPIRE_DIRTY_ATIME)
572 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
573 if (sb_is_blkdev_sb(inode->i_sb))
574 continue;
575 if (sb && sb != inode->i_sb)
576 do_sb_sort = 1;
577 sb = inode->i_sb;
578 }
579
580 /* just one sb in list, splice to dispatch_queue and we're done */
581 if (!do_sb_sort) {
582 list_splice(&tmp, dispatch_queue);
583 goto out;
584 }
585
586 /* Move inodes from one superblock together */
587 while (!list_empty(&tmp)) {
588 sb = wb_inode(tmp.prev)->i_sb;
589 list_for_each_prev_safe(pos, node, &tmp) {
590 inode = wb_inode(pos);
591 if (inode->i_sb == sb)
592 list_move(&inode->i_wb_list, dispatch_queue);
593 }
594 }
595 out:
596 return moved;
597 }
598
599 /*
600 * Queue all expired dirty inodes for io, eldest first.
601 * Before
602 * newly dirtied b_dirty b_io b_more_io
603 * =============> gf edc BA
604 * After
605 * newly dirtied b_dirty b_io b_more_io
606 * =============> g fBAedc
607 * |
608 * +--> dequeue for IO
609 */
610 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
611 {
612 int moved;
613
614 assert_spin_locked(&wb->list_lock);
615 list_splice_init(&wb->b_more_io, &wb->b_io);
616 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
617 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
618 EXPIRE_DIRTY_ATIME, work);
619 if (moved)
620 wb_io_lists_populated(wb);
621 trace_writeback_queue_io(wb, work, moved);
622 }
623
624 static int write_inode(struct inode *inode, struct writeback_control *wbc)
625 {
626 int ret;
627
628 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
629 trace_writeback_write_inode_start(inode, wbc);
630 ret = inode->i_sb->s_op->write_inode(inode, wbc);
631 trace_writeback_write_inode(inode, wbc);
632 return ret;
633 }
634 return 0;
635 }
636
637 /*
638 * Wait for writeback on an inode to complete. Called with i_lock held.
639 * Caller must make sure inode cannot go away when we drop i_lock.
640 */
641 static void __inode_wait_for_writeback(struct inode *inode)
642 __releases(inode->i_lock)
643 __acquires(inode->i_lock)
644 {
645 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
646 wait_queue_head_t *wqh;
647
648 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
649 while (inode->i_state & I_SYNC) {
650 spin_unlock(&inode->i_lock);
651 __wait_on_bit(wqh, &wq, bit_wait,
652 TASK_UNINTERRUPTIBLE);
653 spin_lock(&inode->i_lock);
654 }
655 }
656
657 /*
658 * Wait for writeback on an inode to complete. Caller must have inode pinned.
659 */
660 void inode_wait_for_writeback(struct inode *inode)
661 {
662 spin_lock(&inode->i_lock);
663 __inode_wait_for_writeback(inode);
664 spin_unlock(&inode->i_lock);
665 }
666
667 /*
668 * Sleep until I_SYNC is cleared. This function must be called with i_lock
669 * held and drops it. It is aimed for callers not holding any inode reference
670 * so once i_lock is dropped, inode can go away.
671 */
672 static void inode_sleep_on_writeback(struct inode *inode)
673 __releases(inode->i_lock)
674 {
675 DEFINE_WAIT(wait);
676 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
677 int sleep;
678
679 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
680 sleep = inode->i_state & I_SYNC;
681 spin_unlock(&inode->i_lock);
682 if (sleep)
683 schedule();
684 finish_wait(wqh, &wait);
685 }
686
687 /*
688 * Find proper writeback list for the inode depending on its current state and
689 * possibly also change of its state while we were doing writeback. Here we
690 * handle things such as livelock prevention or fairness of writeback among
691 * inodes. This function can be called only by flusher thread - noone else
692 * processes all inodes in writeback lists and requeueing inodes behind flusher
693 * thread's back can have unexpected consequences.
694 */
695 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
696 struct writeback_control *wbc)
697 {
698 if (inode->i_state & I_FREEING)
699 return;
700
701 /*
702 * Sync livelock prevention. Each inode is tagged and synced in one
703 * shot. If still dirty, it will be redirty_tail()'ed below. Update
704 * the dirty time to prevent enqueue and sync it again.
705 */
706 if ((inode->i_state & I_DIRTY) &&
707 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
708 inode->dirtied_when = jiffies;
709
710 if (wbc->pages_skipped) {
711 /*
712 * writeback is not making progress due to locked
713 * buffers. Skip this inode for now.
714 */
715 redirty_tail(inode, wb);
716 return;
717 }
718
719 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
720 /*
721 * We didn't write back all the pages. nfs_writepages()
722 * sometimes bales out without doing anything.
723 */
724 if (wbc->nr_to_write <= 0) {
725 /* Slice used up. Queue for next turn. */
726 requeue_io(inode, wb);
727 } else {
728 /*
729 * Writeback blocked by something other than
730 * congestion. Delay the inode for some time to
731 * avoid spinning on the CPU (100% iowait)
732 * retrying writeback of the dirty page/inode
733 * that cannot be performed immediately.
734 */
735 redirty_tail(inode, wb);
736 }
737 } else if (inode->i_state & I_DIRTY) {
738 /*
739 * Filesystems can dirty the inode during writeback operations,
740 * such as delayed allocation during submission or metadata
741 * updates after data IO completion.
742 */
743 redirty_tail(inode, wb);
744 } else if (inode->i_state & I_DIRTY_TIME) {
745 inode->dirtied_when = jiffies;
746 inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
747 } else {
748 /* The inode is clean. Remove from writeback lists. */
749 inode_wb_list_del_locked(inode, wb);
750 }
751 }
752
753 /*
754 * Write out an inode and its dirty pages. Do not update the writeback list
755 * linkage. That is left to the caller. The caller is also responsible for
756 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
757 */
758 static int
759 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
760 {
761 struct address_space *mapping = inode->i_mapping;
762 long nr_to_write = wbc->nr_to_write;
763 unsigned dirty;
764 int ret;
765
766 WARN_ON(!(inode->i_state & I_SYNC));
767
768 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
769
770 ret = do_writepages(mapping, wbc);
771
772 /*
773 * Make sure to wait on the data before writing out the metadata.
774 * This is important for filesystems that modify metadata on data
775 * I/O completion. We don't do it for sync(2) writeback because it has a
776 * separate, external IO completion path and ->sync_fs for guaranteeing
777 * inode metadata is written back correctly.
778 */
779 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
780 int err = filemap_fdatawait(mapping);
781 if (ret == 0)
782 ret = err;
783 }
784
785 /*
786 * Some filesystems may redirty the inode during the writeback
787 * due to delalloc, clear dirty metadata flags right before
788 * write_inode()
789 */
790 spin_lock(&inode->i_lock);
791
792 dirty = inode->i_state & I_DIRTY;
793 if (inode->i_state & I_DIRTY_TIME) {
794 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
795 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
796 unlikely(time_after(jiffies,
797 (inode->dirtied_time_when +
798 dirtytime_expire_interval * HZ)))) {
799 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
800 trace_writeback_lazytime(inode);
801 }
802 } else
803 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
804 inode->i_state &= ~dirty;
805
806 /*
807 * Paired with smp_mb() in __mark_inode_dirty(). This allows
808 * __mark_inode_dirty() to test i_state without grabbing i_lock -
809 * either they see the I_DIRTY bits cleared or we see the dirtied
810 * inode.
811 *
812 * I_DIRTY_PAGES is always cleared together above even if @mapping
813 * still has dirty pages. The flag is reinstated after smp_mb() if
814 * necessary. This guarantees that either __mark_inode_dirty()
815 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
816 */
817 smp_mb();
818
819 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
820 inode->i_state |= I_DIRTY_PAGES;
821
822 spin_unlock(&inode->i_lock);
823
824 if (dirty & I_DIRTY_TIME)
825 mark_inode_dirty_sync(inode);
826 /* Don't write the inode if only I_DIRTY_PAGES was set */
827 if (dirty & ~I_DIRTY_PAGES) {
828 int err = write_inode(inode, wbc);
829 if (ret == 0)
830 ret = err;
831 }
832 trace_writeback_single_inode(inode, wbc, nr_to_write);
833 return ret;
834 }
835
836 /*
837 * Write out an inode's dirty pages. Either the caller has an active reference
838 * on the inode or the inode has I_WILL_FREE set.
839 *
840 * This function is designed to be called for writing back one inode which
841 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
842 * and does more profound writeback list handling in writeback_sb_inodes().
843 */
844 static int
845 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
846 struct writeback_control *wbc)
847 {
848 int ret = 0;
849
850 spin_lock(&inode->i_lock);
851 if (!atomic_read(&inode->i_count))
852 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
853 else
854 WARN_ON(inode->i_state & I_WILL_FREE);
855
856 if (inode->i_state & I_SYNC) {
857 if (wbc->sync_mode != WB_SYNC_ALL)
858 goto out;
859 /*
860 * It's a data-integrity sync. We must wait. Since callers hold
861 * inode reference or inode has I_WILL_FREE set, it cannot go
862 * away under us.
863 */
864 __inode_wait_for_writeback(inode);
865 }
866 WARN_ON(inode->i_state & I_SYNC);
867 /*
868 * Skip inode if it is clean and we have no outstanding writeback in
869 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
870 * function since flusher thread may be doing for example sync in
871 * parallel and if we move the inode, it could get skipped. So here we
872 * make sure inode is on some writeback list and leave it there unless
873 * we have completely cleaned the inode.
874 */
875 if (!(inode->i_state & I_DIRTY_ALL) &&
876 (wbc->sync_mode != WB_SYNC_ALL ||
877 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
878 goto out;
879 inode->i_state |= I_SYNC;
880 spin_unlock(&inode->i_lock);
881
882 ret = __writeback_single_inode(inode, wbc);
883
884 spin_lock(&wb->list_lock);
885 spin_lock(&inode->i_lock);
886 /*
887 * If inode is clean, remove it from writeback lists. Otherwise don't
888 * touch it. See comment above for explanation.
889 */
890 if (!(inode->i_state & I_DIRTY_ALL))
891 inode_wb_list_del_locked(inode, wb);
892 spin_unlock(&wb->list_lock);
893 inode_sync_complete(inode);
894 out:
895 spin_unlock(&inode->i_lock);
896 return ret;
897 }
898
899 static long writeback_chunk_size(struct bdi_writeback *wb,
900 struct wb_writeback_work *work)
901 {
902 long pages;
903
904 /*
905 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
906 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
907 * here avoids calling into writeback_inodes_wb() more than once.
908 *
909 * The intended call sequence for WB_SYNC_ALL writeback is:
910 *
911 * wb_writeback()
912 * writeback_sb_inodes() <== called only once
913 * write_cache_pages() <== called once for each inode
914 * (quickly) tag currently dirty pages
915 * (maybe slowly) sync all tagged pages
916 */
917 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
918 pages = LONG_MAX;
919 else {
920 pages = min(wb->avg_write_bandwidth / 2,
921 global_wb_domain.dirty_limit / DIRTY_SCOPE);
922 pages = min(pages, work->nr_pages);
923 pages = round_down(pages + MIN_WRITEBACK_PAGES,
924 MIN_WRITEBACK_PAGES);
925 }
926
927 return pages;
928 }
929
930 /*
931 * Write a portion of b_io inodes which belong to @sb.
932 *
933 * Return the number of pages and/or inodes written.
934 */
935 static long writeback_sb_inodes(struct super_block *sb,
936 struct bdi_writeback *wb,
937 struct wb_writeback_work *work)
938 {
939 struct writeback_control wbc = {
940 .sync_mode = work->sync_mode,
941 .tagged_writepages = work->tagged_writepages,
942 .for_kupdate = work->for_kupdate,
943 .for_background = work->for_background,
944 .for_sync = work->for_sync,
945 .range_cyclic = work->range_cyclic,
946 .range_start = 0,
947 .range_end = LLONG_MAX,
948 };
949 unsigned long start_time = jiffies;
950 long write_chunk;
951 long wrote = 0; /* count both pages and inodes */
952
953 while (!list_empty(&wb->b_io)) {
954 struct inode *inode = wb_inode(wb->b_io.prev);
955
956 if (inode->i_sb != sb) {
957 if (work->sb) {
958 /*
959 * We only want to write back data for this
960 * superblock, move all inodes not belonging
961 * to it back onto the dirty list.
962 */
963 redirty_tail(inode, wb);
964 continue;
965 }
966
967 /*
968 * The inode belongs to a different superblock.
969 * Bounce back to the caller to unpin this and
970 * pin the next superblock.
971 */
972 break;
973 }
974
975 /*
976 * Don't bother with new inodes or inodes being freed, first
977 * kind does not need periodic writeout yet, and for the latter
978 * kind writeout is handled by the freer.
979 */
980 spin_lock(&inode->i_lock);
981 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
982 spin_unlock(&inode->i_lock);
983 redirty_tail(inode, wb);
984 continue;
985 }
986 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
987 /*
988 * If this inode is locked for writeback and we are not
989 * doing writeback-for-data-integrity, move it to
990 * b_more_io so that writeback can proceed with the
991 * other inodes on s_io.
992 *
993 * We'll have another go at writing back this inode
994 * when we completed a full scan of b_io.
995 */
996 spin_unlock(&inode->i_lock);
997 requeue_io(inode, wb);
998 trace_writeback_sb_inodes_requeue(inode);
999 continue;
1000 }
1001 spin_unlock(&wb->list_lock);
1002
1003 /*
1004 * We already requeued the inode if it had I_SYNC set and we
1005 * are doing WB_SYNC_NONE writeback. So this catches only the
1006 * WB_SYNC_ALL case.
1007 */
1008 if (inode->i_state & I_SYNC) {
1009 /* Wait for I_SYNC. This function drops i_lock... */
1010 inode_sleep_on_writeback(inode);
1011 /* Inode may be gone, start again */
1012 spin_lock(&wb->list_lock);
1013 continue;
1014 }
1015 inode->i_state |= I_SYNC;
1016 spin_unlock(&inode->i_lock);
1017
1018 write_chunk = writeback_chunk_size(wb, work);
1019 wbc.nr_to_write = write_chunk;
1020 wbc.pages_skipped = 0;
1021
1022 /*
1023 * We use I_SYNC to pin the inode in memory. While it is set
1024 * evict_inode() will wait so the inode cannot be freed.
1025 */
1026 __writeback_single_inode(inode, &wbc);
1027
1028 work->nr_pages -= write_chunk - wbc.nr_to_write;
1029 wrote += write_chunk - wbc.nr_to_write;
1030 spin_lock(&wb->list_lock);
1031 spin_lock(&inode->i_lock);
1032 if (!(inode->i_state & I_DIRTY_ALL))
1033 wrote++;
1034 requeue_inode(inode, wb, &wbc);
1035 inode_sync_complete(inode);
1036 spin_unlock(&inode->i_lock);
1037 cond_resched_lock(&wb->list_lock);
1038 /*
1039 * bail out to wb_writeback() often enough to check
1040 * background threshold and other termination conditions.
1041 */
1042 if (wrote) {
1043 if (time_is_before_jiffies(start_time + HZ / 10UL))
1044 break;
1045 if (work->nr_pages <= 0)
1046 break;
1047 }
1048 }
1049 return wrote;
1050 }
1051
1052 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1053 struct wb_writeback_work *work)
1054 {
1055 unsigned long start_time = jiffies;
1056 long wrote = 0;
1057
1058 while (!list_empty(&wb->b_io)) {
1059 struct inode *inode = wb_inode(wb->b_io.prev);
1060 struct super_block *sb = inode->i_sb;
1061
1062 if (!trylock_super(sb)) {
1063 /*
1064 * trylock_super() may fail consistently due to
1065 * s_umount being grabbed by someone else. Don't use
1066 * requeue_io() to avoid busy retrying the inode/sb.
1067 */
1068 redirty_tail(inode, wb);
1069 continue;
1070 }
1071 wrote += writeback_sb_inodes(sb, wb, work);
1072 up_read(&sb->s_umount);
1073
1074 /* refer to the same tests at the end of writeback_sb_inodes */
1075 if (wrote) {
1076 if (time_is_before_jiffies(start_time + HZ / 10UL))
1077 break;
1078 if (work->nr_pages <= 0)
1079 break;
1080 }
1081 }
1082 /* Leave any unwritten inodes on b_io */
1083 return wrote;
1084 }
1085
1086 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1087 enum wb_reason reason)
1088 {
1089 struct wb_writeback_work work = {
1090 .nr_pages = nr_pages,
1091 .sync_mode = WB_SYNC_NONE,
1092 .range_cyclic = 1,
1093 .reason = reason,
1094 };
1095
1096 spin_lock(&wb->list_lock);
1097 if (list_empty(&wb->b_io))
1098 queue_io(wb, &work);
1099 __writeback_inodes_wb(wb, &work);
1100 spin_unlock(&wb->list_lock);
1101
1102 return nr_pages - work.nr_pages;
1103 }
1104
1105 /*
1106 * Explicit flushing or periodic writeback of "old" data.
1107 *
1108 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1109 * dirtying-time in the inode's address_space. So this periodic writeback code
1110 * just walks the superblock inode list, writing back any inodes which are
1111 * older than a specific point in time.
1112 *
1113 * Try to run once per dirty_writeback_interval. But if a writeback event
1114 * takes longer than a dirty_writeback_interval interval, then leave a
1115 * one-second gap.
1116 *
1117 * older_than_this takes precedence over nr_to_write. So we'll only write back
1118 * all dirty pages if they are all attached to "old" mappings.
1119 */
1120 static long wb_writeback(struct bdi_writeback *wb,
1121 struct wb_writeback_work *work)
1122 {
1123 unsigned long wb_start = jiffies;
1124 long nr_pages = work->nr_pages;
1125 unsigned long oldest_jif;
1126 struct inode *inode;
1127 long progress;
1128
1129 oldest_jif = jiffies;
1130 work->older_than_this = &oldest_jif;
1131
1132 spin_lock(&wb->list_lock);
1133 for (;;) {
1134 /*
1135 * Stop writeback when nr_pages has been consumed
1136 */
1137 if (work->nr_pages <= 0)
1138 break;
1139
1140 /*
1141 * Background writeout and kupdate-style writeback may
1142 * run forever. Stop them if there is other work to do
1143 * so that e.g. sync can proceed. They'll be restarted
1144 * after the other works are all done.
1145 */
1146 if ((work->for_background || work->for_kupdate) &&
1147 !list_empty(&wb->work_list))
1148 break;
1149
1150 /*
1151 * For background writeout, stop when we are below the
1152 * background dirty threshold
1153 */
1154 if (work->for_background && !wb_over_bg_thresh(wb))
1155 break;
1156
1157 /*
1158 * Kupdate and background works are special and we want to
1159 * include all inodes that need writing. Livelock avoidance is
1160 * handled by these works yielding to any other work so we are
1161 * safe.
1162 */
1163 if (work->for_kupdate) {
1164 oldest_jif = jiffies -
1165 msecs_to_jiffies(dirty_expire_interval * 10);
1166 } else if (work->for_background)
1167 oldest_jif = jiffies;
1168
1169 trace_writeback_start(wb->bdi, work);
1170 if (list_empty(&wb->b_io))
1171 queue_io(wb, work);
1172 if (work->sb)
1173 progress = writeback_sb_inodes(work->sb, wb, work);
1174 else
1175 progress = __writeback_inodes_wb(wb, work);
1176 trace_writeback_written(wb->bdi, work);
1177
1178 wb_update_bandwidth(wb, wb_start);
1179
1180 /*
1181 * Did we write something? Try for more
1182 *
1183 * Dirty inodes are moved to b_io for writeback in batches.
1184 * The completion of the current batch does not necessarily
1185 * mean the overall work is done. So we keep looping as long
1186 * as made some progress on cleaning pages or inodes.
1187 */
1188 if (progress)
1189 continue;
1190 /*
1191 * No more inodes for IO, bail
1192 */
1193 if (list_empty(&wb->b_more_io))
1194 break;
1195 /*
1196 * Nothing written. Wait for some inode to
1197 * become available for writeback. Otherwise
1198 * we'll just busyloop.
1199 */
1200 if (!list_empty(&wb->b_more_io)) {
1201 trace_writeback_wait(wb->bdi, work);
1202 inode = wb_inode(wb->b_more_io.prev);
1203 spin_lock(&inode->i_lock);
1204 spin_unlock(&wb->list_lock);
1205 /* This function drops i_lock... */
1206 inode_sleep_on_writeback(inode);
1207 spin_lock(&wb->list_lock);
1208 }
1209 }
1210 spin_unlock(&wb->list_lock);
1211
1212 return nr_pages - work->nr_pages;
1213 }
1214
1215 /*
1216 * Return the next wb_writeback_work struct that hasn't been processed yet.
1217 */
1218 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1219 {
1220 struct wb_writeback_work *work = NULL;
1221
1222 spin_lock_bh(&wb->work_lock);
1223 if (!list_empty(&wb->work_list)) {
1224 work = list_entry(wb->work_list.next,
1225 struct wb_writeback_work, list);
1226 list_del_init(&work->list);
1227 }
1228 spin_unlock_bh(&wb->work_lock);
1229 return work;
1230 }
1231
1232 /*
1233 * Add in the number of potentially dirty inodes, because each inode
1234 * write can dirty pagecache in the underlying blockdev.
1235 */
1236 static unsigned long get_nr_dirty_pages(void)
1237 {
1238 return global_page_state(NR_FILE_DIRTY) +
1239 global_page_state(NR_UNSTABLE_NFS) +
1240 get_nr_dirty_inodes();
1241 }
1242
1243 static long wb_check_background_flush(struct bdi_writeback *wb)
1244 {
1245 if (wb_over_bg_thresh(wb)) {
1246
1247 struct wb_writeback_work work = {
1248 .nr_pages = LONG_MAX,
1249 .sync_mode = WB_SYNC_NONE,
1250 .for_background = 1,
1251 .range_cyclic = 1,
1252 .reason = WB_REASON_BACKGROUND,
1253 };
1254
1255 return wb_writeback(wb, &work);
1256 }
1257
1258 return 0;
1259 }
1260
1261 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1262 {
1263 unsigned long expired;
1264 long nr_pages;
1265
1266 /*
1267 * When set to zero, disable periodic writeback
1268 */
1269 if (!dirty_writeback_interval)
1270 return 0;
1271
1272 expired = wb->last_old_flush +
1273 msecs_to_jiffies(dirty_writeback_interval * 10);
1274 if (time_before(jiffies, expired))
1275 return 0;
1276
1277 wb->last_old_flush = jiffies;
1278 nr_pages = get_nr_dirty_pages();
1279
1280 if (nr_pages) {
1281 struct wb_writeback_work work = {
1282 .nr_pages = nr_pages,
1283 .sync_mode = WB_SYNC_NONE,
1284 .for_kupdate = 1,
1285 .range_cyclic = 1,
1286 .reason = WB_REASON_PERIODIC,
1287 };
1288
1289 return wb_writeback(wb, &work);
1290 }
1291
1292 return 0;
1293 }
1294
1295 /*
1296 * Retrieve work items and do the writeback they describe
1297 */
1298 static long wb_do_writeback(struct bdi_writeback *wb)
1299 {
1300 struct wb_writeback_work *work;
1301 long wrote = 0;
1302
1303 set_bit(WB_writeback_running, &wb->state);
1304 while ((work = get_next_work_item(wb)) != NULL) {
1305 struct wb_completion *done = work->done;
1306 bool need_wake_up = false;
1307
1308 trace_writeback_exec(wb->bdi, work);
1309
1310 wrote += wb_writeback(wb, work);
1311
1312 if (work->single_wait) {
1313 WARN_ON_ONCE(work->auto_free);
1314 /* paired w/ rmb in wb_wait_for_single_work() */
1315 smp_wmb();
1316 work->single_done = 1;
1317 need_wake_up = true;
1318 } else if (work->auto_free) {
1319 kfree(work);
1320 }
1321
1322 if (done && atomic_dec_and_test(&done->cnt))
1323 need_wake_up = true;
1324
1325 if (need_wake_up)
1326 wake_up_all(&wb->bdi->wb_waitq);
1327 }
1328
1329 /*
1330 * Check for periodic writeback, kupdated() style
1331 */
1332 wrote += wb_check_old_data_flush(wb);
1333 wrote += wb_check_background_flush(wb);
1334 clear_bit(WB_writeback_running, &wb->state);
1335
1336 return wrote;
1337 }
1338
1339 /*
1340 * Handle writeback of dirty data for the device backed by this bdi. Also
1341 * reschedules periodically and does kupdated style flushing.
1342 */
1343 void wb_workfn(struct work_struct *work)
1344 {
1345 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1346 struct bdi_writeback, dwork);
1347 long pages_written;
1348
1349 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1350 current->flags |= PF_SWAPWRITE;
1351
1352 if (likely(!current_is_workqueue_rescuer() ||
1353 !test_bit(WB_registered, &wb->state))) {
1354 /*
1355 * The normal path. Keep writing back @wb until its
1356 * work_list is empty. Note that this path is also taken
1357 * if @wb is shutting down even when we're running off the
1358 * rescuer as work_list needs to be drained.
1359 */
1360 do {
1361 pages_written = wb_do_writeback(wb);
1362 trace_writeback_pages_written(pages_written);
1363 } while (!list_empty(&wb->work_list));
1364 } else {
1365 /*
1366 * bdi_wq can't get enough workers and we're running off
1367 * the emergency worker. Don't hog it. Hopefully, 1024 is
1368 * enough for efficient IO.
1369 */
1370 pages_written = writeback_inodes_wb(wb, 1024,
1371 WB_REASON_FORKER_THREAD);
1372 trace_writeback_pages_written(pages_written);
1373 }
1374
1375 if (!list_empty(&wb->work_list))
1376 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1377 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1378 wb_wakeup_delayed(wb);
1379
1380 current->flags &= ~PF_SWAPWRITE;
1381 }
1382
1383 /*
1384 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1385 * the whole world.
1386 */
1387 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1388 {
1389 struct backing_dev_info *bdi;
1390
1391 if (!nr_pages)
1392 nr_pages = get_nr_dirty_pages();
1393
1394 rcu_read_lock();
1395 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1396 struct bdi_writeback *wb;
1397 struct wb_iter iter;
1398
1399 if (!bdi_has_dirty_io(bdi))
1400 continue;
1401
1402 bdi_for_each_wb(wb, bdi, &iter, 0)
1403 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1404 false, reason);
1405 }
1406 rcu_read_unlock();
1407 }
1408
1409 /*
1410 * Wake up bdi's periodically to make sure dirtytime inodes gets
1411 * written back periodically. We deliberately do *not* check the
1412 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1413 * kernel to be constantly waking up once there are any dirtytime
1414 * inodes on the system. So instead we define a separate delayed work
1415 * function which gets called much more rarely. (By default, only
1416 * once every 12 hours.)
1417 *
1418 * If there is any other write activity going on in the file system,
1419 * this function won't be necessary. But if the only thing that has
1420 * happened on the file system is a dirtytime inode caused by an atime
1421 * update, we need this infrastructure below to make sure that inode
1422 * eventually gets pushed out to disk.
1423 */
1424 static void wakeup_dirtytime_writeback(struct work_struct *w);
1425 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1426
1427 static void wakeup_dirtytime_writeback(struct work_struct *w)
1428 {
1429 struct backing_dev_info *bdi;
1430
1431 rcu_read_lock();
1432 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1433 struct bdi_writeback *wb;
1434 struct wb_iter iter;
1435
1436 bdi_for_each_wb(wb, bdi, &iter, 0)
1437 if (!list_empty(&bdi->wb.b_dirty_time))
1438 wb_wakeup(&bdi->wb);
1439 }
1440 rcu_read_unlock();
1441 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1442 }
1443
1444 static int __init start_dirtytime_writeback(void)
1445 {
1446 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1447 return 0;
1448 }
1449 __initcall(start_dirtytime_writeback);
1450
1451 int dirtytime_interval_handler(struct ctl_table *table, int write,
1452 void __user *buffer, size_t *lenp, loff_t *ppos)
1453 {
1454 int ret;
1455
1456 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1457 if (ret == 0 && write)
1458 mod_delayed_work(system_wq, &dirtytime_work, 0);
1459 return ret;
1460 }
1461
1462 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1463 {
1464 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1465 struct dentry *dentry;
1466 const char *name = "?";
1467
1468 dentry = d_find_alias(inode);
1469 if (dentry) {
1470 spin_lock(&dentry->d_lock);
1471 name = (const char *) dentry->d_name.name;
1472 }
1473 printk(KERN_DEBUG
1474 "%s(%d): dirtied inode %lu (%s) on %s\n",
1475 current->comm, task_pid_nr(current), inode->i_ino,
1476 name, inode->i_sb->s_id);
1477 if (dentry) {
1478 spin_unlock(&dentry->d_lock);
1479 dput(dentry);
1480 }
1481 }
1482 }
1483
1484 /**
1485 * __mark_inode_dirty - internal function
1486 * @inode: inode to mark
1487 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1488 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1489 * mark_inode_dirty_sync.
1490 *
1491 * Put the inode on the super block's dirty list.
1492 *
1493 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1494 * dirty list only if it is hashed or if it refers to a blockdev.
1495 * If it was not hashed, it will never be added to the dirty list
1496 * even if it is later hashed, as it will have been marked dirty already.
1497 *
1498 * In short, make sure you hash any inodes _before_ you start marking
1499 * them dirty.
1500 *
1501 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1502 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1503 * the kernel-internal blockdev inode represents the dirtying time of the
1504 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1505 * page->mapping->host, so the page-dirtying time is recorded in the internal
1506 * blockdev inode.
1507 */
1508 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1509 void __mark_inode_dirty(struct inode *inode, int flags)
1510 {
1511 struct super_block *sb = inode->i_sb;
1512 int dirtytime;
1513
1514 trace_writeback_mark_inode_dirty(inode, flags);
1515
1516 /*
1517 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1518 * dirty the inode itself
1519 */
1520 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
1521 trace_writeback_dirty_inode_start(inode, flags);
1522
1523 if (sb->s_op->dirty_inode)
1524 sb->s_op->dirty_inode(inode, flags);
1525
1526 trace_writeback_dirty_inode(inode, flags);
1527 }
1528 if (flags & I_DIRTY_INODE)
1529 flags &= ~I_DIRTY_TIME;
1530 dirtytime = flags & I_DIRTY_TIME;
1531
1532 /*
1533 * Paired with smp_mb() in __writeback_single_inode() for the
1534 * following lockless i_state test. See there for details.
1535 */
1536 smp_mb();
1537
1538 if (((inode->i_state & flags) == flags) ||
1539 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1540 return;
1541
1542 if (unlikely(block_dump))
1543 block_dump___mark_inode_dirty(inode);
1544
1545 spin_lock(&inode->i_lock);
1546 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1547 goto out_unlock_inode;
1548 if ((inode->i_state & flags) != flags) {
1549 const int was_dirty = inode->i_state & I_DIRTY;
1550
1551 inode_attach_wb(inode, NULL);
1552
1553 if (flags & I_DIRTY_INODE)
1554 inode->i_state &= ~I_DIRTY_TIME;
1555 inode->i_state |= flags;
1556
1557 /*
1558 * If the inode is being synced, just update its dirty state.
1559 * The unlocker will place the inode on the appropriate
1560 * superblock list, based upon its state.
1561 */
1562 if (inode->i_state & I_SYNC)
1563 goto out_unlock_inode;
1564
1565 /*
1566 * Only add valid (hashed) inodes to the superblock's
1567 * dirty list. Add blockdev inodes as well.
1568 */
1569 if (!S_ISBLK(inode->i_mode)) {
1570 if (inode_unhashed(inode))
1571 goto out_unlock_inode;
1572 }
1573 if (inode->i_state & I_FREEING)
1574 goto out_unlock_inode;
1575
1576 /*
1577 * If the inode was already on b_dirty/b_io/b_more_io, don't
1578 * reposition it (that would break b_dirty time-ordering).
1579 */
1580 if (!was_dirty) {
1581 struct bdi_writeback *wb = inode_to_wb(inode);
1582 struct list_head *dirty_list;
1583 bool wakeup_bdi = false;
1584
1585 spin_unlock(&inode->i_lock);
1586 spin_lock(&wb->list_lock);
1587
1588 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
1589 !test_bit(WB_registered, &wb->state),
1590 "bdi-%s not registered\n", wb->bdi->name);
1591
1592 inode->dirtied_when = jiffies;
1593 if (dirtytime)
1594 inode->dirtied_time_when = jiffies;
1595
1596 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
1597 dirty_list = &wb->b_dirty;
1598 else
1599 dirty_list = &wb->b_dirty_time;
1600
1601 wakeup_bdi = inode_wb_list_move_locked(inode, wb,
1602 dirty_list);
1603
1604 spin_unlock(&wb->list_lock);
1605 trace_writeback_dirty_inode_enqueue(inode);
1606
1607 /*
1608 * If this is the first dirty inode for this bdi,
1609 * we have to wake-up the corresponding bdi thread
1610 * to make sure background write-back happens
1611 * later.
1612 */
1613 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
1614 wb_wakeup_delayed(wb);
1615 return;
1616 }
1617 }
1618 out_unlock_inode:
1619 spin_unlock(&inode->i_lock);
1620
1621 }
1622 EXPORT_SYMBOL(__mark_inode_dirty);
1623
1624 static void wait_sb_inodes(struct super_block *sb)
1625 {
1626 struct inode *inode, *old_inode = NULL;
1627
1628 /*
1629 * We need to be protected against the filesystem going from
1630 * r/o to r/w or vice versa.
1631 */
1632 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1633
1634 spin_lock(&inode_sb_list_lock);
1635
1636 /*
1637 * Data integrity sync. Must wait for all pages under writeback,
1638 * because there may have been pages dirtied before our sync
1639 * call, but which had writeout started before we write it out.
1640 * In which case, the inode may not be on the dirty list, but
1641 * we still have to wait for that writeout.
1642 */
1643 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1644 struct address_space *mapping = inode->i_mapping;
1645
1646 spin_lock(&inode->i_lock);
1647 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1648 (mapping->nrpages == 0)) {
1649 spin_unlock(&inode->i_lock);
1650 continue;
1651 }
1652 __iget(inode);
1653 spin_unlock(&inode->i_lock);
1654 spin_unlock(&inode_sb_list_lock);
1655
1656 /*
1657 * We hold a reference to 'inode' so it couldn't have been
1658 * removed from s_inodes list while we dropped the
1659 * inode_sb_list_lock. We cannot iput the inode now as we can
1660 * be holding the last reference and we cannot iput it under
1661 * inode_sb_list_lock. So we keep the reference and iput it
1662 * later.
1663 */
1664 iput(old_inode);
1665 old_inode = inode;
1666
1667 filemap_fdatawait(mapping);
1668
1669 cond_resched();
1670
1671 spin_lock(&inode_sb_list_lock);
1672 }
1673 spin_unlock(&inode_sb_list_lock);
1674 iput(old_inode);
1675 }
1676
1677 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
1678 enum wb_reason reason, bool skip_if_busy)
1679 {
1680 DEFINE_WB_COMPLETION_ONSTACK(done);
1681 struct wb_writeback_work work = {
1682 .sb = sb,
1683 .sync_mode = WB_SYNC_NONE,
1684 .tagged_writepages = 1,
1685 .done = &done,
1686 .nr_pages = nr,
1687 .reason = reason,
1688 };
1689 struct backing_dev_info *bdi = sb->s_bdi;
1690
1691 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1692 return;
1693 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1694
1695 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
1696 wb_wait_for_completion(bdi, &done);
1697 }
1698
1699 /**
1700 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1701 * @sb: the superblock
1702 * @nr: the number of pages to write
1703 * @reason: reason why some writeback work initiated
1704 *
1705 * Start writeback on some inodes on this super_block. No guarantees are made
1706 * on how many (if any) will be written, and this function does not wait
1707 * for IO completion of submitted IO.
1708 */
1709 void writeback_inodes_sb_nr(struct super_block *sb,
1710 unsigned long nr,
1711 enum wb_reason reason)
1712 {
1713 __writeback_inodes_sb_nr(sb, nr, reason, false);
1714 }
1715 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1716
1717 /**
1718 * writeback_inodes_sb - writeback dirty inodes from given super_block
1719 * @sb: the superblock
1720 * @reason: reason why some writeback work was initiated
1721 *
1722 * Start writeback on some inodes on this super_block. No guarantees are made
1723 * on how many (if any) will be written, and this function does not wait
1724 * for IO completion of submitted IO.
1725 */
1726 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1727 {
1728 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1729 }
1730 EXPORT_SYMBOL(writeback_inodes_sb);
1731
1732 /**
1733 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1734 * @sb: the superblock
1735 * @nr: the number of pages to write
1736 * @reason: the reason of writeback
1737 *
1738 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1739 * Returns 1 if writeback was started, 0 if not.
1740 */
1741 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
1742 enum wb_reason reason)
1743 {
1744 if (!down_read_trylock(&sb->s_umount))
1745 return false;
1746
1747 __writeback_inodes_sb_nr(sb, nr, reason, true);
1748 up_read(&sb->s_umount);
1749 return true;
1750 }
1751 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1752
1753 /**
1754 * try_to_writeback_inodes_sb - try to start writeback if none underway
1755 * @sb: the superblock
1756 * @reason: reason why some writeback work was initiated
1757 *
1758 * Implement by try_to_writeback_inodes_sb_nr()
1759 * Returns 1 if writeback was started, 0 if not.
1760 */
1761 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1762 {
1763 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1764 }
1765 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1766
1767 /**
1768 * sync_inodes_sb - sync sb inode pages
1769 * @sb: the superblock
1770 *
1771 * This function writes and waits on any dirty inode belonging to this
1772 * super_block.
1773 */
1774 void sync_inodes_sb(struct super_block *sb)
1775 {
1776 DEFINE_WB_COMPLETION_ONSTACK(done);
1777 struct wb_writeback_work work = {
1778 .sb = sb,
1779 .sync_mode = WB_SYNC_ALL,
1780 .nr_pages = LONG_MAX,
1781 .range_cyclic = 0,
1782 .done = &done,
1783 .reason = WB_REASON_SYNC,
1784 .for_sync = 1,
1785 };
1786 struct backing_dev_info *bdi = sb->s_bdi;
1787
1788 /* Nothing to do? */
1789 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1790 return;
1791 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1792
1793 bdi_split_work_to_wbs(bdi, &work, false);
1794 wb_wait_for_completion(bdi, &done);
1795
1796 wait_sb_inodes(sb);
1797 }
1798 EXPORT_SYMBOL(sync_inodes_sb);
1799
1800 /**
1801 * write_inode_now - write an inode to disk
1802 * @inode: inode to write to disk
1803 * @sync: whether the write should be synchronous or not
1804 *
1805 * This function commits an inode to disk immediately if it is dirty. This is
1806 * primarily needed by knfsd.
1807 *
1808 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1809 */
1810 int write_inode_now(struct inode *inode, int sync)
1811 {
1812 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1813 struct writeback_control wbc = {
1814 .nr_to_write = LONG_MAX,
1815 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1816 .range_start = 0,
1817 .range_end = LLONG_MAX,
1818 };
1819
1820 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1821 wbc.nr_to_write = 0;
1822
1823 might_sleep();
1824 return writeback_single_inode(inode, wb, &wbc);
1825 }
1826 EXPORT_SYMBOL(write_inode_now);
1827
1828 /**
1829 * sync_inode - write an inode and its pages to disk.
1830 * @inode: the inode to sync
1831 * @wbc: controls the writeback mode
1832 *
1833 * sync_inode() will write an inode and its pages to disk. It will also
1834 * correctly update the inode on its superblock's dirty inode lists and will
1835 * update inode->i_state.
1836 *
1837 * The caller must have a ref on the inode.
1838 */
1839 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1840 {
1841 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1842 }
1843 EXPORT_SYMBOL(sync_inode);
1844
1845 /**
1846 * sync_inode_metadata - write an inode to disk
1847 * @inode: the inode to sync
1848 * @wait: wait for I/O to complete.
1849 *
1850 * Write an inode to disk and adjust its dirty state after completion.
1851 *
1852 * Note: only writes the actual inode, no associated data or other metadata.
1853 */
1854 int sync_inode_metadata(struct inode *inode, int wait)
1855 {
1856 struct writeback_control wbc = {
1857 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1858 .nr_to_write = 0, /* metadata-only */
1859 };
1860
1861 return sync_inode(inode, &wbc);
1862 }
1863 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.092037 seconds and 6 git commands to generate.