writeback, cgroup: fix premature wb_put() in locked_inode_to_wb_and_lock_list()
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34 * 4MB minimal write chunk size
35 */
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
38 struct wb_completion {
39 atomic_t cnt;
40 };
41
42 /*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
45 struct wb_writeback_work {
46 long nr_pages;
47 struct super_block *sb;
48 unsigned long *older_than_this;
49 enum writeback_sync_modes sync_mode;
50 unsigned int tagged_writepages:1;
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free:1; /* free on completion */
56 enum wb_reason reason; /* why was writeback initiated? */
57
58 struct list_head list; /* pending work list */
59 struct wb_completion *done; /* set if the caller waits */
60 };
61
62 /*
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
68 */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
72 }
73
74
75 /*
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
84 */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89 return list_entry(head, struct inode, i_io_list);
90 }
91
92 /*
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
96 */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104 if (wb_has_dirty_io(wb)) {
105 return false;
106 } else {
107 set_bit(WB_has_dirty_io, &wb->state);
108 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 atomic_long_add(wb->avg_write_bandwidth,
110 &wb->bdi->tot_write_bandwidth);
111 return true;
112 }
113 }
114
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 clear_bit(WB_has_dirty_io, &wb->state);
120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 &wb->bdi->tot_write_bandwidth) < 0);
122 }
123 }
124
125 /**
126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io}
130 *
131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
134 */
135 static bool inode_io_list_move_locked(struct inode *inode,
136 struct bdi_writeback *wb,
137 struct list_head *head)
138 {
139 assert_spin_locked(&wb->list_lock);
140
141 list_move(&inode->i_io_list, head);
142
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head != &wb->b_dirty_time)
145 return wb_io_lists_populated(wb);
146
147 wb_io_lists_depopulated(wb);
148 return false;
149 }
150
151 /**
152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
155 *
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
158 */
159 static void inode_io_list_del_locked(struct inode *inode,
160 struct bdi_writeback *wb)
161 {
162 assert_spin_locked(&wb->list_lock);
163
164 list_del_init(&inode->i_io_list);
165 wb_io_lists_depopulated(wb);
166 }
167
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170 spin_lock_bh(&wb->work_lock);
171 if (test_bit(WB_registered, &wb->state))
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 spin_unlock_bh(&wb->work_lock);
174 }
175
176 static void wb_queue_work(struct bdi_writeback *wb,
177 struct wb_writeback_work *work)
178 {
179 trace_writeback_queue(wb, work);
180
181 spin_lock_bh(&wb->work_lock);
182 if (!test_bit(WB_registered, &wb->state))
183 goto out_unlock;
184 if (work->done)
185 atomic_inc(&work->done->cnt);
186 list_add_tail(&work->list, &wb->work_list);
187 mod_delayed_work(bdi_wq, &wb->dwork, 0);
188 out_unlock:
189 spin_unlock_bh(&wb->work_lock);
190 }
191
192 /**
193 * wb_wait_for_completion - wait for completion of bdi_writeback_works
194 * @bdi: bdi work items were issued to
195 * @done: target wb_completion
196 *
197 * Wait for one or more work items issued to @bdi with their ->done field
198 * set to @done, which should have been defined with
199 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
200 * work items are completed. Work items which are waited upon aren't freed
201 * automatically on completion.
202 */
203 static void wb_wait_for_completion(struct backing_dev_info *bdi,
204 struct wb_completion *done)
205 {
206 atomic_dec(&done->cnt); /* put down the initial count */
207 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
208 }
209
210 #ifdef CONFIG_CGROUP_WRITEBACK
211
212 /* parameters for foreign inode detection, see wb_detach_inode() */
213 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
214 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
215 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
216 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
217
218 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
219 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
220 /* each slot's duration is 2s / 16 */
221 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
222 /* if foreign slots >= 8, switch */
223 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
224 /* one round can affect upto 5 slots */
225
226 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
227 static struct workqueue_struct *isw_wq;
228
229 void __inode_attach_wb(struct inode *inode, struct page *page)
230 {
231 struct backing_dev_info *bdi = inode_to_bdi(inode);
232 struct bdi_writeback *wb = NULL;
233
234 if (inode_cgwb_enabled(inode)) {
235 struct cgroup_subsys_state *memcg_css;
236
237 if (page) {
238 memcg_css = mem_cgroup_css_from_page(page);
239 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
240 } else {
241 /* must pin memcg_css, see wb_get_create() */
242 memcg_css = task_get_css(current, memory_cgrp_id);
243 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
244 css_put(memcg_css);
245 }
246 }
247
248 if (!wb)
249 wb = &bdi->wb;
250
251 /*
252 * There may be multiple instances of this function racing to
253 * update the same inode. Use cmpxchg() to tell the winner.
254 */
255 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
256 wb_put(wb);
257 }
258
259 /**
260 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
261 * @inode: inode of interest with i_lock held
262 *
263 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
264 * held on entry and is released on return. The returned wb is guaranteed
265 * to stay @inode's associated wb until its list_lock is released.
266 */
267 static struct bdi_writeback *
268 locked_inode_to_wb_and_lock_list(struct inode *inode)
269 __releases(&inode->i_lock)
270 __acquires(&wb->list_lock)
271 {
272 while (true) {
273 struct bdi_writeback *wb = inode_to_wb(inode);
274
275 /*
276 * inode_to_wb() association is protected by both
277 * @inode->i_lock and @wb->list_lock but list_lock nests
278 * outside i_lock. Drop i_lock and verify that the
279 * association hasn't changed after acquiring list_lock.
280 */
281 wb_get(wb);
282 spin_unlock(&inode->i_lock);
283 spin_lock(&wb->list_lock);
284
285 /* i_wb may have changed inbetween, can't use inode_to_wb() */
286 if (likely(wb == inode->i_wb)) {
287 wb_put(wb); /* @inode already has ref */
288 return wb;
289 }
290
291 spin_unlock(&wb->list_lock);
292 wb_put(wb);
293 cpu_relax();
294 spin_lock(&inode->i_lock);
295 }
296 }
297
298 /**
299 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
300 * @inode: inode of interest
301 *
302 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
303 * on entry.
304 */
305 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
306 __acquires(&wb->list_lock)
307 {
308 spin_lock(&inode->i_lock);
309 return locked_inode_to_wb_and_lock_list(inode);
310 }
311
312 struct inode_switch_wbs_context {
313 struct inode *inode;
314 struct bdi_writeback *new_wb;
315
316 struct rcu_head rcu_head;
317 struct work_struct work;
318 };
319
320 static void inode_switch_wbs_work_fn(struct work_struct *work)
321 {
322 struct inode_switch_wbs_context *isw =
323 container_of(work, struct inode_switch_wbs_context, work);
324 struct inode *inode = isw->inode;
325 struct address_space *mapping = inode->i_mapping;
326 struct bdi_writeback *old_wb = inode->i_wb;
327 struct bdi_writeback *new_wb = isw->new_wb;
328 struct radix_tree_iter iter;
329 bool switched = false;
330 void **slot;
331
332 /*
333 * By the time control reaches here, RCU grace period has passed
334 * since I_WB_SWITCH assertion and all wb stat update transactions
335 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
336 * synchronizing against mapping->tree_lock.
337 *
338 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
339 * gives us exclusion against all wb related operations on @inode
340 * including IO list manipulations and stat updates.
341 */
342 if (old_wb < new_wb) {
343 spin_lock(&old_wb->list_lock);
344 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
345 } else {
346 spin_lock(&new_wb->list_lock);
347 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
348 }
349 spin_lock(&inode->i_lock);
350 spin_lock_irq(&mapping->tree_lock);
351
352 /*
353 * Once I_FREEING is visible under i_lock, the eviction path owns
354 * the inode and we shouldn't modify ->i_io_list.
355 */
356 if (unlikely(inode->i_state & I_FREEING))
357 goto skip_switch;
358
359 /*
360 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
361 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
362 * pages actually under underwriteback.
363 */
364 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
365 PAGECACHE_TAG_DIRTY) {
366 struct page *page = radix_tree_deref_slot_protected(slot,
367 &mapping->tree_lock);
368 if (likely(page) && PageDirty(page)) {
369 __dec_wb_stat(old_wb, WB_RECLAIMABLE);
370 __inc_wb_stat(new_wb, WB_RECLAIMABLE);
371 }
372 }
373
374 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
375 PAGECACHE_TAG_WRITEBACK) {
376 struct page *page = radix_tree_deref_slot_protected(slot,
377 &mapping->tree_lock);
378 if (likely(page)) {
379 WARN_ON_ONCE(!PageWriteback(page));
380 __dec_wb_stat(old_wb, WB_WRITEBACK);
381 __inc_wb_stat(new_wb, WB_WRITEBACK);
382 }
383 }
384
385 wb_get(new_wb);
386
387 /*
388 * Transfer to @new_wb's IO list if necessary. The specific list
389 * @inode was on is ignored and the inode is put on ->b_dirty which
390 * is always correct including from ->b_dirty_time. The transfer
391 * preserves @inode->dirtied_when ordering.
392 */
393 if (!list_empty(&inode->i_io_list)) {
394 struct inode *pos;
395
396 inode_io_list_del_locked(inode, old_wb);
397 inode->i_wb = new_wb;
398 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
399 if (time_after_eq(inode->dirtied_when,
400 pos->dirtied_when))
401 break;
402 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
403 } else {
404 inode->i_wb = new_wb;
405 }
406
407 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
408 inode->i_wb_frn_winner = 0;
409 inode->i_wb_frn_avg_time = 0;
410 inode->i_wb_frn_history = 0;
411 switched = true;
412 skip_switch:
413 /*
414 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
415 * ensures that the new wb is visible if they see !I_WB_SWITCH.
416 */
417 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
418
419 spin_unlock_irq(&mapping->tree_lock);
420 spin_unlock(&inode->i_lock);
421 spin_unlock(&new_wb->list_lock);
422 spin_unlock(&old_wb->list_lock);
423
424 if (switched) {
425 wb_wakeup(new_wb);
426 wb_put(old_wb);
427 }
428 wb_put(new_wb);
429
430 iput(inode);
431 kfree(isw);
432
433 atomic_dec(&isw_nr_in_flight);
434 }
435
436 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
437 {
438 struct inode_switch_wbs_context *isw = container_of(rcu_head,
439 struct inode_switch_wbs_context, rcu_head);
440
441 /* needs to grab bh-unsafe locks, bounce to work item */
442 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
443 queue_work(isw_wq, &isw->work);
444 }
445
446 /**
447 * inode_switch_wbs - change the wb association of an inode
448 * @inode: target inode
449 * @new_wb_id: ID of the new wb
450 *
451 * Switch @inode's wb association to the wb identified by @new_wb_id. The
452 * switching is performed asynchronously and may fail silently.
453 */
454 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
455 {
456 struct backing_dev_info *bdi = inode_to_bdi(inode);
457 struct cgroup_subsys_state *memcg_css;
458 struct inode_switch_wbs_context *isw;
459
460 /* noop if seems to be already in progress */
461 if (inode->i_state & I_WB_SWITCH)
462 return;
463
464 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
465 if (!isw)
466 return;
467
468 /* find and pin the new wb */
469 rcu_read_lock();
470 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
471 if (memcg_css)
472 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
473 rcu_read_unlock();
474 if (!isw->new_wb)
475 goto out_free;
476
477 /* while holding I_WB_SWITCH, no one else can update the association */
478 spin_lock(&inode->i_lock);
479 if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
480 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
481 inode_to_wb(inode) == isw->new_wb) {
482 spin_unlock(&inode->i_lock);
483 goto out_free;
484 }
485 inode->i_state |= I_WB_SWITCH;
486 spin_unlock(&inode->i_lock);
487
488 ihold(inode);
489 isw->inode = inode;
490
491 atomic_inc(&isw_nr_in_flight);
492
493 /*
494 * In addition to synchronizing among switchers, I_WB_SWITCH tells
495 * the RCU protected stat update paths to grab the mapping's
496 * tree_lock so that stat transfer can synchronize against them.
497 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
498 */
499 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
500 return;
501
502 out_free:
503 if (isw->new_wb)
504 wb_put(isw->new_wb);
505 kfree(isw);
506 }
507
508 /**
509 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
510 * @wbc: writeback_control of interest
511 * @inode: target inode
512 *
513 * @inode is locked and about to be written back under the control of @wbc.
514 * Record @inode's writeback context into @wbc and unlock the i_lock. On
515 * writeback completion, wbc_detach_inode() should be called. This is used
516 * to track the cgroup writeback context.
517 */
518 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
519 struct inode *inode)
520 {
521 if (!inode_cgwb_enabled(inode)) {
522 spin_unlock(&inode->i_lock);
523 return;
524 }
525
526 wbc->wb = inode_to_wb(inode);
527 wbc->inode = inode;
528
529 wbc->wb_id = wbc->wb->memcg_css->id;
530 wbc->wb_lcand_id = inode->i_wb_frn_winner;
531 wbc->wb_tcand_id = 0;
532 wbc->wb_bytes = 0;
533 wbc->wb_lcand_bytes = 0;
534 wbc->wb_tcand_bytes = 0;
535
536 wb_get(wbc->wb);
537 spin_unlock(&inode->i_lock);
538
539 /*
540 * A dying wb indicates that the memcg-blkcg mapping has changed
541 * and a new wb is already serving the memcg. Switch immediately.
542 */
543 if (unlikely(wb_dying(wbc->wb)))
544 inode_switch_wbs(inode, wbc->wb_id);
545 }
546
547 /**
548 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
549 * @wbc: writeback_control of the just finished writeback
550 *
551 * To be called after a writeback attempt of an inode finishes and undoes
552 * wbc_attach_and_unlock_inode(). Can be called under any context.
553 *
554 * As concurrent write sharing of an inode is expected to be very rare and
555 * memcg only tracks page ownership on first-use basis severely confining
556 * the usefulness of such sharing, cgroup writeback tracks ownership
557 * per-inode. While the support for concurrent write sharing of an inode
558 * is deemed unnecessary, an inode being written to by different cgroups at
559 * different points in time is a lot more common, and, more importantly,
560 * charging only by first-use can too readily lead to grossly incorrect
561 * behaviors (single foreign page can lead to gigabytes of writeback to be
562 * incorrectly attributed).
563 *
564 * To resolve this issue, cgroup writeback detects the majority dirtier of
565 * an inode and transfers the ownership to it. To avoid unnnecessary
566 * oscillation, the detection mechanism keeps track of history and gives
567 * out the switch verdict only if the foreign usage pattern is stable over
568 * a certain amount of time and/or writeback attempts.
569 *
570 * On each writeback attempt, @wbc tries to detect the majority writer
571 * using Boyer-Moore majority vote algorithm. In addition to the byte
572 * count from the majority voting, it also counts the bytes written for the
573 * current wb and the last round's winner wb (max of last round's current
574 * wb, the winner from two rounds ago, and the last round's majority
575 * candidate). Keeping track of the historical winner helps the algorithm
576 * to semi-reliably detect the most active writer even when it's not the
577 * absolute majority.
578 *
579 * Once the winner of the round is determined, whether the winner is
580 * foreign or not and how much IO time the round consumed is recorded in
581 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
582 * over a certain threshold, the switch verdict is given.
583 */
584 void wbc_detach_inode(struct writeback_control *wbc)
585 {
586 struct bdi_writeback *wb = wbc->wb;
587 struct inode *inode = wbc->inode;
588 unsigned long avg_time, max_bytes, max_time;
589 u16 history;
590 int max_id;
591
592 if (!wb)
593 return;
594
595 history = inode->i_wb_frn_history;
596 avg_time = inode->i_wb_frn_avg_time;
597
598 /* pick the winner of this round */
599 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
600 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
601 max_id = wbc->wb_id;
602 max_bytes = wbc->wb_bytes;
603 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
604 max_id = wbc->wb_lcand_id;
605 max_bytes = wbc->wb_lcand_bytes;
606 } else {
607 max_id = wbc->wb_tcand_id;
608 max_bytes = wbc->wb_tcand_bytes;
609 }
610
611 /*
612 * Calculate the amount of IO time the winner consumed and fold it
613 * into the running average kept per inode. If the consumed IO
614 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
615 * deciding whether to switch or not. This is to prevent one-off
616 * small dirtiers from skewing the verdict.
617 */
618 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
619 wb->avg_write_bandwidth);
620 if (avg_time)
621 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
622 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
623 else
624 avg_time = max_time; /* immediate catch up on first run */
625
626 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
627 int slots;
628
629 /*
630 * The switch verdict is reached if foreign wb's consume
631 * more than a certain proportion of IO time in a
632 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
633 * history mask where each bit represents one sixteenth of
634 * the period. Determine the number of slots to shift into
635 * history from @max_time.
636 */
637 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
638 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
639 history <<= slots;
640 if (wbc->wb_id != max_id)
641 history |= (1U << slots) - 1;
642
643 /*
644 * Switch if the current wb isn't the consistent winner.
645 * If there are multiple closely competing dirtiers, the
646 * inode may switch across them repeatedly over time, which
647 * is okay. The main goal is avoiding keeping an inode on
648 * the wrong wb for an extended period of time.
649 */
650 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
651 inode_switch_wbs(inode, max_id);
652 }
653
654 /*
655 * Multiple instances of this function may race to update the
656 * following fields but we don't mind occassional inaccuracies.
657 */
658 inode->i_wb_frn_winner = max_id;
659 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
660 inode->i_wb_frn_history = history;
661
662 wb_put(wbc->wb);
663 wbc->wb = NULL;
664 }
665
666 /**
667 * wbc_account_io - account IO issued during writeback
668 * @wbc: writeback_control of the writeback in progress
669 * @page: page being written out
670 * @bytes: number of bytes being written out
671 *
672 * @bytes from @page are about to written out during the writeback
673 * controlled by @wbc. Keep the book for foreign inode detection. See
674 * wbc_detach_inode().
675 */
676 void wbc_account_io(struct writeback_control *wbc, struct page *page,
677 size_t bytes)
678 {
679 int id;
680
681 /*
682 * pageout() path doesn't attach @wbc to the inode being written
683 * out. This is intentional as we don't want the function to block
684 * behind a slow cgroup. Ultimately, we want pageout() to kick off
685 * regular writeback instead of writing things out itself.
686 */
687 if (!wbc->wb)
688 return;
689
690 id = mem_cgroup_css_from_page(page)->id;
691
692 if (id == wbc->wb_id) {
693 wbc->wb_bytes += bytes;
694 return;
695 }
696
697 if (id == wbc->wb_lcand_id)
698 wbc->wb_lcand_bytes += bytes;
699
700 /* Boyer-Moore majority vote algorithm */
701 if (!wbc->wb_tcand_bytes)
702 wbc->wb_tcand_id = id;
703 if (id == wbc->wb_tcand_id)
704 wbc->wb_tcand_bytes += bytes;
705 else
706 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
707 }
708 EXPORT_SYMBOL_GPL(wbc_account_io);
709
710 /**
711 * inode_congested - test whether an inode is congested
712 * @inode: inode to test for congestion (may be NULL)
713 * @cong_bits: mask of WB_[a]sync_congested bits to test
714 *
715 * Tests whether @inode is congested. @cong_bits is the mask of congestion
716 * bits to test and the return value is the mask of set bits.
717 *
718 * If cgroup writeback is enabled for @inode, the congestion state is
719 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
720 * associated with @inode is congested; otherwise, the root wb's congestion
721 * state is used.
722 *
723 * @inode is allowed to be NULL as this function is often called on
724 * mapping->host which is NULL for the swapper space.
725 */
726 int inode_congested(struct inode *inode, int cong_bits)
727 {
728 /*
729 * Once set, ->i_wb never becomes NULL while the inode is alive.
730 * Start transaction iff ->i_wb is visible.
731 */
732 if (inode && inode_to_wb_is_valid(inode)) {
733 struct bdi_writeback *wb;
734 bool locked, congested;
735
736 wb = unlocked_inode_to_wb_begin(inode, &locked);
737 congested = wb_congested(wb, cong_bits);
738 unlocked_inode_to_wb_end(inode, locked);
739 return congested;
740 }
741
742 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
743 }
744 EXPORT_SYMBOL_GPL(inode_congested);
745
746 /**
747 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
748 * @wb: target bdi_writeback to split @nr_pages to
749 * @nr_pages: number of pages to write for the whole bdi
750 *
751 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
752 * relation to the total write bandwidth of all wb's w/ dirty inodes on
753 * @wb->bdi.
754 */
755 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
756 {
757 unsigned long this_bw = wb->avg_write_bandwidth;
758 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
759
760 if (nr_pages == LONG_MAX)
761 return LONG_MAX;
762
763 /*
764 * This may be called on clean wb's and proportional distribution
765 * may not make sense, just use the original @nr_pages in those
766 * cases. In general, we wanna err on the side of writing more.
767 */
768 if (!tot_bw || this_bw >= tot_bw)
769 return nr_pages;
770 else
771 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
772 }
773
774 /**
775 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
776 * @bdi: target backing_dev_info
777 * @base_work: wb_writeback_work to issue
778 * @skip_if_busy: skip wb's which already have writeback in progress
779 *
780 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
781 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
782 * distributed to the busy wbs according to each wb's proportion in the
783 * total active write bandwidth of @bdi.
784 */
785 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
786 struct wb_writeback_work *base_work,
787 bool skip_if_busy)
788 {
789 struct bdi_writeback *last_wb = NULL;
790 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
791 struct bdi_writeback, bdi_node);
792
793 might_sleep();
794 restart:
795 rcu_read_lock();
796 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
797 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
798 struct wb_writeback_work fallback_work;
799 struct wb_writeback_work *work;
800 long nr_pages;
801
802 if (last_wb) {
803 wb_put(last_wb);
804 last_wb = NULL;
805 }
806
807 /* SYNC_ALL writes out I_DIRTY_TIME too */
808 if (!wb_has_dirty_io(wb) &&
809 (base_work->sync_mode == WB_SYNC_NONE ||
810 list_empty(&wb->b_dirty_time)))
811 continue;
812 if (skip_if_busy && writeback_in_progress(wb))
813 continue;
814
815 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
816
817 work = kmalloc(sizeof(*work), GFP_ATOMIC);
818 if (work) {
819 *work = *base_work;
820 work->nr_pages = nr_pages;
821 work->auto_free = 1;
822 wb_queue_work(wb, work);
823 continue;
824 }
825
826 /* alloc failed, execute synchronously using on-stack fallback */
827 work = &fallback_work;
828 *work = *base_work;
829 work->nr_pages = nr_pages;
830 work->auto_free = 0;
831 work->done = &fallback_work_done;
832
833 wb_queue_work(wb, work);
834
835 /*
836 * Pin @wb so that it stays on @bdi->wb_list. This allows
837 * continuing iteration from @wb after dropping and
838 * regrabbing rcu read lock.
839 */
840 wb_get(wb);
841 last_wb = wb;
842
843 rcu_read_unlock();
844 wb_wait_for_completion(bdi, &fallback_work_done);
845 goto restart;
846 }
847 rcu_read_unlock();
848
849 if (last_wb)
850 wb_put(last_wb);
851 }
852
853 /**
854 * cgroup_writeback_umount - flush inode wb switches for umount
855 *
856 * This function is called when a super_block is about to be destroyed and
857 * flushes in-flight inode wb switches. An inode wb switch goes through
858 * RCU and then workqueue, so the two need to be flushed in order to ensure
859 * that all previously scheduled switches are finished. As wb switches are
860 * rare occurrences and synchronize_rcu() can take a while, perform
861 * flushing iff wb switches are in flight.
862 */
863 void cgroup_writeback_umount(void)
864 {
865 if (atomic_read(&isw_nr_in_flight)) {
866 synchronize_rcu();
867 flush_workqueue(isw_wq);
868 }
869 }
870
871 static int __init cgroup_writeback_init(void)
872 {
873 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
874 if (!isw_wq)
875 return -ENOMEM;
876 return 0;
877 }
878 fs_initcall(cgroup_writeback_init);
879
880 #else /* CONFIG_CGROUP_WRITEBACK */
881
882 static struct bdi_writeback *
883 locked_inode_to_wb_and_lock_list(struct inode *inode)
884 __releases(&inode->i_lock)
885 __acquires(&wb->list_lock)
886 {
887 struct bdi_writeback *wb = inode_to_wb(inode);
888
889 spin_unlock(&inode->i_lock);
890 spin_lock(&wb->list_lock);
891 return wb;
892 }
893
894 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
895 __acquires(&wb->list_lock)
896 {
897 struct bdi_writeback *wb = inode_to_wb(inode);
898
899 spin_lock(&wb->list_lock);
900 return wb;
901 }
902
903 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
904 {
905 return nr_pages;
906 }
907
908 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
909 struct wb_writeback_work *base_work,
910 bool skip_if_busy)
911 {
912 might_sleep();
913
914 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
915 base_work->auto_free = 0;
916 wb_queue_work(&bdi->wb, base_work);
917 }
918 }
919
920 #endif /* CONFIG_CGROUP_WRITEBACK */
921
922 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
923 bool range_cyclic, enum wb_reason reason)
924 {
925 struct wb_writeback_work *work;
926
927 if (!wb_has_dirty_io(wb))
928 return;
929
930 /*
931 * This is WB_SYNC_NONE writeback, so if allocation fails just
932 * wakeup the thread for old dirty data writeback
933 */
934 work = kzalloc(sizeof(*work), GFP_ATOMIC);
935 if (!work) {
936 trace_writeback_nowork(wb);
937 wb_wakeup(wb);
938 return;
939 }
940
941 work->sync_mode = WB_SYNC_NONE;
942 work->nr_pages = nr_pages;
943 work->range_cyclic = range_cyclic;
944 work->reason = reason;
945 work->auto_free = 1;
946
947 wb_queue_work(wb, work);
948 }
949
950 /**
951 * wb_start_background_writeback - start background writeback
952 * @wb: bdi_writback to write from
953 *
954 * Description:
955 * This makes sure WB_SYNC_NONE background writeback happens. When
956 * this function returns, it is only guaranteed that for given wb
957 * some IO is happening if we are over background dirty threshold.
958 * Caller need not hold sb s_umount semaphore.
959 */
960 void wb_start_background_writeback(struct bdi_writeback *wb)
961 {
962 /*
963 * We just wake up the flusher thread. It will perform background
964 * writeback as soon as there is no other work to do.
965 */
966 trace_writeback_wake_background(wb);
967 wb_wakeup(wb);
968 }
969
970 /*
971 * Remove the inode from the writeback list it is on.
972 */
973 void inode_io_list_del(struct inode *inode)
974 {
975 struct bdi_writeback *wb;
976
977 wb = inode_to_wb_and_lock_list(inode);
978 inode_io_list_del_locked(inode, wb);
979 spin_unlock(&wb->list_lock);
980 }
981
982 /*
983 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
984 * furthest end of its superblock's dirty-inode list.
985 *
986 * Before stamping the inode's ->dirtied_when, we check to see whether it is
987 * already the most-recently-dirtied inode on the b_dirty list. If that is
988 * the case then the inode must have been redirtied while it was being written
989 * out and we don't reset its dirtied_when.
990 */
991 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
992 {
993 if (!list_empty(&wb->b_dirty)) {
994 struct inode *tail;
995
996 tail = wb_inode(wb->b_dirty.next);
997 if (time_before(inode->dirtied_when, tail->dirtied_when))
998 inode->dirtied_when = jiffies;
999 }
1000 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1001 }
1002
1003 /*
1004 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1005 */
1006 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1007 {
1008 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1009 }
1010
1011 static void inode_sync_complete(struct inode *inode)
1012 {
1013 inode->i_state &= ~I_SYNC;
1014 /* If inode is clean an unused, put it into LRU now... */
1015 inode_add_lru(inode);
1016 /* Waiters must see I_SYNC cleared before being woken up */
1017 smp_mb();
1018 wake_up_bit(&inode->i_state, __I_SYNC);
1019 }
1020
1021 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1022 {
1023 bool ret = time_after(inode->dirtied_when, t);
1024 #ifndef CONFIG_64BIT
1025 /*
1026 * For inodes being constantly redirtied, dirtied_when can get stuck.
1027 * It _appears_ to be in the future, but is actually in distant past.
1028 * This test is necessary to prevent such wrapped-around relative times
1029 * from permanently stopping the whole bdi writeback.
1030 */
1031 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1032 #endif
1033 return ret;
1034 }
1035
1036 #define EXPIRE_DIRTY_ATIME 0x0001
1037
1038 /*
1039 * Move expired (dirtied before work->older_than_this) dirty inodes from
1040 * @delaying_queue to @dispatch_queue.
1041 */
1042 static int move_expired_inodes(struct list_head *delaying_queue,
1043 struct list_head *dispatch_queue,
1044 int flags,
1045 struct wb_writeback_work *work)
1046 {
1047 unsigned long *older_than_this = NULL;
1048 unsigned long expire_time;
1049 LIST_HEAD(tmp);
1050 struct list_head *pos, *node;
1051 struct super_block *sb = NULL;
1052 struct inode *inode;
1053 int do_sb_sort = 0;
1054 int moved = 0;
1055
1056 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1057 older_than_this = work->older_than_this;
1058 else if (!work->for_sync) {
1059 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1060 older_than_this = &expire_time;
1061 }
1062 while (!list_empty(delaying_queue)) {
1063 inode = wb_inode(delaying_queue->prev);
1064 if (older_than_this &&
1065 inode_dirtied_after(inode, *older_than_this))
1066 break;
1067 list_move(&inode->i_io_list, &tmp);
1068 moved++;
1069 if (flags & EXPIRE_DIRTY_ATIME)
1070 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1071 if (sb_is_blkdev_sb(inode->i_sb))
1072 continue;
1073 if (sb && sb != inode->i_sb)
1074 do_sb_sort = 1;
1075 sb = inode->i_sb;
1076 }
1077
1078 /* just one sb in list, splice to dispatch_queue and we're done */
1079 if (!do_sb_sort) {
1080 list_splice(&tmp, dispatch_queue);
1081 goto out;
1082 }
1083
1084 /* Move inodes from one superblock together */
1085 while (!list_empty(&tmp)) {
1086 sb = wb_inode(tmp.prev)->i_sb;
1087 list_for_each_prev_safe(pos, node, &tmp) {
1088 inode = wb_inode(pos);
1089 if (inode->i_sb == sb)
1090 list_move(&inode->i_io_list, dispatch_queue);
1091 }
1092 }
1093 out:
1094 return moved;
1095 }
1096
1097 /*
1098 * Queue all expired dirty inodes for io, eldest first.
1099 * Before
1100 * newly dirtied b_dirty b_io b_more_io
1101 * =============> gf edc BA
1102 * After
1103 * newly dirtied b_dirty b_io b_more_io
1104 * =============> g fBAedc
1105 * |
1106 * +--> dequeue for IO
1107 */
1108 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1109 {
1110 int moved;
1111
1112 assert_spin_locked(&wb->list_lock);
1113 list_splice_init(&wb->b_more_io, &wb->b_io);
1114 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1115 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1116 EXPIRE_DIRTY_ATIME, work);
1117 if (moved)
1118 wb_io_lists_populated(wb);
1119 trace_writeback_queue_io(wb, work, moved);
1120 }
1121
1122 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1123 {
1124 int ret;
1125
1126 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1127 trace_writeback_write_inode_start(inode, wbc);
1128 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1129 trace_writeback_write_inode(inode, wbc);
1130 return ret;
1131 }
1132 return 0;
1133 }
1134
1135 /*
1136 * Wait for writeback on an inode to complete. Called with i_lock held.
1137 * Caller must make sure inode cannot go away when we drop i_lock.
1138 */
1139 static void __inode_wait_for_writeback(struct inode *inode)
1140 __releases(inode->i_lock)
1141 __acquires(inode->i_lock)
1142 {
1143 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1144 wait_queue_head_t *wqh;
1145
1146 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1147 while (inode->i_state & I_SYNC) {
1148 spin_unlock(&inode->i_lock);
1149 __wait_on_bit(wqh, &wq, bit_wait,
1150 TASK_UNINTERRUPTIBLE);
1151 spin_lock(&inode->i_lock);
1152 }
1153 }
1154
1155 /*
1156 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1157 */
1158 void inode_wait_for_writeback(struct inode *inode)
1159 {
1160 spin_lock(&inode->i_lock);
1161 __inode_wait_for_writeback(inode);
1162 spin_unlock(&inode->i_lock);
1163 }
1164
1165 /*
1166 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1167 * held and drops it. It is aimed for callers not holding any inode reference
1168 * so once i_lock is dropped, inode can go away.
1169 */
1170 static void inode_sleep_on_writeback(struct inode *inode)
1171 __releases(inode->i_lock)
1172 {
1173 DEFINE_WAIT(wait);
1174 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1175 int sleep;
1176
1177 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1178 sleep = inode->i_state & I_SYNC;
1179 spin_unlock(&inode->i_lock);
1180 if (sleep)
1181 schedule();
1182 finish_wait(wqh, &wait);
1183 }
1184
1185 /*
1186 * Find proper writeback list for the inode depending on its current state and
1187 * possibly also change of its state while we were doing writeback. Here we
1188 * handle things such as livelock prevention or fairness of writeback among
1189 * inodes. This function can be called only by flusher thread - noone else
1190 * processes all inodes in writeback lists and requeueing inodes behind flusher
1191 * thread's back can have unexpected consequences.
1192 */
1193 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1194 struct writeback_control *wbc)
1195 {
1196 if (inode->i_state & I_FREEING)
1197 return;
1198
1199 /*
1200 * Sync livelock prevention. Each inode is tagged and synced in one
1201 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1202 * the dirty time to prevent enqueue and sync it again.
1203 */
1204 if ((inode->i_state & I_DIRTY) &&
1205 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1206 inode->dirtied_when = jiffies;
1207
1208 if (wbc->pages_skipped) {
1209 /*
1210 * writeback is not making progress due to locked
1211 * buffers. Skip this inode for now.
1212 */
1213 redirty_tail(inode, wb);
1214 return;
1215 }
1216
1217 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1218 /*
1219 * We didn't write back all the pages. nfs_writepages()
1220 * sometimes bales out without doing anything.
1221 */
1222 if (wbc->nr_to_write <= 0) {
1223 /* Slice used up. Queue for next turn. */
1224 requeue_io(inode, wb);
1225 } else {
1226 /*
1227 * Writeback blocked by something other than
1228 * congestion. Delay the inode for some time to
1229 * avoid spinning on the CPU (100% iowait)
1230 * retrying writeback of the dirty page/inode
1231 * that cannot be performed immediately.
1232 */
1233 redirty_tail(inode, wb);
1234 }
1235 } else if (inode->i_state & I_DIRTY) {
1236 /*
1237 * Filesystems can dirty the inode during writeback operations,
1238 * such as delayed allocation during submission or metadata
1239 * updates after data IO completion.
1240 */
1241 redirty_tail(inode, wb);
1242 } else if (inode->i_state & I_DIRTY_TIME) {
1243 inode->dirtied_when = jiffies;
1244 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1245 } else {
1246 /* The inode is clean. Remove from writeback lists. */
1247 inode_io_list_del_locked(inode, wb);
1248 }
1249 }
1250
1251 /*
1252 * Write out an inode and its dirty pages. Do not update the writeback list
1253 * linkage. That is left to the caller. The caller is also responsible for
1254 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1255 */
1256 static int
1257 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1258 {
1259 struct address_space *mapping = inode->i_mapping;
1260 long nr_to_write = wbc->nr_to_write;
1261 unsigned dirty;
1262 int ret;
1263
1264 WARN_ON(!(inode->i_state & I_SYNC));
1265
1266 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1267
1268 ret = do_writepages(mapping, wbc);
1269
1270 /*
1271 * Make sure to wait on the data before writing out the metadata.
1272 * This is important for filesystems that modify metadata on data
1273 * I/O completion. We don't do it for sync(2) writeback because it has a
1274 * separate, external IO completion path and ->sync_fs for guaranteeing
1275 * inode metadata is written back correctly.
1276 */
1277 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1278 int err = filemap_fdatawait(mapping);
1279 if (ret == 0)
1280 ret = err;
1281 }
1282
1283 /*
1284 * Some filesystems may redirty the inode during the writeback
1285 * due to delalloc, clear dirty metadata flags right before
1286 * write_inode()
1287 */
1288 spin_lock(&inode->i_lock);
1289
1290 dirty = inode->i_state & I_DIRTY;
1291 if (inode->i_state & I_DIRTY_TIME) {
1292 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1293 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1294 unlikely(time_after(jiffies,
1295 (inode->dirtied_time_when +
1296 dirtytime_expire_interval * HZ)))) {
1297 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1298 trace_writeback_lazytime(inode);
1299 }
1300 } else
1301 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1302 inode->i_state &= ~dirty;
1303
1304 /*
1305 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1306 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1307 * either they see the I_DIRTY bits cleared or we see the dirtied
1308 * inode.
1309 *
1310 * I_DIRTY_PAGES is always cleared together above even if @mapping
1311 * still has dirty pages. The flag is reinstated after smp_mb() if
1312 * necessary. This guarantees that either __mark_inode_dirty()
1313 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1314 */
1315 smp_mb();
1316
1317 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1318 inode->i_state |= I_DIRTY_PAGES;
1319
1320 spin_unlock(&inode->i_lock);
1321
1322 if (dirty & I_DIRTY_TIME)
1323 mark_inode_dirty_sync(inode);
1324 /* Don't write the inode if only I_DIRTY_PAGES was set */
1325 if (dirty & ~I_DIRTY_PAGES) {
1326 int err = write_inode(inode, wbc);
1327 if (ret == 0)
1328 ret = err;
1329 }
1330 trace_writeback_single_inode(inode, wbc, nr_to_write);
1331 return ret;
1332 }
1333
1334 /*
1335 * Write out an inode's dirty pages. Either the caller has an active reference
1336 * on the inode or the inode has I_WILL_FREE set.
1337 *
1338 * This function is designed to be called for writing back one inode which
1339 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1340 * and does more profound writeback list handling in writeback_sb_inodes().
1341 */
1342 static int
1343 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
1344 struct writeback_control *wbc)
1345 {
1346 int ret = 0;
1347
1348 spin_lock(&inode->i_lock);
1349 if (!atomic_read(&inode->i_count))
1350 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1351 else
1352 WARN_ON(inode->i_state & I_WILL_FREE);
1353
1354 if (inode->i_state & I_SYNC) {
1355 if (wbc->sync_mode != WB_SYNC_ALL)
1356 goto out;
1357 /*
1358 * It's a data-integrity sync. We must wait. Since callers hold
1359 * inode reference or inode has I_WILL_FREE set, it cannot go
1360 * away under us.
1361 */
1362 __inode_wait_for_writeback(inode);
1363 }
1364 WARN_ON(inode->i_state & I_SYNC);
1365 /*
1366 * Skip inode if it is clean and we have no outstanding writeback in
1367 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1368 * function since flusher thread may be doing for example sync in
1369 * parallel and if we move the inode, it could get skipped. So here we
1370 * make sure inode is on some writeback list and leave it there unless
1371 * we have completely cleaned the inode.
1372 */
1373 if (!(inode->i_state & I_DIRTY_ALL) &&
1374 (wbc->sync_mode != WB_SYNC_ALL ||
1375 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1376 goto out;
1377 inode->i_state |= I_SYNC;
1378 wbc_attach_and_unlock_inode(wbc, inode);
1379
1380 ret = __writeback_single_inode(inode, wbc);
1381
1382 wbc_detach_inode(wbc);
1383 spin_lock(&wb->list_lock);
1384 spin_lock(&inode->i_lock);
1385 /*
1386 * If inode is clean, remove it from writeback lists. Otherwise don't
1387 * touch it. See comment above for explanation.
1388 */
1389 if (!(inode->i_state & I_DIRTY_ALL))
1390 inode_io_list_del_locked(inode, wb);
1391 spin_unlock(&wb->list_lock);
1392 inode_sync_complete(inode);
1393 out:
1394 spin_unlock(&inode->i_lock);
1395 return ret;
1396 }
1397
1398 static long writeback_chunk_size(struct bdi_writeback *wb,
1399 struct wb_writeback_work *work)
1400 {
1401 long pages;
1402
1403 /*
1404 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1405 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1406 * here avoids calling into writeback_inodes_wb() more than once.
1407 *
1408 * The intended call sequence for WB_SYNC_ALL writeback is:
1409 *
1410 * wb_writeback()
1411 * writeback_sb_inodes() <== called only once
1412 * write_cache_pages() <== called once for each inode
1413 * (quickly) tag currently dirty pages
1414 * (maybe slowly) sync all tagged pages
1415 */
1416 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1417 pages = LONG_MAX;
1418 else {
1419 pages = min(wb->avg_write_bandwidth / 2,
1420 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1421 pages = min(pages, work->nr_pages);
1422 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1423 MIN_WRITEBACK_PAGES);
1424 }
1425
1426 return pages;
1427 }
1428
1429 /*
1430 * Write a portion of b_io inodes which belong to @sb.
1431 *
1432 * Return the number of pages and/or inodes written.
1433 *
1434 * NOTE! This is called with wb->list_lock held, and will
1435 * unlock and relock that for each inode it ends up doing
1436 * IO for.
1437 */
1438 static long writeback_sb_inodes(struct super_block *sb,
1439 struct bdi_writeback *wb,
1440 struct wb_writeback_work *work)
1441 {
1442 struct writeback_control wbc = {
1443 .sync_mode = work->sync_mode,
1444 .tagged_writepages = work->tagged_writepages,
1445 .for_kupdate = work->for_kupdate,
1446 .for_background = work->for_background,
1447 .for_sync = work->for_sync,
1448 .range_cyclic = work->range_cyclic,
1449 .range_start = 0,
1450 .range_end = LLONG_MAX,
1451 };
1452 unsigned long start_time = jiffies;
1453 long write_chunk;
1454 long wrote = 0; /* count both pages and inodes */
1455
1456 while (!list_empty(&wb->b_io)) {
1457 struct inode *inode = wb_inode(wb->b_io.prev);
1458
1459 if (inode->i_sb != sb) {
1460 if (work->sb) {
1461 /*
1462 * We only want to write back data for this
1463 * superblock, move all inodes not belonging
1464 * to it back onto the dirty list.
1465 */
1466 redirty_tail(inode, wb);
1467 continue;
1468 }
1469
1470 /*
1471 * The inode belongs to a different superblock.
1472 * Bounce back to the caller to unpin this and
1473 * pin the next superblock.
1474 */
1475 break;
1476 }
1477
1478 /*
1479 * Don't bother with new inodes or inodes being freed, first
1480 * kind does not need periodic writeout yet, and for the latter
1481 * kind writeout is handled by the freer.
1482 */
1483 spin_lock(&inode->i_lock);
1484 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1485 spin_unlock(&inode->i_lock);
1486 redirty_tail(inode, wb);
1487 continue;
1488 }
1489 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1490 /*
1491 * If this inode is locked for writeback and we are not
1492 * doing writeback-for-data-integrity, move it to
1493 * b_more_io so that writeback can proceed with the
1494 * other inodes on s_io.
1495 *
1496 * We'll have another go at writing back this inode
1497 * when we completed a full scan of b_io.
1498 */
1499 spin_unlock(&inode->i_lock);
1500 requeue_io(inode, wb);
1501 trace_writeback_sb_inodes_requeue(inode);
1502 continue;
1503 }
1504 spin_unlock(&wb->list_lock);
1505
1506 /*
1507 * We already requeued the inode if it had I_SYNC set and we
1508 * are doing WB_SYNC_NONE writeback. So this catches only the
1509 * WB_SYNC_ALL case.
1510 */
1511 if (inode->i_state & I_SYNC) {
1512 /* Wait for I_SYNC. This function drops i_lock... */
1513 inode_sleep_on_writeback(inode);
1514 /* Inode may be gone, start again */
1515 spin_lock(&wb->list_lock);
1516 continue;
1517 }
1518 inode->i_state |= I_SYNC;
1519 wbc_attach_and_unlock_inode(&wbc, inode);
1520
1521 write_chunk = writeback_chunk_size(wb, work);
1522 wbc.nr_to_write = write_chunk;
1523 wbc.pages_skipped = 0;
1524
1525 /*
1526 * We use I_SYNC to pin the inode in memory. While it is set
1527 * evict_inode() will wait so the inode cannot be freed.
1528 */
1529 __writeback_single_inode(inode, &wbc);
1530
1531 wbc_detach_inode(&wbc);
1532 work->nr_pages -= write_chunk - wbc.nr_to_write;
1533 wrote += write_chunk - wbc.nr_to_write;
1534
1535 if (need_resched()) {
1536 /*
1537 * We're trying to balance between building up a nice
1538 * long list of IOs to improve our merge rate, and
1539 * getting those IOs out quickly for anyone throttling
1540 * in balance_dirty_pages(). cond_resched() doesn't
1541 * unplug, so get our IOs out the door before we
1542 * give up the CPU.
1543 */
1544 blk_flush_plug(current);
1545 cond_resched();
1546 }
1547
1548
1549 spin_lock(&wb->list_lock);
1550 spin_lock(&inode->i_lock);
1551 if (!(inode->i_state & I_DIRTY_ALL))
1552 wrote++;
1553 requeue_inode(inode, wb, &wbc);
1554 inode_sync_complete(inode);
1555 spin_unlock(&inode->i_lock);
1556
1557 /*
1558 * bail out to wb_writeback() often enough to check
1559 * background threshold and other termination conditions.
1560 */
1561 if (wrote) {
1562 if (time_is_before_jiffies(start_time + HZ / 10UL))
1563 break;
1564 if (work->nr_pages <= 0)
1565 break;
1566 }
1567 }
1568 return wrote;
1569 }
1570
1571 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1572 struct wb_writeback_work *work)
1573 {
1574 unsigned long start_time = jiffies;
1575 long wrote = 0;
1576
1577 while (!list_empty(&wb->b_io)) {
1578 struct inode *inode = wb_inode(wb->b_io.prev);
1579 struct super_block *sb = inode->i_sb;
1580
1581 if (!trylock_super(sb)) {
1582 /*
1583 * trylock_super() may fail consistently due to
1584 * s_umount being grabbed by someone else. Don't use
1585 * requeue_io() to avoid busy retrying the inode/sb.
1586 */
1587 redirty_tail(inode, wb);
1588 continue;
1589 }
1590 wrote += writeback_sb_inodes(sb, wb, work);
1591 up_read(&sb->s_umount);
1592
1593 /* refer to the same tests at the end of writeback_sb_inodes */
1594 if (wrote) {
1595 if (time_is_before_jiffies(start_time + HZ / 10UL))
1596 break;
1597 if (work->nr_pages <= 0)
1598 break;
1599 }
1600 }
1601 /* Leave any unwritten inodes on b_io */
1602 return wrote;
1603 }
1604
1605 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1606 enum wb_reason reason)
1607 {
1608 struct wb_writeback_work work = {
1609 .nr_pages = nr_pages,
1610 .sync_mode = WB_SYNC_NONE,
1611 .range_cyclic = 1,
1612 .reason = reason,
1613 };
1614 struct blk_plug plug;
1615
1616 blk_start_plug(&plug);
1617 spin_lock(&wb->list_lock);
1618 if (list_empty(&wb->b_io))
1619 queue_io(wb, &work);
1620 __writeback_inodes_wb(wb, &work);
1621 spin_unlock(&wb->list_lock);
1622 blk_finish_plug(&plug);
1623
1624 return nr_pages - work.nr_pages;
1625 }
1626
1627 /*
1628 * Explicit flushing or periodic writeback of "old" data.
1629 *
1630 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1631 * dirtying-time in the inode's address_space. So this periodic writeback code
1632 * just walks the superblock inode list, writing back any inodes which are
1633 * older than a specific point in time.
1634 *
1635 * Try to run once per dirty_writeback_interval. But if a writeback event
1636 * takes longer than a dirty_writeback_interval interval, then leave a
1637 * one-second gap.
1638 *
1639 * older_than_this takes precedence over nr_to_write. So we'll only write back
1640 * all dirty pages if they are all attached to "old" mappings.
1641 */
1642 static long wb_writeback(struct bdi_writeback *wb,
1643 struct wb_writeback_work *work)
1644 {
1645 unsigned long wb_start = jiffies;
1646 long nr_pages = work->nr_pages;
1647 unsigned long oldest_jif;
1648 struct inode *inode;
1649 long progress;
1650 struct blk_plug plug;
1651
1652 oldest_jif = jiffies;
1653 work->older_than_this = &oldest_jif;
1654
1655 blk_start_plug(&plug);
1656 spin_lock(&wb->list_lock);
1657 for (;;) {
1658 /*
1659 * Stop writeback when nr_pages has been consumed
1660 */
1661 if (work->nr_pages <= 0)
1662 break;
1663
1664 /*
1665 * Background writeout and kupdate-style writeback may
1666 * run forever. Stop them if there is other work to do
1667 * so that e.g. sync can proceed. They'll be restarted
1668 * after the other works are all done.
1669 */
1670 if ((work->for_background || work->for_kupdate) &&
1671 !list_empty(&wb->work_list))
1672 break;
1673
1674 /*
1675 * For background writeout, stop when we are below the
1676 * background dirty threshold
1677 */
1678 if (work->for_background && !wb_over_bg_thresh(wb))
1679 break;
1680
1681 /*
1682 * Kupdate and background works are special and we want to
1683 * include all inodes that need writing. Livelock avoidance is
1684 * handled by these works yielding to any other work so we are
1685 * safe.
1686 */
1687 if (work->for_kupdate) {
1688 oldest_jif = jiffies -
1689 msecs_to_jiffies(dirty_expire_interval * 10);
1690 } else if (work->for_background)
1691 oldest_jif = jiffies;
1692
1693 trace_writeback_start(wb, work);
1694 if (list_empty(&wb->b_io))
1695 queue_io(wb, work);
1696 if (work->sb)
1697 progress = writeback_sb_inodes(work->sb, wb, work);
1698 else
1699 progress = __writeback_inodes_wb(wb, work);
1700 trace_writeback_written(wb, work);
1701
1702 wb_update_bandwidth(wb, wb_start);
1703
1704 /*
1705 * Did we write something? Try for more
1706 *
1707 * Dirty inodes are moved to b_io for writeback in batches.
1708 * The completion of the current batch does not necessarily
1709 * mean the overall work is done. So we keep looping as long
1710 * as made some progress on cleaning pages or inodes.
1711 */
1712 if (progress)
1713 continue;
1714 /*
1715 * No more inodes for IO, bail
1716 */
1717 if (list_empty(&wb->b_more_io))
1718 break;
1719 /*
1720 * Nothing written. Wait for some inode to
1721 * become available for writeback. Otherwise
1722 * we'll just busyloop.
1723 */
1724 if (!list_empty(&wb->b_more_io)) {
1725 trace_writeback_wait(wb, work);
1726 inode = wb_inode(wb->b_more_io.prev);
1727 spin_lock(&inode->i_lock);
1728 spin_unlock(&wb->list_lock);
1729 /* This function drops i_lock... */
1730 inode_sleep_on_writeback(inode);
1731 spin_lock(&wb->list_lock);
1732 }
1733 }
1734 spin_unlock(&wb->list_lock);
1735 blk_finish_plug(&plug);
1736
1737 return nr_pages - work->nr_pages;
1738 }
1739
1740 /*
1741 * Return the next wb_writeback_work struct that hasn't been processed yet.
1742 */
1743 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1744 {
1745 struct wb_writeback_work *work = NULL;
1746
1747 spin_lock_bh(&wb->work_lock);
1748 if (!list_empty(&wb->work_list)) {
1749 work = list_entry(wb->work_list.next,
1750 struct wb_writeback_work, list);
1751 list_del_init(&work->list);
1752 }
1753 spin_unlock_bh(&wb->work_lock);
1754 return work;
1755 }
1756
1757 /*
1758 * Add in the number of potentially dirty inodes, because each inode
1759 * write can dirty pagecache in the underlying blockdev.
1760 */
1761 static unsigned long get_nr_dirty_pages(void)
1762 {
1763 return global_page_state(NR_FILE_DIRTY) +
1764 global_page_state(NR_UNSTABLE_NFS) +
1765 get_nr_dirty_inodes();
1766 }
1767
1768 static long wb_check_background_flush(struct bdi_writeback *wb)
1769 {
1770 if (wb_over_bg_thresh(wb)) {
1771
1772 struct wb_writeback_work work = {
1773 .nr_pages = LONG_MAX,
1774 .sync_mode = WB_SYNC_NONE,
1775 .for_background = 1,
1776 .range_cyclic = 1,
1777 .reason = WB_REASON_BACKGROUND,
1778 };
1779
1780 return wb_writeback(wb, &work);
1781 }
1782
1783 return 0;
1784 }
1785
1786 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1787 {
1788 unsigned long expired;
1789 long nr_pages;
1790
1791 /*
1792 * When set to zero, disable periodic writeback
1793 */
1794 if (!dirty_writeback_interval)
1795 return 0;
1796
1797 expired = wb->last_old_flush +
1798 msecs_to_jiffies(dirty_writeback_interval * 10);
1799 if (time_before(jiffies, expired))
1800 return 0;
1801
1802 wb->last_old_flush = jiffies;
1803 nr_pages = get_nr_dirty_pages();
1804
1805 if (nr_pages) {
1806 struct wb_writeback_work work = {
1807 .nr_pages = nr_pages,
1808 .sync_mode = WB_SYNC_NONE,
1809 .for_kupdate = 1,
1810 .range_cyclic = 1,
1811 .reason = WB_REASON_PERIODIC,
1812 };
1813
1814 return wb_writeback(wb, &work);
1815 }
1816
1817 return 0;
1818 }
1819
1820 /*
1821 * Retrieve work items and do the writeback they describe
1822 */
1823 static long wb_do_writeback(struct bdi_writeback *wb)
1824 {
1825 struct wb_writeback_work *work;
1826 long wrote = 0;
1827
1828 set_bit(WB_writeback_running, &wb->state);
1829 while ((work = get_next_work_item(wb)) != NULL) {
1830 struct wb_completion *done = work->done;
1831
1832 trace_writeback_exec(wb, work);
1833
1834 wrote += wb_writeback(wb, work);
1835
1836 if (work->auto_free)
1837 kfree(work);
1838 if (done && atomic_dec_and_test(&done->cnt))
1839 wake_up_all(&wb->bdi->wb_waitq);
1840 }
1841
1842 /*
1843 * Check for periodic writeback, kupdated() style
1844 */
1845 wrote += wb_check_old_data_flush(wb);
1846 wrote += wb_check_background_flush(wb);
1847 clear_bit(WB_writeback_running, &wb->state);
1848
1849 return wrote;
1850 }
1851
1852 /*
1853 * Handle writeback of dirty data for the device backed by this bdi. Also
1854 * reschedules periodically and does kupdated style flushing.
1855 */
1856 void wb_workfn(struct work_struct *work)
1857 {
1858 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1859 struct bdi_writeback, dwork);
1860 long pages_written;
1861
1862 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1863 current->flags |= PF_SWAPWRITE;
1864
1865 if (likely(!current_is_workqueue_rescuer() ||
1866 !test_bit(WB_registered, &wb->state))) {
1867 /*
1868 * The normal path. Keep writing back @wb until its
1869 * work_list is empty. Note that this path is also taken
1870 * if @wb is shutting down even when we're running off the
1871 * rescuer as work_list needs to be drained.
1872 */
1873 do {
1874 pages_written = wb_do_writeback(wb);
1875 trace_writeback_pages_written(pages_written);
1876 } while (!list_empty(&wb->work_list));
1877 } else {
1878 /*
1879 * bdi_wq can't get enough workers and we're running off
1880 * the emergency worker. Don't hog it. Hopefully, 1024 is
1881 * enough for efficient IO.
1882 */
1883 pages_written = writeback_inodes_wb(wb, 1024,
1884 WB_REASON_FORKER_THREAD);
1885 trace_writeback_pages_written(pages_written);
1886 }
1887
1888 if (!list_empty(&wb->work_list))
1889 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1890 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1891 wb_wakeup_delayed(wb);
1892
1893 current->flags &= ~PF_SWAPWRITE;
1894 }
1895
1896 /*
1897 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1898 * the whole world.
1899 */
1900 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1901 {
1902 struct backing_dev_info *bdi;
1903
1904 if (!nr_pages)
1905 nr_pages = get_nr_dirty_pages();
1906
1907 rcu_read_lock();
1908 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1909 struct bdi_writeback *wb;
1910
1911 if (!bdi_has_dirty_io(bdi))
1912 continue;
1913
1914 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1915 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1916 false, reason);
1917 }
1918 rcu_read_unlock();
1919 }
1920
1921 /*
1922 * Wake up bdi's periodically to make sure dirtytime inodes gets
1923 * written back periodically. We deliberately do *not* check the
1924 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1925 * kernel to be constantly waking up once there are any dirtytime
1926 * inodes on the system. So instead we define a separate delayed work
1927 * function which gets called much more rarely. (By default, only
1928 * once every 12 hours.)
1929 *
1930 * If there is any other write activity going on in the file system,
1931 * this function won't be necessary. But if the only thing that has
1932 * happened on the file system is a dirtytime inode caused by an atime
1933 * update, we need this infrastructure below to make sure that inode
1934 * eventually gets pushed out to disk.
1935 */
1936 static void wakeup_dirtytime_writeback(struct work_struct *w);
1937 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1938
1939 static void wakeup_dirtytime_writeback(struct work_struct *w)
1940 {
1941 struct backing_dev_info *bdi;
1942
1943 rcu_read_lock();
1944 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1945 struct bdi_writeback *wb;
1946
1947 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1948 if (!list_empty(&wb->b_dirty_time))
1949 wb_wakeup(wb);
1950 }
1951 rcu_read_unlock();
1952 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1953 }
1954
1955 static int __init start_dirtytime_writeback(void)
1956 {
1957 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1958 return 0;
1959 }
1960 __initcall(start_dirtytime_writeback);
1961
1962 int dirtytime_interval_handler(struct ctl_table *table, int write,
1963 void __user *buffer, size_t *lenp, loff_t *ppos)
1964 {
1965 int ret;
1966
1967 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1968 if (ret == 0 && write)
1969 mod_delayed_work(system_wq, &dirtytime_work, 0);
1970 return ret;
1971 }
1972
1973 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1974 {
1975 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1976 struct dentry *dentry;
1977 const char *name = "?";
1978
1979 dentry = d_find_alias(inode);
1980 if (dentry) {
1981 spin_lock(&dentry->d_lock);
1982 name = (const char *) dentry->d_name.name;
1983 }
1984 printk(KERN_DEBUG
1985 "%s(%d): dirtied inode %lu (%s) on %s\n",
1986 current->comm, task_pid_nr(current), inode->i_ino,
1987 name, inode->i_sb->s_id);
1988 if (dentry) {
1989 spin_unlock(&dentry->d_lock);
1990 dput(dentry);
1991 }
1992 }
1993 }
1994
1995 /**
1996 * __mark_inode_dirty - internal function
1997 * @inode: inode to mark
1998 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1999 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2000 * mark_inode_dirty_sync.
2001 *
2002 * Put the inode on the super block's dirty list.
2003 *
2004 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2005 * dirty list only if it is hashed or if it refers to a blockdev.
2006 * If it was not hashed, it will never be added to the dirty list
2007 * even if it is later hashed, as it will have been marked dirty already.
2008 *
2009 * In short, make sure you hash any inodes _before_ you start marking
2010 * them dirty.
2011 *
2012 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2013 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2014 * the kernel-internal blockdev inode represents the dirtying time of the
2015 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2016 * page->mapping->host, so the page-dirtying time is recorded in the internal
2017 * blockdev inode.
2018 */
2019 void __mark_inode_dirty(struct inode *inode, int flags)
2020 {
2021 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2022 struct super_block *sb = inode->i_sb;
2023 int dirtytime;
2024
2025 trace_writeback_mark_inode_dirty(inode, flags);
2026
2027 /*
2028 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2029 * dirty the inode itself
2030 */
2031 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2032 trace_writeback_dirty_inode_start(inode, flags);
2033
2034 if (sb->s_op->dirty_inode)
2035 sb->s_op->dirty_inode(inode, flags);
2036
2037 trace_writeback_dirty_inode(inode, flags);
2038 }
2039 if (flags & I_DIRTY_INODE)
2040 flags &= ~I_DIRTY_TIME;
2041 dirtytime = flags & I_DIRTY_TIME;
2042
2043 /*
2044 * Paired with smp_mb() in __writeback_single_inode() for the
2045 * following lockless i_state test. See there for details.
2046 */
2047 smp_mb();
2048
2049 if (((inode->i_state & flags) == flags) ||
2050 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2051 return;
2052
2053 if (unlikely(block_dump))
2054 block_dump___mark_inode_dirty(inode);
2055
2056 spin_lock(&inode->i_lock);
2057 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2058 goto out_unlock_inode;
2059 if ((inode->i_state & flags) != flags) {
2060 const int was_dirty = inode->i_state & I_DIRTY;
2061
2062 inode_attach_wb(inode, NULL);
2063
2064 if (flags & I_DIRTY_INODE)
2065 inode->i_state &= ~I_DIRTY_TIME;
2066 inode->i_state |= flags;
2067
2068 /*
2069 * If the inode is being synced, just update its dirty state.
2070 * The unlocker will place the inode on the appropriate
2071 * superblock list, based upon its state.
2072 */
2073 if (inode->i_state & I_SYNC)
2074 goto out_unlock_inode;
2075
2076 /*
2077 * Only add valid (hashed) inodes to the superblock's
2078 * dirty list. Add blockdev inodes as well.
2079 */
2080 if (!S_ISBLK(inode->i_mode)) {
2081 if (inode_unhashed(inode))
2082 goto out_unlock_inode;
2083 }
2084 if (inode->i_state & I_FREEING)
2085 goto out_unlock_inode;
2086
2087 /*
2088 * If the inode was already on b_dirty/b_io/b_more_io, don't
2089 * reposition it (that would break b_dirty time-ordering).
2090 */
2091 if (!was_dirty) {
2092 struct bdi_writeback *wb;
2093 struct list_head *dirty_list;
2094 bool wakeup_bdi = false;
2095
2096 wb = locked_inode_to_wb_and_lock_list(inode);
2097
2098 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2099 !test_bit(WB_registered, &wb->state),
2100 "bdi-%s not registered\n", wb->bdi->name);
2101
2102 inode->dirtied_when = jiffies;
2103 if (dirtytime)
2104 inode->dirtied_time_when = jiffies;
2105
2106 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2107 dirty_list = &wb->b_dirty;
2108 else
2109 dirty_list = &wb->b_dirty_time;
2110
2111 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2112 dirty_list);
2113
2114 spin_unlock(&wb->list_lock);
2115 trace_writeback_dirty_inode_enqueue(inode);
2116
2117 /*
2118 * If this is the first dirty inode for this bdi,
2119 * we have to wake-up the corresponding bdi thread
2120 * to make sure background write-back happens
2121 * later.
2122 */
2123 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2124 wb_wakeup_delayed(wb);
2125 return;
2126 }
2127 }
2128 out_unlock_inode:
2129 spin_unlock(&inode->i_lock);
2130
2131 #undef I_DIRTY_INODE
2132 }
2133 EXPORT_SYMBOL(__mark_inode_dirty);
2134
2135 /*
2136 * The @s_sync_lock is used to serialise concurrent sync operations
2137 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2138 * Concurrent callers will block on the s_sync_lock rather than doing contending
2139 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2140 * has been issued up to the time this function is enter is guaranteed to be
2141 * completed by the time we have gained the lock and waited for all IO that is
2142 * in progress regardless of the order callers are granted the lock.
2143 */
2144 static void wait_sb_inodes(struct super_block *sb)
2145 {
2146 struct inode *inode, *old_inode = NULL;
2147
2148 /*
2149 * We need to be protected against the filesystem going from
2150 * r/o to r/w or vice versa.
2151 */
2152 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2153
2154 mutex_lock(&sb->s_sync_lock);
2155 spin_lock(&sb->s_inode_list_lock);
2156
2157 /*
2158 * Data integrity sync. Must wait for all pages under writeback,
2159 * because there may have been pages dirtied before our sync
2160 * call, but which had writeout started before we write it out.
2161 * In which case, the inode may not be on the dirty list, but
2162 * we still have to wait for that writeout.
2163 */
2164 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2165 struct address_space *mapping = inode->i_mapping;
2166
2167 spin_lock(&inode->i_lock);
2168 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2169 (mapping->nrpages == 0)) {
2170 spin_unlock(&inode->i_lock);
2171 continue;
2172 }
2173 __iget(inode);
2174 spin_unlock(&inode->i_lock);
2175 spin_unlock(&sb->s_inode_list_lock);
2176
2177 /*
2178 * We hold a reference to 'inode' so it couldn't have been
2179 * removed from s_inodes list while we dropped the
2180 * s_inode_list_lock. We cannot iput the inode now as we can
2181 * be holding the last reference and we cannot iput it under
2182 * s_inode_list_lock. So we keep the reference and iput it
2183 * later.
2184 */
2185 iput(old_inode);
2186 old_inode = inode;
2187
2188 /*
2189 * We keep the error status of individual mapping so that
2190 * applications can catch the writeback error using fsync(2).
2191 * See filemap_fdatawait_keep_errors() for details.
2192 */
2193 filemap_fdatawait_keep_errors(mapping);
2194
2195 cond_resched();
2196
2197 spin_lock(&sb->s_inode_list_lock);
2198 }
2199 spin_unlock(&sb->s_inode_list_lock);
2200 iput(old_inode);
2201 mutex_unlock(&sb->s_sync_lock);
2202 }
2203
2204 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2205 enum wb_reason reason, bool skip_if_busy)
2206 {
2207 DEFINE_WB_COMPLETION_ONSTACK(done);
2208 struct wb_writeback_work work = {
2209 .sb = sb,
2210 .sync_mode = WB_SYNC_NONE,
2211 .tagged_writepages = 1,
2212 .done = &done,
2213 .nr_pages = nr,
2214 .reason = reason,
2215 };
2216 struct backing_dev_info *bdi = sb->s_bdi;
2217
2218 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2219 return;
2220 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2221
2222 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2223 wb_wait_for_completion(bdi, &done);
2224 }
2225
2226 /**
2227 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2228 * @sb: the superblock
2229 * @nr: the number of pages to write
2230 * @reason: reason why some writeback work initiated
2231 *
2232 * Start writeback on some inodes on this super_block. No guarantees are made
2233 * on how many (if any) will be written, and this function does not wait
2234 * for IO completion of submitted IO.
2235 */
2236 void writeback_inodes_sb_nr(struct super_block *sb,
2237 unsigned long nr,
2238 enum wb_reason reason)
2239 {
2240 __writeback_inodes_sb_nr(sb, nr, reason, false);
2241 }
2242 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2243
2244 /**
2245 * writeback_inodes_sb - writeback dirty inodes from given super_block
2246 * @sb: the superblock
2247 * @reason: reason why some writeback work was initiated
2248 *
2249 * Start writeback on some inodes on this super_block. No guarantees are made
2250 * on how many (if any) will be written, and this function does not wait
2251 * for IO completion of submitted IO.
2252 */
2253 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2254 {
2255 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2256 }
2257 EXPORT_SYMBOL(writeback_inodes_sb);
2258
2259 /**
2260 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2261 * @sb: the superblock
2262 * @nr: the number of pages to write
2263 * @reason: the reason of writeback
2264 *
2265 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2266 * Returns 1 if writeback was started, 0 if not.
2267 */
2268 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2269 enum wb_reason reason)
2270 {
2271 if (!down_read_trylock(&sb->s_umount))
2272 return false;
2273
2274 __writeback_inodes_sb_nr(sb, nr, reason, true);
2275 up_read(&sb->s_umount);
2276 return true;
2277 }
2278 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2279
2280 /**
2281 * try_to_writeback_inodes_sb - try to start writeback if none underway
2282 * @sb: the superblock
2283 * @reason: reason why some writeback work was initiated
2284 *
2285 * Implement by try_to_writeback_inodes_sb_nr()
2286 * Returns 1 if writeback was started, 0 if not.
2287 */
2288 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2289 {
2290 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2291 }
2292 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2293
2294 /**
2295 * sync_inodes_sb - sync sb inode pages
2296 * @sb: the superblock
2297 *
2298 * This function writes and waits on any dirty inode belonging to this
2299 * super_block.
2300 */
2301 void sync_inodes_sb(struct super_block *sb)
2302 {
2303 DEFINE_WB_COMPLETION_ONSTACK(done);
2304 struct wb_writeback_work work = {
2305 .sb = sb,
2306 .sync_mode = WB_SYNC_ALL,
2307 .nr_pages = LONG_MAX,
2308 .range_cyclic = 0,
2309 .done = &done,
2310 .reason = WB_REASON_SYNC,
2311 .for_sync = 1,
2312 };
2313 struct backing_dev_info *bdi = sb->s_bdi;
2314
2315 /*
2316 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2317 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2318 * bdi_has_dirty() need to be written out too.
2319 */
2320 if (bdi == &noop_backing_dev_info)
2321 return;
2322 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2323
2324 bdi_split_work_to_wbs(bdi, &work, false);
2325 wb_wait_for_completion(bdi, &done);
2326
2327 wait_sb_inodes(sb);
2328 }
2329 EXPORT_SYMBOL(sync_inodes_sb);
2330
2331 /**
2332 * write_inode_now - write an inode to disk
2333 * @inode: inode to write to disk
2334 * @sync: whether the write should be synchronous or not
2335 *
2336 * This function commits an inode to disk immediately if it is dirty. This is
2337 * primarily needed by knfsd.
2338 *
2339 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2340 */
2341 int write_inode_now(struct inode *inode, int sync)
2342 {
2343 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
2344 struct writeback_control wbc = {
2345 .nr_to_write = LONG_MAX,
2346 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2347 .range_start = 0,
2348 .range_end = LLONG_MAX,
2349 };
2350
2351 if (!mapping_cap_writeback_dirty(inode->i_mapping))
2352 wbc.nr_to_write = 0;
2353
2354 might_sleep();
2355 return writeback_single_inode(inode, wb, &wbc);
2356 }
2357 EXPORT_SYMBOL(write_inode_now);
2358
2359 /**
2360 * sync_inode - write an inode and its pages to disk.
2361 * @inode: the inode to sync
2362 * @wbc: controls the writeback mode
2363 *
2364 * sync_inode() will write an inode and its pages to disk. It will also
2365 * correctly update the inode on its superblock's dirty inode lists and will
2366 * update inode->i_state.
2367 *
2368 * The caller must have a ref on the inode.
2369 */
2370 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2371 {
2372 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
2373 }
2374 EXPORT_SYMBOL(sync_inode);
2375
2376 /**
2377 * sync_inode_metadata - write an inode to disk
2378 * @inode: the inode to sync
2379 * @wait: wait for I/O to complete.
2380 *
2381 * Write an inode to disk and adjust its dirty state after completion.
2382 *
2383 * Note: only writes the actual inode, no associated data or other metadata.
2384 */
2385 int sync_inode_metadata(struct inode *inode, int wait)
2386 {
2387 struct writeback_control wbc = {
2388 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2389 .nr_to_write = 0, /* metadata-only */
2390 };
2391
2392 return sync_inode(inode, &wbc);
2393 }
2394 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.085819 seconds and 6 git commands to generate.