Merge branch 'linux_next' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31
32 /*
33 * 4MB minimal write chunk size
34 */
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
50 enum wb_reason reason; /* why was writeback initiated? */
51
52 struct list_head list; /* pending work list */
53 struct completion *done; /* set if the caller waits */
54 };
55
56 /**
57 * writeback_in_progress - determine whether there is writeback in progress
58 * @bdi: the device's backing_dev_info structure.
59 *
60 * Determine whether there is writeback waiting to be handled against a
61 * backing device.
62 */
63 int writeback_in_progress(struct backing_dev_info *bdi)
64 {
65 return test_bit(BDI_writeback_running, &bdi->state);
66 }
67 EXPORT_SYMBOL(writeback_in_progress);
68
69 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
70 {
71 struct super_block *sb = inode->i_sb;
72
73 if (sb_is_blkdev_sb(sb))
74 return inode->i_mapping->backing_dev_info;
75
76 return sb->s_bdi;
77 }
78
79 static inline struct inode *wb_inode(struct list_head *head)
80 {
81 return list_entry(head, struct inode, i_wb_list);
82 }
83
84 /*
85 * Include the creation of the trace points after defining the
86 * wb_writeback_work structure and inline functions so that the definition
87 * remains local to this file.
88 */
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/writeback.h>
91
92 static void bdi_wakeup_thread(struct backing_dev_info *bdi)
93 {
94 spin_lock_bh(&bdi->wb_lock);
95 if (test_bit(BDI_registered, &bdi->state))
96 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
97 spin_unlock_bh(&bdi->wb_lock);
98 }
99
100 static void bdi_queue_work(struct backing_dev_info *bdi,
101 struct wb_writeback_work *work)
102 {
103 trace_writeback_queue(bdi, work);
104
105 spin_lock_bh(&bdi->wb_lock);
106 if (!test_bit(BDI_registered, &bdi->state)) {
107 if (work->done)
108 complete(work->done);
109 goto out_unlock;
110 }
111 list_add_tail(&work->list, &bdi->work_list);
112 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
113 out_unlock:
114 spin_unlock_bh(&bdi->wb_lock);
115 }
116
117 static void
118 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
119 bool range_cyclic, enum wb_reason reason)
120 {
121 struct wb_writeback_work *work;
122
123 /*
124 * This is WB_SYNC_NONE writeback, so if allocation fails just
125 * wakeup the thread for old dirty data writeback
126 */
127 work = kzalloc(sizeof(*work), GFP_ATOMIC);
128 if (!work) {
129 trace_writeback_nowork(bdi);
130 bdi_wakeup_thread(bdi);
131 return;
132 }
133
134 work->sync_mode = WB_SYNC_NONE;
135 work->nr_pages = nr_pages;
136 work->range_cyclic = range_cyclic;
137 work->reason = reason;
138
139 bdi_queue_work(bdi, work);
140 }
141
142 /**
143 * bdi_start_writeback - start writeback
144 * @bdi: the backing device to write from
145 * @nr_pages: the number of pages to write
146 * @reason: reason why some writeback work was initiated
147 *
148 * Description:
149 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
150 * started when this function returns, we make no guarantees on
151 * completion. Caller need not hold sb s_umount semaphore.
152 *
153 */
154 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
155 enum wb_reason reason)
156 {
157 __bdi_start_writeback(bdi, nr_pages, true, reason);
158 }
159
160 /**
161 * bdi_start_background_writeback - start background writeback
162 * @bdi: the backing device to write from
163 *
164 * Description:
165 * This makes sure WB_SYNC_NONE background writeback happens. When
166 * this function returns, it is only guaranteed that for given BDI
167 * some IO is happening if we are over background dirty threshold.
168 * Caller need not hold sb s_umount semaphore.
169 */
170 void bdi_start_background_writeback(struct backing_dev_info *bdi)
171 {
172 /*
173 * We just wake up the flusher thread. It will perform background
174 * writeback as soon as there is no other work to do.
175 */
176 trace_writeback_wake_background(bdi);
177 bdi_wakeup_thread(bdi);
178 }
179
180 /*
181 * Remove the inode from the writeback list it is on.
182 */
183 void inode_wb_list_del(struct inode *inode)
184 {
185 struct backing_dev_info *bdi = inode_to_bdi(inode);
186
187 spin_lock(&bdi->wb.list_lock);
188 list_del_init(&inode->i_wb_list);
189 spin_unlock(&bdi->wb.list_lock);
190 }
191
192 /*
193 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
194 * furthest end of its superblock's dirty-inode list.
195 *
196 * Before stamping the inode's ->dirtied_when, we check to see whether it is
197 * already the most-recently-dirtied inode on the b_dirty list. If that is
198 * the case then the inode must have been redirtied while it was being written
199 * out and we don't reset its dirtied_when.
200 */
201 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
202 {
203 assert_spin_locked(&wb->list_lock);
204 if (!list_empty(&wb->b_dirty)) {
205 struct inode *tail;
206
207 tail = wb_inode(wb->b_dirty.next);
208 if (time_before(inode->dirtied_when, tail->dirtied_when))
209 inode->dirtied_when = jiffies;
210 }
211 list_move(&inode->i_wb_list, &wb->b_dirty);
212 }
213
214 /*
215 * requeue inode for re-scanning after bdi->b_io list is exhausted.
216 */
217 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
218 {
219 assert_spin_locked(&wb->list_lock);
220 list_move(&inode->i_wb_list, &wb->b_more_io);
221 }
222
223 static void inode_sync_complete(struct inode *inode)
224 {
225 inode->i_state &= ~I_SYNC;
226 /* If inode is clean an unused, put it into LRU now... */
227 inode_add_lru(inode);
228 /* Waiters must see I_SYNC cleared before being woken up */
229 smp_mb();
230 wake_up_bit(&inode->i_state, __I_SYNC);
231 }
232
233 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
234 {
235 bool ret = time_after(inode->dirtied_when, t);
236 #ifndef CONFIG_64BIT
237 /*
238 * For inodes being constantly redirtied, dirtied_when can get stuck.
239 * It _appears_ to be in the future, but is actually in distant past.
240 * This test is necessary to prevent such wrapped-around relative times
241 * from permanently stopping the whole bdi writeback.
242 */
243 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
244 #endif
245 return ret;
246 }
247
248 /*
249 * Move expired (dirtied before work->older_than_this) dirty inodes from
250 * @delaying_queue to @dispatch_queue.
251 */
252 static int move_expired_inodes(struct list_head *delaying_queue,
253 struct list_head *dispatch_queue,
254 struct wb_writeback_work *work)
255 {
256 LIST_HEAD(tmp);
257 struct list_head *pos, *node;
258 struct super_block *sb = NULL;
259 struct inode *inode;
260 int do_sb_sort = 0;
261 int moved = 0;
262
263 while (!list_empty(delaying_queue)) {
264 inode = wb_inode(delaying_queue->prev);
265 if (work->older_than_this &&
266 inode_dirtied_after(inode, *work->older_than_this))
267 break;
268 list_move(&inode->i_wb_list, &tmp);
269 moved++;
270 if (sb_is_blkdev_sb(inode->i_sb))
271 continue;
272 if (sb && sb != inode->i_sb)
273 do_sb_sort = 1;
274 sb = inode->i_sb;
275 }
276
277 /* just one sb in list, splice to dispatch_queue and we're done */
278 if (!do_sb_sort) {
279 list_splice(&tmp, dispatch_queue);
280 goto out;
281 }
282
283 /* Move inodes from one superblock together */
284 while (!list_empty(&tmp)) {
285 sb = wb_inode(tmp.prev)->i_sb;
286 list_for_each_prev_safe(pos, node, &tmp) {
287 inode = wb_inode(pos);
288 if (inode->i_sb == sb)
289 list_move(&inode->i_wb_list, dispatch_queue);
290 }
291 }
292 out:
293 return moved;
294 }
295
296 /*
297 * Queue all expired dirty inodes for io, eldest first.
298 * Before
299 * newly dirtied b_dirty b_io b_more_io
300 * =============> gf edc BA
301 * After
302 * newly dirtied b_dirty b_io b_more_io
303 * =============> g fBAedc
304 * |
305 * +--> dequeue for IO
306 */
307 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
308 {
309 int moved;
310 assert_spin_locked(&wb->list_lock);
311 list_splice_init(&wb->b_more_io, &wb->b_io);
312 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
313 trace_writeback_queue_io(wb, work, moved);
314 }
315
316 static int write_inode(struct inode *inode, struct writeback_control *wbc)
317 {
318 int ret;
319
320 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
321 trace_writeback_write_inode_start(inode, wbc);
322 ret = inode->i_sb->s_op->write_inode(inode, wbc);
323 trace_writeback_write_inode(inode, wbc);
324 return ret;
325 }
326 return 0;
327 }
328
329 /*
330 * Wait for writeback on an inode to complete. Called with i_lock held.
331 * Caller must make sure inode cannot go away when we drop i_lock.
332 */
333 static void __inode_wait_for_writeback(struct inode *inode)
334 __releases(inode->i_lock)
335 __acquires(inode->i_lock)
336 {
337 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
338 wait_queue_head_t *wqh;
339
340 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
341 while (inode->i_state & I_SYNC) {
342 spin_unlock(&inode->i_lock);
343 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
344 spin_lock(&inode->i_lock);
345 }
346 }
347
348 /*
349 * Wait for writeback on an inode to complete. Caller must have inode pinned.
350 */
351 void inode_wait_for_writeback(struct inode *inode)
352 {
353 spin_lock(&inode->i_lock);
354 __inode_wait_for_writeback(inode);
355 spin_unlock(&inode->i_lock);
356 }
357
358 /*
359 * Sleep until I_SYNC is cleared. This function must be called with i_lock
360 * held and drops it. It is aimed for callers not holding any inode reference
361 * so once i_lock is dropped, inode can go away.
362 */
363 static void inode_sleep_on_writeback(struct inode *inode)
364 __releases(inode->i_lock)
365 {
366 DEFINE_WAIT(wait);
367 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
368 int sleep;
369
370 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
371 sleep = inode->i_state & I_SYNC;
372 spin_unlock(&inode->i_lock);
373 if (sleep)
374 schedule();
375 finish_wait(wqh, &wait);
376 }
377
378 /*
379 * Find proper writeback list for the inode depending on its current state and
380 * possibly also change of its state while we were doing writeback. Here we
381 * handle things such as livelock prevention or fairness of writeback among
382 * inodes. This function can be called only by flusher thread - noone else
383 * processes all inodes in writeback lists and requeueing inodes behind flusher
384 * thread's back can have unexpected consequences.
385 */
386 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
387 struct writeback_control *wbc)
388 {
389 if (inode->i_state & I_FREEING)
390 return;
391
392 /*
393 * Sync livelock prevention. Each inode is tagged and synced in one
394 * shot. If still dirty, it will be redirty_tail()'ed below. Update
395 * the dirty time to prevent enqueue and sync it again.
396 */
397 if ((inode->i_state & I_DIRTY) &&
398 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
399 inode->dirtied_when = jiffies;
400
401 if (wbc->pages_skipped) {
402 /*
403 * writeback is not making progress due to locked
404 * buffers. Skip this inode for now.
405 */
406 redirty_tail(inode, wb);
407 return;
408 }
409
410 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
411 /*
412 * We didn't write back all the pages. nfs_writepages()
413 * sometimes bales out without doing anything.
414 */
415 if (wbc->nr_to_write <= 0) {
416 /* Slice used up. Queue for next turn. */
417 requeue_io(inode, wb);
418 } else {
419 /*
420 * Writeback blocked by something other than
421 * congestion. Delay the inode for some time to
422 * avoid spinning on the CPU (100% iowait)
423 * retrying writeback of the dirty page/inode
424 * that cannot be performed immediately.
425 */
426 redirty_tail(inode, wb);
427 }
428 } else if (inode->i_state & I_DIRTY) {
429 /*
430 * Filesystems can dirty the inode during writeback operations,
431 * such as delayed allocation during submission or metadata
432 * updates after data IO completion.
433 */
434 redirty_tail(inode, wb);
435 } else {
436 /* The inode is clean. Remove from writeback lists. */
437 list_del_init(&inode->i_wb_list);
438 }
439 }
440
441 /*
442 * Write out an inode and its dirty pages. Do not update the writeback list
443 * linkage. That is left to the caller. The caller is also responsible for
444 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
445 */
446 static int
447 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
448 {
449 struct address_space *mapping = inode->i_mapping;
450 long nr_to_write = wbc->nr_to_write;
451 unsigned dirty;
452 int ret;
453
454 WARN_ON(!(inode->i_state & I_SYNC));
455
456 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
457
458 ret = do_writepages(mapping, wbc);
459
460 /*
461 * Make sure to wait on the data before writing out the metadata.
462 * This is important for filesystems that modify metadata on data
463 * I/O completion. We don't do it for sync(2) writeback because it has a
464 * separate, external IO completion path and ->sync_fs for guaranteeing
465 * inode metadata is written back correctly.
466 */
467 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
468 int err = filemap_fdatawait(mapping);
469 if (ret == 0)
470 ret = err;
471 }
472
473 /*
474 * Some filesystems may redirty the inode during the writeback
475 * due to delalloc, clear dirty metadata flags right before
476 * write_inode()
477 */
478 spin_lock(&inode->i_lock);
479 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
480 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
481 inode->i_state &= ~I_DIRTY_PAGES;
482 dirty = inode->i_state & I_DIRTY;
483 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
484 spin_unlock(&inode->i_lock);
485 /* Don't write the inode if only I_DIRTY_PAGES was set */
486 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
487 int err = write_inode(inode, wbc);
488 if (ret == 0)
489 ret = err;
490 }
491 trace_writeback_single_inode(inode, wbc, nr_to_write);
492 return ret;
493 }
494
495 /*
496 * Write out an inode's dirty pages. Either the caller has an active reference
497 * on the inode or the inode has I_WILL_FREE set.
498 *
499 * This function is designed to be called for writing back one inode which
500 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
501 * and does more profound writeback list handling in writeback_sb_inodes().
502 */
503 static int
504 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
505 struct writeback_control *wbc)
506 {
507 int ret = 0;
508
509 spin_lock(&inode->i_lock);
510 if (!atomic_read(&inode->i_count))
511 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
512 else
513 WARN_ON(inode->i_state & I_WILL_FREE);
514
515 if (inode->i_state & I_SYNC) {
516 if (wbc->sync_mode != WB_SYNC_ALL)
517 goto out;
518 /*
519 * It's a data-integrity sync. We must wait. Since callers hold
520 * inode reference or inode has I_WILL_FREE set, it cannot go
521 * away under us.
522 */
523 __inode_wait_for_writeback(inode);
524 }
525 WARN_ON(inode->i_state & I_SYNC);
526 /*
527 * Skip inode if it is clean and we have no outstanding writeback in
528 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
529 * function since flusher thread may be doing for example sync in
530 * parallel and if we move the inode, it could get skipped. So here we
531 * make sure inode is on some writeback list and leave it there unless
532 * we have completely cleaned the inode.
533 */
534 if (!(inode->i_state & I_DIRTY) &&
535 (wbc->sync_mode != WB_SYNC_ALL ||
536 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
537 goto out;
538 inode->i_state |= I_SYNC;
539 spin_unlock(&inode->i_lock);
540
541 ret = __writeback_single_inode(inode, wbc);
542
543 spin_lock(&wb->list_lock);
544 spin_lock(&inode->i_lock);
545 /*
546 * If inode is clean, remove it from writeback lists. Otherwise don't
547 * touch it. See comment above for explanation.
548 */
549 if (!(inode->i_state & I_DIRTY))
550 list_del_init(&inode->i_wb_list);
551 spin_unlock(&wb->list_lock);
552 inode_sync_complete(inode);
553 out:
554 spin_unlock(&inode->i_lock);
555 return ret;
556 }
557
558 static long writeback_chunk_size(struct backing_dev_info *bdi,
559 struct wb_writeback_work *work)
560 {
561 long pages;
562
563 /*
564 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
565 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
566 * here avoids calling into writeback_inodes_wb() more than once.
567 *
568 * The intended call sequence for WB_SYNC_ALL writeback is:
569 *
570 * wb_writeback()
571 * writeback_sb_inodes() <== called only once
572 * write_cache_pages() <== called once for each inode
573 * (quickly) tag currently dirty pages
574 * (maybe slowly) sync all tagged pages
575 */
576 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
577 pages = LONG_MAX;
578 else {
579 pages = min(bdi->avg_write_bandwidth / 2,
580 global_dirty_limit / DIRTY_SCOPE);
581 pages = min(pages, work->nr_pages);
582 pages = round_down(pages + MIN_WRITEBACK_PAGES,
583 MIN_WRITEBACK_PAGES);
584 }
585
586 return pages;
587 }
588
589 /*
590 * Write a portion of b_io inodes which belong to @sb.
591 *
592 * Return the number of pages and/or inodes written.
593 */
594 static long writeback_sb_inodes(struct super_block *sb,
595 struct bdi_writeback *wb,
596 struct wb_writeback_work *work)
597 {
598 struct writeback_control wbc = {
599 .sync_mode = work->sync_mode,
600 .tagged_writepages = work->tagged_writepages,
601 .for_kupdate = work->for_kupdate,
602 .for_background = work->for_background,
603 .for_sync = work->for_sync,
604 .range_cyclic = work->range_cyclic,
605 .range_start = 0,
606 .range_end = LLONG_MAX,
607 };
608 unsigned long start_time = jiffies;
609 long write_chunk;
610 long wrote = 0; /* count both pages and inodes */
611
612 while (!list_empty(&wb->b_io)) {
613 struct inode *inode = wb_inode(wb->b_io.prev);
614
615 if (inode->i_sb != sb) {
616 if (work->sb) {
617 /*
618 * We only want to write back data for this
619 * superblock, move all inodes not belonging
620 * to it back onto the dirty list.
621 */
622 redirty_tail(inode, wb);
623 continue;
624 }
625
626 /*
627 * The inode belongs to a different superblock.
628 * Bounce back to the caller to unpin this and
629 * pin the next superblock.
630 */
631 break;
632 }
633
634 /*
635 * Don't bother with new inodes or inodes being freed, first
636 * kind does not need periodic writeout yet, and for the latter
637 * kind writeout is handled by the freer.
638 */
639 spin_lock(&inode->i_lock);
640 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
641 spin_unlock(&inode->i_lock);
642 redirty_tail(inode, wb);
643 continue;
644 }
645 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
646 /*
647 * If this inode is locked for writeback and we are not
648 * doing writeback-for-data-integrity, move it to
649 * b_more_io so that writeback can proceed with the
650 * other inodes on s_io.
651 *
652 * We'll have another go at writing back this inode
653 * when we completed a full scan of b_io.
654 */
655 spin_unlock(&inode->i_lock);
656 requeue_io(inode, wb);
657 trace_writeback_sb_inodes_requeue(inode);
658 continue;
659 }
660 spin_unlock(&wb->list_lock);
661
662 /*
663 * We already requeued the inode if it had I_SYNC set and we
664 * are doing WB_SYNC_NONE writeback. So this catches only the
665 * WB_SYNC_ALL case.
666 */
667 if (inode->i_state & I_SYNC) {
668 /* Wait for I_SYNC. This function drops i_lock... */
669 inode_sleep_on_writeback(inode);
670 /* Inode may be gone, start again */
671 spin_lock(&wb->list_lock);
672 continue;
673 }
674 inode->i_state |= I_SYNC;
675 spin_unlock(&inode->i_lock);
676
677 write_chunk = writeback_chunk_size(wb->bdi, work);
678 wbc.nr_to_write = write_chunk;
679 wbc.pages_skipped = 0;
680
681 /*
682 * We use I_SYNC to pin the inode in memory. While it is set
683 * evict_inode() will wait so the inode cannot be freed.
684 */
685 __writeback_single_inode(inode, &wbc);
686
687 work->nr_pages -= write_chunk - wbc.nr_to_write;
688 wrote += write_chunk - wbc.nr_to_write;
689 spin_lock(&wb->list_lock);
690 spin_lock(&inode->i_lock);
691 if (!(inode->i_state & I_DIRTY))
692 wrote++;
693 requeue_inode(inode, wb, &wbc);
694 inode_sync_complete(inode);
695 spin_unlock(&inode->i_lock);
696 cond_resched_lock(&wb->list_lock);
697 /*
698 * bail out to wb_writeback() often enough to check
699 * background threshold and other termination conditions.
700 */
701 if (wrote) {
702 if (time_is_before_jiffies(start_time + HZ / 10UL))
703 break;
704 if (work->nr_pages <= 0)
705 break;
706 }
707 }
708 return wrote;
709 }
710
711 static long __writeback_inodes_wb(struct bdi_writeback *wb,
712 struct wb_writeback_work *work)
713 {
714 unsigned long start_time = jiffies;
715 long wrote = 0;
716
717 while (!list_empty(&wb->b_io)) {
718 struct inode *inode = wb_inode(wb->b_io.prev);
719 struct super_block *sb = inode->i_sb;
720
721 if (!grab_super_passive(sb)) {
722 /*
723 * grab_super_passive() may fail consistently due to
724 * s_umount being grabbed by someone else. Don't use
725 * requeue_io() to avoid busy retrying the inode/sb.
726 */
727 redirty_tail(inode, wb);
728 continue;
729 }
730 wrote += writeback_sb_inodes(sb, wb, work);
731 drop_super(sb);
732
733 /* refer to the same tests at the end of writeback_sb_inodes */
734 if (wrote) {
735 if (time_is_before_jiffies(start_time + HZ / 10UL))
736 break;
737 if (work->nr_pages <= 0)
738 break;
739 }
740 }
741 /* Leave any unwritten inodes on b_io */
742 return wrote;
743 }
744
745 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
746 enum wb_reason reason)
747 {
748 struct wb_writeback_work work = {
749 .nr_pages = nr_pages,
750 .sync_mode = WB_SYNC_NONE,
751 .range_cyclic = 1,
752 .reason = reason,
753 };
754
755 spin_lock(&wb->list_lock);
756 if (list_empty(&wb->b_io))
757 queue_io(wb, &work);
758 __writeback_inodes_wb(wb, &work);
759 spin_unlock(&wb->list_lock);
760
761 return nr_pages - work.nr_pages;
762 }
763
764 static bool over_bground_thresh(struct backing_dev_info *bdi)
765 {
766 unsigned long background_thresh, dirty_thresh;
767
768 global_dirty_limits(&background_thresh, &dirty_thresh);
769
770 if (global_page_state(NR_FILE_DIRTY) +
771 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
772 return true;
773
774 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
775 bdi_dirty_limit(bdi, background_thresh))
776 return true;
777
778 return false;
779 }
780
781 /*
782 * Called under wb->list_lock. If there are multiple wb per bdi,
783 * only the flusher working on the first wb should do it.
784 */
785 static void wb_update_bandwidth(struct bdi_writeback *wb,
786 unsigned long start_time)
787 {
788 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
789 }
790
791 /*
792 * Explicit flushing or periodic writeback of "old" data.
793 *
794 * Define "old": the first time one of an inode's pages is dirtied, we mark the
795 * dirtying-time in the inode's address_space. So this periodic writeback code
796 * just walks the superblock inode list, writing back any inodes which are
797 * older than a specific point in time.
798 *
799 * Try to run once per dirty_writeback_interval. But if a writeback event
800 * takes longer than a dirty_writeback_interval interval, then leave a
801 * one-second gap.
802 *
803 * older_than_this takes precedence over nr_to_write. So we'll only write back
804 * all dirty pages if they are all attached to "old" mappings.
805 */
806 static long wb_writeback(struct bdi_writeback *wb,
807 struct wb_writeback_work *work)
808 {
809 unsigned long wb_start = jiffies;
810 long nr_pages = work->nr_pages;
811 unsigned long oldest_jif;
812 struct inode *inode;
813 long progress;
814
815 oldest_jif = jiffies;
816 work->older_than_this = &oldest_jif;
817
818 spin_lock(&wb->list_lock);
819 for (;;) {
820 /*
821 * Stop writeback when nr_pages has been consumed
822 */
823 if (work->nr_pages <= 0)
824 break;
825
826 /*
827 * Background writeout and kupdate-style writeback may
828 * run forever. Stop them if there is other work to do
829 * so that e.g. sync can proceed. They'll be restarted
830 * after the other works are all done.
831 */
832 if ((work->for_background || work->for_kupdate) &&
833 !list_empty(&wb->bdi->work_list))
834 break;
835
836 /*
837 * For background writeout, stop when we are below the
838 * background dirty threshold
839 */
840 if (work->for_background && !over_bground_thresh(wb->bdi))
841 break;
842
843 /*
844 * Kupdate and background works are special and we want to
845 * include all inodes that need writing. Livelock avoidance is
846 * handled by these works yielding to any other work so we are
847 * safe.
848 */
849 if (work->for_kupdate) {
850 oldest_jif = jiffies -
851 msecs_to_jiffies(dirty_expire_interval * 10);
852 } else if (work->for_background)
853 oldest_jif = jiffies;
854
855 trace_writeback_start(wb->bdi, work);
856 if (list_empty(&wb->b_io))
857 queue_io(wb, work);
858 if (work->sb)
859 progress = writeback_sb_inodes(work->sb, wb, work);
860 else
861 progress = __writeback_inodes_wb(wb, work);
862 trace_writeback_written(wb->bdi, work);
863
864 wb_update_bandwidth(wb, wb_start);
865
866 /*
867 * Did we write something? Try for more
868 *
869 * Dirty inodes are moved to b_io for writeback in batches.
870 * The completion of the current batch does not necessarily
871 * mean the overall work is done. So we keep looping as long
872 * as made some progress on cleaning pages or inodes.
873 */
874 if (progress)
875 continue;
876 /*
877 * No more inodes for IO, bail
878 */
879 if (list_empty(&wb->b_more_io))
880 break;
881 /*
882 * Nothing written. Wait for some inode to
883 * become available for writeback. Otherwise
884 * we'll just busyloop.
885 */
886 if (!list_empty(&wb->b_more_io)) {
887 trace_writeback_wait(wb->bdi, work);
888 inode = wb_inode(wb->b_more_io.prev);
889 spin_lock(&inode->i_lock);
890 spin_unlock(&wb->list_lock);
891 /* This function drops i_lock... */
892 inode_sleep_on_writeback(inode);
893 spin_lock(&wb->list_lock);
894 }
895 }
896 spin_unlock(&wb->list_lock);
897
898 return nr_pages - work->nr_pages;
899 }
900
901 /*
902 * Return the next wb_writeback_work struct that hasn't been processed yet.
903 */
904 static struct wb_writeback_work *
905 get_next_work_item(struct backing_dev_info *bdi)
906 {
907 struct wb_writeback_work *work = NULL;
908
909 spin_lock_bh(&bdi->wb_lock);
910 if (!list_empty(&bdi->work_list)) {
911 work = list_entry(bdi->work_list.next,
912 struct wb_writeback_work, list);
913 list_del_init(&work->list);
914 }
915 spin_unlock_bh(&bdi->wb_lock);
916 return work;
917 }
918
919 /*
920 * Add in the number of potentially dirty inodes, because each inode
921 * write can dirty pagecache in the underlying blockdev.
922 */
923 static unsigned long get_nr_dirty_pages(void)
924 {
925 return global_page_state(NR_FILE_DIRTY) +
926 global_page_state(NR_UNSTABLE_NFS) +
927 get_nr_dirty_inodes();
928 }
929
930 static long wb_check_background_flush(struct bdi_writeback *wb)
931 {
932 if (over_bground_thresh(wb->bdi)) {
933
934 struct wb_writeback_work work = {
935 .nr_pages = LONG_MAX,
936 .sync_mode = WB_SYNC_NONE,
937 .for_background = 1,
938 .range_cyclic = 1,
939 .reason = WB_REASON_BACKGROUND,
940 };
941
942 return wb_writeback(wb, &work);
943 }
944
945 return 0;
946 }
947
948 static long wb_check_old_data_flush(struct bdi_writeback *wb)
949 {
950 unsigned long expired;
951 long nr_pages;
952
953 /*
954 * When set to zero, disable periodic writeback
955 */
956 if (!dirty_writeback_interval)
957 return 0;
958
959 expired = wb->last_old_flush +
960 msecs_to_jiffies(dirty_writeback_interval * 10);
961 if (time_before(jiffies, expired))
962 return 0;
963
964 wb->last_old_flush = jiffies;
965 nr_pages = get_nr_dirty_pages();
966
967 if (nr_pages) {
968 struct wb_writeback_work work = {
969 .nr_pages = nr_pages,
970 .sync_mode = WB_SYNC_NONE,
971 .for_kupdate = 1,
972 .range_cyclic = 1,
973 .reason = WB_REASON_PERIODIC,
974 };
975
976 return wb_writeback(wb, &work);
977 }
978
979 return 0;
980 }
981
982 /*
983 * Retrieve work items and do the writeback they describe
984 */
985 static long wb_do_writeback(struct bdi_writeback *wb)
986 {
987 struct backing_dev_info *bdi = wb->bdi;
988 struct wb_writeback_work *work;
989 long wrote = 0;
990
991 set_bit(BDI_writeback_running, &wb->bdi->state);
992 while ((work = get_next_work_item(bdi)) != NULL) {
993
994 trace_writeback_exec(bdi, work);
995
996 wrote += wb_writeback(wb, work);
997
998 /*
999 * Notify the caller of completion if this is a synchronous
1000 * work item, otherwise just free it.
1001 */
1002 if (work->done)
1003 complete(work->done);
1004 else
1005 kfree(work);
1006 }
1007
1008 /*
1009 * Check for periodic writeback, kupdated() style
1010 */
1011 wrote += wb_check_old_data_flush(wb);
1012 wrote += wb_check_background_flush(wb);
1013 clear_bit(BDI_writeback_running, &wb->bdi->state);
1014
1015 return wrote;
1016 }
1017
1018 /*
1019 * Handle writeback of dirty data for the device backed by this bdi. Also
1020 * reschedules periodically and does kupdated style flushing.
1021 */
1022 void bdi_writeback_workfn(struct work_struct *work)
1023 {
1024 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1025 struct bdi_writeback, dwork);
1026 struct backing_dev_info *bdi = wb->bdi;
1027 long pages_written;
1028
1029 set_worker_desc("flush-%s", dev_name(bdi->dev));
1030 current->flags |= PF_SWAPWRITE;
1031
1032 if (likely(!current_is_workqueue_rescuer() ||
1033 !test_bit(BDI_registered, &bdi->state))) {
1034 /*
1035 * The normal path. Keep writing back @bdi until its
1036 * work_list is empty. Note that this path is also taken
1037 * if @bdi is shutting down even when we're running off the
1038 * rescuer as work_list needs to be drained.
1039 */
1040 do {
1041 pages_written = wb_do_writeback(wb);
1042 trace_writeback_pages_written(pages_written);
1043 } while (!list_empty(&bdi->work_list));
1044 } else {
1045 /*
1046 * bdi_wq can't get enough workers and we're running off
1047 * the emergency worker. Don't hog it. Hopefully, 1024 is
1048 * enough for efficient IO.
1049 */
1050 pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1051 WB_REASON_FORKER_THREAD);
1052 trace_writeback_pages_written(pages_written);
1053 }
1054
1055 if (!list_empty(&bdi->work_list))
1056 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1057 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1058 bdi_wakeup_thread_delayed(bdi);
1059
1060 current->flags &= ~PF_SWAPWRITE;
1061 }
1062
1063 /*
1064 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1065 * the whole world.
1066 */
1067 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1068 {
1069 struct backing_dev_info *bdi;
1070
1071 if (!nr_pages)
1072 nr_pages = get_nr_dirty_pages();
1073
1074 rcu_read_lock();
1075 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1076 if (!bdi_has_dirty_io(bdi))
1077 continue;
1078 __bdi_start_writeback(bdi, nr_pages, false, reason);
1079 }
1080 rcu_read_unlock();
1081 }
1082
1083 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1084 {
1085 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1086 struct dentry *dentry;
1087 const char *name = "?";
1088
1089 dentry = d_find_alias(inode);
1090 if (dentry) {
1091 spin_lock(&dentry->d_lock);
1092 name = (const char *) dentry->d_name.name;
1093 }
1094 printk(KERN_DEBUG
1095 "%s(%d): dirtied inode %lu (%s) on %s\n",
1096 current->comm, task_pid_nr(current), inode->i_ino,
1097 name, inode->i_sb->s_id);
1098 if (dentry) {
1099 spin_unlock(&dentry->d_lock);
1100 dput(dentry);
1101 }
1102 }
1103 }
1104
1105 /**
1106 * __mark_inode_dirty - internal function
1107 * @inode: inode to mark
1108 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1109 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1110 * mark_inode_dirty_sync.
1111 *
1112 * Put the inode on the super block's dirty list.
1113 *
1114 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1115 * dirty list only if it is hashed or if it refers to a blockdev.
1116 * If it was not hashed, it will never be added to the dirty list
1117 * even if it is later hashed, as it will have been marked dirty already.
1118 *
1119 * In short, make sure you hash any inodes _before_ you start marking
1120 * them dirty.
1121 *
1122 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1123 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1124 * the kernel-internal blockdev inode represents the dirtying time of the
1125 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1126 * page->mapping->host, so the page-dirtying time is recorded in the internal
1127 * blockdev inode.
1128 */
1129 void __mark_inode_dirty(struct inode *inode, int flags)
1130 {
1131 struct super_block *sb = inode->i_sb;
1132 struct backing_dev_info *bdi = NULL;
1133
1134 /*
1135 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1136 * dirty the inode itself
1137 */
1138 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1139 trace_writeback_dirty_inode_start(inode, flags);
1140
1141 if (sb->s_op->dirty_inode)
1142 sb->s_op->dirty_inode(inode, flags);
1143
1144 trace_writeback_dirty_inode(inode, flags);
1145 }
1146
1147 /*
1148 * make sure that changes are seen by all cpus before we test i_state
1149 * -- mikulas
1150 */
1151 smp_mb();
1152
1153 /* avoid the locking if we can */
1154 if ((inode->i_state & flags) == flags)
1155 return;
1156
1157 if (unlikely(block_dump))
1158 block_dump___mark_inode_dirty(inode);
1159
1160 spin_lock(&inode->i_lock);
1161 if ((inode->i_state & flags) != flags) {
1162 const int was_dirty = inode->i_state & I_DIRTY;
1163
1164 inode->i_state |= flags;
1165
1166 /*
1167 * If the inode is being synced, just update its dirty state.
1168 * The unlocker will place the inode on the appropriate
1169 * superblock list, based upon its state.
1170 */
1171 if (inode->i_state & I_SYNC)
1172 goto out_unlock_inode;
1173
1174 /*
1175 * Only add valid (hashed) inodes to the superblock's
1176 * dirty list. Add blockdev inodes as well.
1177 */
1178 if (!S_ISBLK(inode->i_mode)) {
1179 if (inode_unhashed(inode))
1180 goto out_unlock_inode;
1181 }
1182 if (inode->i_state & I_FREEING)
1183 goto out_unlock_inode;
1184
1185 /*
1186 * If the inode was already on b_dirty/b_io/b_more_io, don't
1187 * reposition it (that would break b_dirty time-ordering).
1188 */
1189 if (!was_dirty) {
1190 bool wakeup_bdi = false;
1191 bdi = inode_to_bdi(inode);
1192
1193 spin_unlock(&inode->i_lock);
1194 spin_lock(&bdi->wb.list_lock);
1195 if (bdi_cap_writeback_dirty(bdi)) {
1196 WARN(!test_bit(BDI_registered, &bdi->state),
1197 "bdi-%s not registered\n", bdi->name);
1198
1199 /*
1200 * If this is the first dirty inode for this
1201 * bdi, we have to wake-up the corresponding
1202 * bdi thread to make sure background
1203 * write-back happens later.
1204 */
1205 if (!wb_has_dirty_io(&bdi->wb))
1206 wakeup_bdi = true;
1207 }
1208
1209 inode->dirtied_when = jiffies;
1210 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1211 spin_unlock(&bdi->wb.list_lock);
1212
1213 if (wakeup_bdi)
1214 bdi_wakeup_thread_delayed(bdi);
1215 return;
1216 }
1217 }
1218 out_unlock_inode:
1219 spin_unlock(&inode->i_lock);
1220
1221 }
1222 EXPORT_SYMBOL(__mark_inode_dirty);
1223
1224 static void wait_sb_inodes(struct super_block *sb)
1225 {
1226 struct inode *inode, *old_inode = NULL;
1227
1228 /*
1229 * We need to be protected against the filesystem going from
1230 * r/o to r/w or vice versa.
1231 */
1232 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1233
1234 spin_lock(&inode_sb_list_lock);
1235
1236 /*
1237 * Data integrity sync. Must wait for all pages under writeback,
1238 * because there may have been pages dirtied before our sync
1239 * call, but which had writeout started before we write it out.
1240 * In which case, the inode may not be on the dirty list, but
1241 * we still have to wait for that writeout.
1242 */
1243 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1244 struct address_space *mapping = inode->i_mapping;
1245
1246 spin_lock(&inode->i_lock);
1247 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1248 (mapping->nrpages == 0)) {
1249 spin_unlock(&inode->i_lock);
1250 continue;
1251 }
1252 __iget(inode);
1253 spin_unlock(&inode->i_lock);
1254 spin_unlock(&inode_sb_list_lock);
1255
1256 /*
1257 * We hold a reference to 'inode' so it couldn't have been
1258 * removed from s_inodes list while we dropped the
1259 * inode_sb_list_lock. We cannot iput the inode now as we can
1260 * be holding the last reference and we cannot iput it under
1261 * inode_sb_list_lock. So we keep the reference and iput it
1262 * later.
1263 */
1264 iput(old_inode);
1265 old_inode = inode;
1266
1267 filemap_fdatawait(mapping);
1268
1269 cond_resched();
1270
1271 spin_lock(&inode_sb_list_lock);
1272 }
1273 spin_unlock(&inode_sb_list_lock);
1274 iput(old_inode);
1275 }
1276
1277 /**
1278 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1279 * @sb: the superblock
1280 * @nr: the number of pages to write
1281 * @reason: reason why some writeback work initiated
1282 *
1283 * Start writeback on some inodes on this super_block. No guarantees are made
1284 * on how many (if any) will be written, and this function does not wait
1285 * for IO completion of submitted IO.
1286 */
1287 void writeback_inodes_sb_nr(struct super_block *sb,
1288 unsigned long nr,
1289 enum wb_reason reason)
1290 {
1291 DECLARE_COMPLETION_ONSTACK(done);
1292 struct wb_writeback_work work = {
1293 .sb = sb,
1294 .sync_mode = WB_SYNC_NONE,
1295 .tagged_writepages = 1,
1296 .done = &done,
1297 .nr_pages = nr,
1298 .reason = reason,
1299 };
1300
1301 if (sb->s_bdi == &noop_backing_dev_info)
1302 return;
1303 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1304 bdi_queue_work(sb->s_bdi, &work);
1305 wait_for_completion(&done);
1306 }
1307 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1308
1309 /**
1310 * writeback_inodes_sb - writeback dirty inodes from given super_block
1311 * @sb: the superblock
1312 * @reason: reason why some writeback work was initiated
1313 *
1314 * Start writeback on some inodes on this super_block. No guarantees are made
1315 * on how many (if any) will be written, and this function does not wait
1316 * for IO completion of submitted IO.
1317 */
1318 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1319 {
1320 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1321 }
1322 EXPORT_SYMBOL(writeback_inodes_sb);
1323
1324 /**
1325 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1326 * @sb: the superblock
1327 * @nr: the number of pages to write
1328 * @reason: the reason of writeback
1329 *
1330 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1331 * Returns 1 if writeback was started, 0 if not.
1332 */
1333 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1334 unsigned long nr,
1335 enum wb_reason reason)
1336 {
1337 if (writeback_in_progress(sb->s_bdi))
1338 return 1;
1339
1340 if (!down_read_trylock(&sb->s_umount))
1341 return 0;
1342
1343 writeback_inodes_sb_nr(sb, nr, reason);
1344 up_read(&sb->s_umount);
1345 return 1;
1346 }
1347 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1348
1349 /**
1350 * try_to_writeback_inodes_sb - try to start writeback if none underway
1351 * @sb: the superblock
1352 * @reason: reason why some writeback work was initiated
1353 *
1354 * Implement by try_to_writeback_inodes_sb_nr()
1355 * Returns 1 if writeback was started, 0 if not.
1356 */
1357 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1358 {
1359 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1360 }
1361 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1362
1363 /**
1364 * sync_inodes_sb - sync sb inode pages
1365 * @sb: the superblock
1366 *
1367 * This function writes and waits on any dirty inode belonging to this
1368 * super_block.
1369 */
1370 void sync_inodes_sb(struct super_block *sb)
1371 {
1372 DECLARE_COMPLETION_ONSTACK(done);
1373 struct wb_writeback_work work = {
1374 .sb = sb,
1375 .sync_mode = WB_SYNC_ALL,
1376 .nr_pages = LONG_MAX,
1377 .range_cyclic = 0,
1378 .done = &done,
1379 .reason = WB_REASON_SYNC,
1380 .for_sync = 1,
1381 };
1382
1383 /* Nothing to do? */
1384 if (sb->s_bdi == &noop_backing_dev_info)
1385 return;
1386 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1387
1388 bdi_queue_work(sb->s_bdi, &work);
1389 wait_for_completion(&done);
1390
1391 wait_sb_inodes(sb);
1392 }
1393 EXPORT_SYMBOL(sync_inodes_sb);
1394
1395 /**
1396 * write_inode_now - write an inode to disk
1397 * @inode: inode to write to disk
1398 * @sync: whether the write should be synchronous or not
1399 *
1400 * This function commits an inode to disk immediately if it is dirty. This is
1401 * primarily needed by knfsd.
1402 *
1403 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1404 */
1405 int write_inode_now(struct inode *inode, int sync)
1406 {
1407 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1408 struct writeback_control wbc = {
1409 .nr_to_write = LONG_MAX,
1410 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1411 .range_start = 0,
1412 .range_end = LLONG_MAX,
1413 };
1414
1415 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1416 wbc.nr_to_write = 0;
1417
1418 might_sleep();
1419 return writeback_single_inode(inode, wb, &wbc);
1420 }
1421 EXPORT_SYMBOL(write_inode_now);
1422
1423 /**
1424 * sync_inode - write an inode and its pages to disk.
1425 * @inode: the inode to sync
1426 * @wbc: controls the writeback mode
1427 *
1428 * sync_inode() will write an inode and its pages to disk. It will also
1429 * correctly update the inode on its superblock's dirty inode lists and will
1430 * update inode->i_state.
1431 *
1432 * The caller must have a ref on the inode.
1433 */
1434 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1435 {
1436 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1437 }
1438 EXPORT_SYMBOL(sync_inode);
1439
1440 /**
1441 * sync_inode_metadata - write an inode to disk
1442 * @inode: the inode to sync
1443 * @wait: wait for I/O to complete.
1444 *
1445 * Write an inode to disk and adjust its dirty state after completion.
1446 *
1447 * Note: only writes the actual inode, no associated data or other metadata.
1448 */
1449 int sync_inode_metadata(struct inode *inode, int wait)
1450 {
1451 struct writeback_control wbc = {
1452 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1453 .nr_to_write = 0, /* metadata-only */
1454 };
1455
1456 return sync_inode(inode, &wbc);
1457 }
1458 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.105893 seconds and 6 git commands to generate.