writeback: implement and use inode_congested()
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31
32 /*
33 * 4MB minimal write chunk size
34 */
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
50 enum wb_reason reason; /* why was writeback initiated? */
51
52 struct list_head list; /* pending work list */
53 struct completion *done; /* set if the caller waits */
54 };
55
56 /*
57 * If an inode is constantly having its pages dirtied, but then the
58 * updates stop dirtytime_expire_interval seconds in the past, it's
59 * possible for the worst case time between when an inode has its
60 * timestamps updated and when they finally get written out to be two
61 * dirtytime_expire_intervals. We set the default to 12 hours (in
62 * seconds), which means most of the time inodes will have their
63 * timestamps written to disk after 12 hours, but in the worst case a
64 * few inodes might not their timestamps updated for 24 hours.
65 */
66 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
67
68 /**
69 * writeback_in_progress - determine whether there is writeback in progress
70 * @bdi: the device's backing_dev_info structure.
71 *
72 * Determine whether there is writeback waiting to be handled against a
73 * backing device.
74 */
75 int writeback_in_progress(struct backing_dev_info *bdi)
76 {
77 return test_bit(WB_writeback_running, &bdi->wb.state);
78 }
79 EXPORT_SYMBOL(writeback_in_progress);
80
81 static inline struct inode *wb_inode(struct list_head *head)
82 {
83 return list_entry(head, struct inode, i_wb_list);
84 }
85
86 /*
87 * Include the creation of the trace points after defining the
88 * wb_writeback_work structure and inline functions so that the definition
89 * remains local to this file.
90 */
91 #define CREATE_TRACE_POINTS
92 #include <trace/events/writeback.h>
93
94 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
95
96 static void wb_wakeup(struct bdi_writeback *wb)
97 {
98 spin_lock_bh(&wb->work_lock);
99 if (test_bit(WB_registered, &wb->state))
100 mod_delayed_work(bdi_wq, &wb->dwork, 0);
101 spin_unlock_bh(&wb->work_lock);
102 }
103
104 static void wb_queue_work(struct bdi_writeback *wb,
105 struct wb_writeback_work *work)
106 {
107 trace_writeback_queue(wb->bdi, work);
108
109 spin_lock_bh(&wb->work_lock);
110 if (!test_bit(WB_registered, &wb->state)) {
111 if (work->done)
112 complete(work->done);
113 goto out_unlock;
114 }
115 list_add_tail(&work->list, &wb->work_list);
116 mod_delayed_work(bdi_wq, &wb->dwork, 0);
117 out_unlock:
118 spin_unlock_bh(&wb->work_lock);
119 }
120
121 static void __wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
122 bool range_cyclic, enum wb_reason reason)
123 {
124 struct wb_writeback_work *work;
125
126 /*
127 * This is WB_SYNC_NONE writeback, so if allocation fails just
128 * wakeup the thread for old dirty data writeback
129 */
130 work = kzalloc(sizeof(*work), GFP_ATOMIC);
131 if (!work) {
132 trace_writeback_nowork(wb->bdi);
133 wb_wakeup(wb);
134 return;
135 }
136
137 work->sync_mode = WB_SYNC_NONE;
138 work->nr_pages = nr_pages;
139 work->range_cyclic = range_cyclic;
140 work->reason = reason;
141
142 wb_queue_work(wb, work);
143 }
144
145 #ifdef CONFIG_CGROUP_WRITEBACK
146
147 /**
148 * inode_congested - test whether an inode is congested
149 * @inode: inode to test for congestion
150 * @cong_bits: mask of WB_[a]sync_congested bits to test
151 *
152 * Tests whether @inode is congested. @cong_bits is the mask of congestion
153 * bits to test and the return value is the mask of set bits.
154 *
155 * If cgroup writeback is enabled for @inode, the congestion state is
156 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
157 * associated with @inode is congested; otherwise, the root wb's congestion
158 * state is used.
159 */
160 int inode_congested(struct inode *inode, int cong_bits)
161 {
162 if (inode) {
163 struct bdi_writeback *wb = inode_to_wb(inode);
164 if (wb)
165 return wb_congested(wb, cong_bits);
166 }
167
168 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
169 }
170 EXPORT_SYMBOL_GPL(inode_congested);
171
172 #endif /* CONFIG_CGROUP_WRITEBACK */
173
174 /**
175 * bdi_start_writeback - start writeback
176 * @bdi: the backing device to write from
177 * @nr_pages: the number of pages to write
178 * @reason: reason why some writeback work was initiated
179 *
180 * Description:
181 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
182 * started when this function returns, we make no guarantees on
183 * completion. Caller need not hold sb s_umount semaphore.
184 *
185 */
186 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
187 enum wb_reason reason)
188 {
189 __wb_start_writeback(&bdi->wb, nr_pages, true, reason);
190 }
191
192 /**
193 * bdi_start_background_writeback - start background writeback
194 * @bdi: the backing device to write from
195 *
196 * Description:
197 * This makes sure WB_SYNC_NONE background writeback happens. When
198 * this function returns, it is only guaranteed that for given BDI
199 * some IO is happening if we are over background dirty threshold.
200 * Caller need not hold sb s_umount semaphore.
201 */
202 void bdi_start_background_writeback(struct backing_dev_info *bdi)
203 {
204 /*
205 * We just wake up the flusher thread. It will perform background
206 * writeback as soon as there is no other work to do.
207 */
208 trace_writeback_wake_background(bdi);
209 wb_wakeup(&bdi->wb);
210 }
211
212 /*
213 * Remove the inode from the writeback list it is on.
214 */
215 void inode_wb_list_del(struct inode *inode)
216 {
217 struct bdi_writeback *wb = inode_to_wb(inode);
218
219 spin_lock(&wb->list_lock);
220 list_del_init(&inode->i_wb_list);
221 spin_unlock(&wb->list_lock);
222 }
223
224 /*
225 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
226 * furthest end of its superblock's dirty-inode list.
227 *
228 * Before stamping the inode's ->dirtied_when, we check to see whether it is
229 * already the most-recently-dirtied inode on the b_dirty list. If that is
230 * the case then the inode must have been redirtied while it was being written
231 * out and we don't reset its dirtied_when.
232 */
233 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
234 {
235 assert_spin_locked(&wb->list_lock);
236 if (!list_empty(&wb->b_dirty)) {
237 struct inode *tail;
238
239 tail = wb_inode(wb->b_dirty.next);
240 if (time_before(inode->dirtied_when, tail->dirtied_when))
241 inode->dirtied_when = jiffies;
242 }
243 list_move(&inode->i_wb_list, &wb->b_dirty);
244 }
245
246 /*
247 * requeue inode for re-scanning after bdi->b_io list is exhausted.
248 */
249 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
250 {
251 assert_spin_locked(&wb->list_lock);
252 list_move(&inode->i_wb_list, &wb->b_more_io);
253 }
254
255 static void inode_sync_complete(struct inode *inode)
256 {
257 inode->i_state &= ~I_SYNC;
258 /* If inode is clean an unused, put it into LRU now... */
259 inode_add_lru(inode);
260 /* Waiters must see I_SYNC cleared before being woken up */
261 smp_mb();
262 wake_up_bit(&inode->i_state, __I_SYNC);
263 }
264
265 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
266 {
267 bool ret = time_after(inode->dirtied_when, t);
268 #ifndef CONFIG_64BIT
269 /*
270 * For inodes being constantly redirtied, dirtied_when can get stuck.
271 * It _appears_ to be in the future, but is actually in distant past.
272 * This test is necessary to prevent such wrapped-around relative times
273 * from permanently stopping the whole bdi writeback.
274 */
275 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
276 #endif
277 return ret;
278 }
279
280 #define EXPIRE_DIRTY_ATIME 0x0001
281
282 /*
283 * Move expired (dirtied before work->older_than_this) dirty inodes from
284 * @delaying_queue to @dispatch_queue.
285 */
286 static int move_expired_inodes(struct list_head *delaying_queue,
287 struct list_head *dispatch_queue,
288 int flags,
289 struct wb_writeback_work *work)
290 {
291 unsigned long *older_than_this = NULL;
292 unsigned long expire_time;
293 LIST_HEAD(tmp);
294 struct list_head *pos, *node;
295 struct super_block *sb = NULL;
296 struct inode *inode;
297 int do_sb_sort = 0;
298 int moved = 0;
299
300 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
301 older_than_this = work->older_than_this;
302 else if (!work->for_sync) {
303 expire_time = jiffies - (dirtytime_expire_interval * HZ);
304 older_than_this = &expire_time;
305 }
306 while (!list_empty(delaying_queue)) {
307 inode = wb_inode(delaying_queue->prev);
308 if (older_than_this &&
309 inode_dirtied_after(inode, *older_than_this))
310 break;
311 list_move(&inode->i_wb_list, &tmp);
312 moved++;
313 if (flags & EXPIRE_DIRTY_ATIME)
314 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
315 if (sb_is_blkdev_sb(inode->i_sb))
316 continue;
317 if (sb && sb != inode->i_sb)
318 do_sb_sort = 1;
319 sb = inode->i_sb;
320 }
321
322 /* just one sb in list, splice to dispatch_queue and we're done */
323 if (!do_sb_sort) {
324 list_splice(&tmp, dispatch_queue);
325 goto out;
326 }
327
328 /* Move inodes from one superblock together */
329 while (!list_empty(&tmp)) {
330 sb = wb_inode(tmp.prev)->i_sb;
331 list_for_each_prev_safe(pos, node, &tmp) {
332 inode = wb_inode(pos);
333 if (inode->i_sb == sb)
334 list_move(&inode->i_wb_list, dispatch_queue);
335 }
336 }
337 out:
338 return moved;
339 }
340
341 /*
342 * Queue all expired dirty inodes for io, eldest first.
343 * Before
344 * newly dirtied b_dirty b_io b_more_io
345 * =============> gf edc BA
346 * After
347 * newly dirtied b_dirty b_io b_more_io
348 * =============> g fBAedc
349 * |
350 * +--> dequeue for IO
351 */
352 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
353 {
354 int moved;
355
356 assert_spin_locked(&wb->list_lock);
357 list_splice_init(&wb->b_more_io, &wb->b_io);
358 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
359 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
360 EXPIRE_DIRTY_ATIME, work);
361 trace_writeback_queue_io(wb, work, moved);
362 }
363
364 static int write_inode(struct inode *inode, struct writeback_control *wbc)
365 {
366 int ret;
367
368 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
369 trace_writeback_write_inode_start(inode, wbc);
370 ret = inode->i_sb->s_op->write_inode(inode, wbc);
371 trace_writeback_write_inode(inode, wbc);
372 return ret;
373 }
374 return 0;
375 }
376
377 /*
378 * Wait for writeback on an inode to complete. Called with i_lock held.
379 * Caller must make sure inode cannot go away when we drop i_lock.
380 */
381 static void __inode_wait_for_writeback(struct inode *inode)
382 __releases(inode->i_lock)
383 __acquires(inode->i_lock)
384 {
385 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
386 wait_queue_head_t *wqh;
387
388 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
389 while (inode->i_state & I_SYNC) {
390 spin_unlock(&inode->i_lock);
391 __wait_on_bit(wqh, &wq, bit_wait,
392 TASK_UNINTERRUPTIBLE);
393 spin_lock(&inode->i_lock);
394 }
395 }
396
397 /*
398 * Wait for writeback on an inode to complete. Caller must have inode pinned.
399 */
400 void inode_wait_for_writeback(struct inode *inode)
401 {
402 spin_lock(&inode->i_lock);
403 __inode_wait_for_writeback(inode);
404 spin_unlock(&inode->i_lock);
405 }
406
407 /*
408 * Sleep until I_SYNC is cleared. This function must be called with i_lock
409 * held and drops it. It is aimed for callers not holding any inode reference
410 * so once i_lock is dropped, inode can go away.
411 */
412 static void inode_sleep_on_writeback(struct inode *inode)
413 __releases(inode->i_lock)
414 {
415 DEFINE_WAIT(wait);
416 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
417 int sleep;
418
419 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
420 sleep = inode->i_state & I_SYNC;
421 spin_unlock(&inode->i_lock);
422 if (sleep)
423 schedule();
424 finish_wait(wqh, &wait);
425 }
426
427 /*
428 * Find proper writeback list for the inode depending on its current state and
429 * possibly also change of its state while we were doing writeback. Here we
430 * handle things such as livelock prevention or fairness of writeback among
431 * inodes. This function can be called only by flusher thread - noone else
432 * processes all inodes in writeback lists and requeueing inodes behind flusher
433 * thread's back can have unexpected consequences.
434 */
435 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
436 struct writeback_control *wbc)
437 {
438 if (inode->i_state & I_FREEING)
439 return;
440
441 /*
442 * Sync livelock prevention. Each inode is tagged and synced in one
443 * shot. If still dirty, it will be redirty_tail()'ed below. Update
444 * the dirty time to prevent enqueue and sync it again.
445 */
446 if ((inode->i_state & I_DIRTY) &&
447 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
448 inode->dirtied_when = jiffies;
449
450 if (wbc->pages_skipped) {
451 /*
452 * writeback is not making progress due to locked
453 * buffers. Skip this inode for now.
454 */
455 redirty_tail(inode, wb);
456 return;
457 }
458
459 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
460 /*
461 * We didn't write back all the pages. nfs_writepages()
462 * sometimes bales out without doing anything.
463 */
464 if (wbc->nr_to_write <= 0) {
465 /* Slice used up. Queue for next turn. */
466 requeue_io(inode, wb);
467 } else {
468 /*
469 * Writeback blocked by something other than
470 * congestion. Delay the inode for some time to
471 * avoid spinning on the CPU (100% iowait)
472 * retrying writeback of the dirty page/inode
473 * that cannot be performed immediately.
474 */
475 redirty_tail(inode, wb);
476 }
477 } else if (inode->i_state & I_DIRTY) {
478 /*
479 * Filesystems can dirty the inode during writeback operations,
480 * such as delayed allocation during submission or metadata
481 * updates after data IO completion.
482 */
483 redirty_tail(inode, wb);
484 } else if (inode->i_state & I_DIRTY_TIME) {
485 inode->dirtied_when = jiffies;
486 list_move(&inode->i_wb_list, &wb->b_dirty_time);
487 } else {
488 /* The inode is clean. Remove from writeback lists. */
489 list_del_init(&inode->i_wb_list);
490 }
491 }
492
493 /*
494 * Write out an inode and its dirty pages. Do not update the writeback list
495 * linkage. That is left to the caller. The caller is also responsible for
496 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
497 */
498 static int
499 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
500 {
501 struct address_space *mapping = inode->i_mapping;
502 long nr_to_write = wbc->nr_to_write;
503 unsigned dirty;
504 int ret;
505
506 WARN_ON(!(inode->i_state & I_SYNC));
507
508 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
509
510 ret = do_writepages(mapping, wbc);
511
512 /*
513 * Make sure to wait on the data before writing out the metadata.
514 * This is important for filesystems that modify metadata on data
515 * I/O completion. We don't do it for sync(2) writeback because it has a
516 * separate, external IO completion path and ->sync_fs for guaranteeing
517 * inode metadata is written back correctly.
518 */
519 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
520 int err = filemap_fdatawait(mapping);
521 if (ret == 0)
522 ret = err;
523 }
524
525 /*
526 * Some filesystems may redirty the inode during the writeback
527 * due to delalloc, clear dirty metadata flags right before
528 * write_inode()
529 */
530 spin_lock(&inode->i_lock);
531
532 dirty = inode->i_state & I_DIRTY;
533 if (inode->i_state & I_DIRTY_TIME) {
534 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
535 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
536 unlikely(time_after(jiffies,
537 (inode->dirtied_time_when +
538 dirtytime_expire_interval * HZ)))) {
539 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
540 trace_writeback_lazytime(inode);
541 }
542 } else
543 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
544 inode->i_state &= ~dirty;
545
546 /*
547 * Paired with smp_mb() in __mark_inode_dirty(). This allows
548 * __mark_inode_dirty() to test i_state without grabbing i_lock -
549 * either they see the I_DIRTY bits cleared or we see the dirtied
550 * inode.
551 *
552 * I_DIRTY_PAGES is always cleared together above even if @mapping
553 * still has dirty pages. The flag is reinstated after smp_mb() if
554 * necessary. This guarantees that either __mark_inode_dirty()
555 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
556 */
557 smp_mb();
558
559 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
560 inode->i_state |= I_DIRTY_PAGES;
561
562 spin_unlock(&inode->i_lock);
563
564 if (dirty & I_DIRTY_TIME)
565 mark_inode_dirty_sync(inode);
566 /* Don't write the inode if only I_DIRTY_PAGES was set */
567 if (dirty & ~I_DIRTY_PAGES) {
568 int err = write_inode(inode, wbc);
569 if (ret == 0)
570 ret = err;
571 }
572 trace_writeback_single_inode(inode, wbc, nr_to_write);
573 return ret;
574 }
575
576 /*
577 * Write out an inode's dirty pages. Either the caller has an active reference
578 * on the inode or the inode has I_WILL_FREE set.
579 *
580 * This function is designed to be called for writing back one inode which
581 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
582 * and does more profound writeback list handling in writeback_sb_inodes().
583 */
584 static int
585 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
586 struct writeback_control *wbc)
587 {
588 int ret = 0;
589
590 spin_lock(&inode->i_lock);
591 if (!atomic_read(&inode->i_count))
592 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
593 else
594 WARN_ON(inode->i_state & I_WILL_FREE);
595
596 if (inode->i_state & I_SYNC) {
597 if (wbc->sync_mode != WB_SYNC_ALL)
598 goto out;
599 /*
600 * It's a data-integrity sync. We must wait. Since callers hold
601 * inode reference or inode has I_WILL_FREE set, it cannot go
602 * away under us.
603 */
604 __inode_wait_for_writeback(inode);
605 }
606 WARN_ON(inode->i_state & I_SYNC);
607 /*
608 * Skip inode if it is clean and we have no outstanding writeback in
609 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
610 * function since flusher thread may be doing for example sync in
611 * parallel and if we move the inode, it could get skipped. So here we
612 * make sure inode is on some writeback list and leave it there unless
613 * we have completely cleaned the inode.
614 */
615 if (!(inode->i_state & I_DIRTY_ALL) &&
616 (wbc->sync_mode != WB_SYNC_ALL ||
617 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
618 goto out;
619 inode->i_state |= I_SYNC;
620 spin_unlock(&inode->i_lock);
621
622 ret = __writeback_single_inode(inode, wbc);
623
624 spin_lock(&wb->list_lock);
625 spin_lock(&inode->i_lock);
626 /*
627 * If inode is clean, remove it from writeback lists. Otherwise don't
628 * touch it. See comment above for explanation.
629 */
630 if (!(inode->i_state & I_DIRTY_ALL))
631 list_del_init(&inode->i_wb_list);
632 spin_unlock(&wb->list_lock);
633 inode_sync_complete(inode);
634 out:
635 spin_unlock(&inode->i_lock);
636 return ret;
637 }
638
639 static long writeback_chunk_size(struct bdi_writeback *wb,
640 struct wb_writeback_work *work)
641 {
642 long pages;
643
644 /*
645 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
646 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
647 * here avoids calling into writeback_inodes_wb() more than once.
648 *
649 * The intended call sequence for WB_SYNC_ALL writeback is:
650 *
651 * wb_writeback()
652 * writeback_sb_inodes() <== called only once
653 * write_cache_pages() <== called once for each inode
654 * (quickly) tag currently dirty pages
655 * (maybe slowly) sync all tagged pages
656 */
657 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
658 pages = LONG_MAX;
659 else {
660 pages = min(wb->avg_write_bandwidth / 2,
661 global_dirty_limit / DIRTY_SCOPE);
662 pages = min(pages, work->nr_pages);
663 pages = round_down(pages + MIN_WRITEBACK_PAGES,
664 MIN_WRITEBACK_PAGES);
665 }
666
667 return pages;
668 }
669
670 /*
671 * Write a portion of b_io inodes which belong to @sb.
672 *
673 * Return the number of pages and/or inodes written.
674 */
675 static long writeback_sb_inodes(struct super_block *sb,
676 struct bdi_writeback *wb,
677 struct wb_writeback_work *work)
678 {
679 struct writeback_control wbc = {
680 .sync_mode = work->sync_mode,
681 .tagged_writepages = work->tagged_writepages,
682 .for_kupdate = work->for_kupdate,
683 .for_background = work->for_background,
684 .for_sync = work->for_sync,
685 .range_cyclic = work->range_cyclic,
686 .range_start = 0,
687 .range_end = LLONG_MAX,
688 };
689 unsigned long start_time = jiffies;
690 long write_chunk;
691 long wrote = 0; /* count both pages and inodes */
692
693 while (!list_empty(&wb->b_io)) {
694 struct inode *inode = wb_inode(wb->b_io.prev);
695
696 if (inode->i_sb != sb) {
697 if (work->sb) {
698 /*
699 * We only want to write back data for this
700 * superblock, move all inodes not belonging
701 * to it back onto the dirty list.
702 */
703 redirty_tail(inode, wb);
704 continue;
705 }
706
707 /*
708 * The inode belongs to a different superblock.
709 * Bounce back to the caller to unpin this and
710 * pin the next superblock.
711 */
712 break;
713 }
714
715 /*
716 * Don't bother with new inodes or inodes being freed, first
717 * kind does not need periodic writeout yet, and for the latter
718 * kind writeout is handled by the freer.
719 */
720 spin_lock(&inode->i_lock);
721 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
722 spin_unlock(&inode->i_lock);
723 redirty_tail(inode, wb);
724 continue;
725 }
726 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
727 /*
728 * If this inode is locked for writeback and we are not
729 * doing writeback-for-data-integrity, move it to
730 * b_more_io so that writeback can proceed with the
731 * other inodes on s_io.
732 *
733 * We'll have another go at writing back this inode
734 * when we completed a full scan of b_io.
735 */
736 spin_unlock(&inode->i_lock);
737 requeue_io(inode, wb);
738 trace_writeback_sb_inodes_requeue(inode);
739 continue;
740 }
741 spin_unlock(&wb->list_lock);
742
743 /*
744 * We already requeued the inode if it had I_SYNC set and we
745 * are doing WB_SYNC_NONE writeback. So this catches only the
746 * WB_SYNC_ALL case.
747 */
748 if (inode->i_state & I_SYNC) {
749 /* Wait for I_SYNC. This function drops i_lock... */
750 inode_sleep_on_writeback(inode);
751 /* Inode may be gone, start again */
752 spin_lock(&wb->list_lock);
753 continue;
754 }
755 inode->i_state |= I_SYNC;
756 spin_unlock(&inode->i_lock);
757
758 write_chunk = writeback_chunk_size(wb, work);
759 wbc.nr_to_write = write_chunk;
760 wbc.pages_skipped = 0;
761
762 /*
763 * We use I_SYNC to pin the inode in memory. While it is set
764 * evict_inode() will wait so the inode cannot be freed.
765 */
766 __writeback_single_inode(inode, &wbc);
767
768 work->nr_pages -= write_chunk - wbc.nr_to_write;
769 wrote += write_chunk - wbc.nr_to_write;
770 spin_lock(&wb->list_lock);
771 spin_lock(&inode->i_lock);
772 if (!(inode->i_state & I_DIRTY_ALL))
773 wrote++;
774 requeue_inode(inode, wb, &wbc);
775 inode_sync_complete(inode);
776 spin_unlock(&inode->i_lock);
777 cond_resched_lock(&wb->list_lock);
778 /*
779 * bail out to wb_writeback() often enough to check
780 * background threshold and other termination conditions.
781 */
782 if (wrote) {
783 if (time_is_before_jiffies(start_time + HZ / 10UL))
784 break;
785 if (work->nr_pages <= 0)
786 break;
787 }
788 }
789 return wrote;
790 }
791
792 static long __writeback_inodes_wb(struct bdi_writeback *wb,
793 struct wb_writeback_work *work)
794 {
795 unsigned long start_time = jiffies;
796 long wrote = 0;
797
798 while (!list_empty(&wb->b_io)) {
799 struct inode *inode = wb_inode(wb->b_io.prev);
800 struct super_block *sb = inode->i_sb;
801
802 if (!trylock_super(sb)) {
803 /*
804 * trylock_super() may fail consistently due to
805 * s_umount being grabbed by someone else. Don't use
806 * requeue_io() to avoid busy retrying the inode/sb.
807 */
808 redirty_tail(inode, wb);
809 continue;
810 }
811 wrote += writeback_sb_inodes(sb, wb, work);
812 up_read(&sb->s_umount);
813
814 /* refer to the same tests at the end of writeback_sb_inodes */
815 if (wrote) {
816 if (time_is_before_jiffies(start_time + HZ / 10UL))
817 break;
818 if (work->nr_pages <= 0)
819 break;
820 }
821 }
822 /* Leave any unwritten inodes on b_io */
823 return wrote;
824 }
825
826 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
827 enum wb_reason reason)
828 {
829 struct wb_writeback_work work = {
830 .nr_pages = nr_pages,
831 .sync_mode = WB_SYNC_NONE,
832 .range_cyclic = 1,
833 .reason = reason,
834 };
835
836 spin_lock(&wb->list_lock);
837 if (list_empty(&wb->b_io))
838 queue_io(wb, &work);
839 __writeback_inodes_wb(wb, &work);
840 spin_unlock(&wb->list_lock);
841
842 return nr_pages - work.nr_pages;
843 }
844
845 static bool over_bground_thresh(struct bdi_writeback *wb)
846 {
847 unsigned long background_thresh, dirty_thresh;
848
849 global_dirty_limits(&background_thresh, &dirty_thresh);
850
851 if (global_page_state(NR_FILE_DIRTY) +
852 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
853 return true;
854
855 if (wb_stat(wb, WB_RECLAIMABLE) > wb_dirty_limit(wb, background_thresh))
856 return true;
857
858 return false;
859 }
860
861 /*
862 * Called under wb->list_lock. If there are multiple wb per bdi,
863 * only the flusher working on the first wb should do it.
864 */
865 static void wb_update_bandwidth(struct bdi_writeback *wb,
866 unsigned long start_time)
867 {
868 __wb_update_bandwidth(wb, 0, 0, 0, 0, 0, start_time);
869 }
870
871 /*
872 * Explicit flushing or periodic writeback of "old" data.
873 *
874 * Define "old": the first time one of an inode's pages is dirtied, we mark the
875 * dirtying-time in the inode's address_space. So this periodic writeback code
876 * just walks the superblock inode list, writing back any inodes which are
877 * older than a specific point in time.
878 *
879 * Try to run once per dirty_writeback_interval. But if a writeback event
880 * takes longer than a dirty_writeback_interval interval, then leave a
881 * one-second gap.
882 *
883 * older_than_this takes precedence over nr_to_write. So we'll only write back
884 * all dirty pages if they are all attached to "old" mappings.
885 */
886 static long wb_writeback(struct bdi_writeback *wb,
887 struct wb_writeback_work *work)
888 {
889 unsigned long wb_start = jiffies;
890 long nr_pages = work->nr_pages;
891 unsigned long oldest_jif;
892 struct inode *inode;
893 long progress;
894
895 oldest_jif = jiffies;
896 work->older_than_this = &oldest_jif;
897
898 spin_lock(&wb->list_lock);
899 for (;;) {
900 /*
901 * Stop writeback when nr_pages has been consumed
902 */
903 if (work->nr_pages <= 0)
904 break;
905
906 /*
907 * Background writeout and kupdate-style writeback may
908 * run forever. Stop them if there is other work to do
909 * so that e.g. sync can proceed. They'll be restarted
910 * after the other works are all done.
911 */
912 if ((work->for_background || work->for_kupdate) &&
913 !list_empty(&wb->work_list))
914 break;
915
916 /*
917 * For background writeout, stop when we are below the
918 * background dirty threshold
919 */
920 if (work->for_background && !over_bground_thresh(wb))
921 break;
922
923 /*
924 * Kupdate and background works are special and we want to
925 * include all inodes that need writing. Livelock avoidance is
926 * handled by these works yielding to any other work so we are
927 * safe.
928 */
929 if (work->for_kupdate) {
930 oldest_jif = jiffies -
931 msecs_to_jiffies(dirty_expire_interval * 10);
932 } else if (work->for_background)
933 oldest_jif = jiffies;
934
935 trace_writeback_start(wb->bdi, work);
936 if (list_empty(&wb->b_io))
937 queue_io(wb, work);
938 if (work->sb)
939 progress = writeback_sb_inodes(work->sb, wb, work);
940 else
941 progress = __writeback_inodes_wb(wb, work);
942 trace_writeback_written(wb->bdi, work);
943
944 wb_update_bandwidth(wb, wb_start);
945
946 /*
947 * Did we write something? Try for more
948 *
949 * Dirty inodes are moved to b_io for writeback in batches.
950 * The completion of the current batch does not necessarily
951 * mean the overall work is done. So we keep looping as long
952 * as made some progress on cleaning pages or inodes.
953 */
954 if (progress)
955 continue;
956 /*
957 * No more inodes for IO, bail
958 */
959 if (list_empty(&wb->b_more_io))
960 break;
961 /*
962 * Nothing written. Wait for some inode to
963 * become available for writeback. Otherwise
964 * we'll just busyloop.
965 */
966 if (!list_empty(&wb->b_more_io)) {
967 trace_writeback_wait(wb->bdi, work);
968 inode = wb_inode(wb->b_more_io.prev);
969 spin_lock(&inode->i_lock);
970 spin_unlock(&wb->list_lock);
971 /* This function drops i_lock... */
972 inode_sleep_on_writeback(inode);
973 spin_lock(&wb->list_lock);
974 }
975 }
976 spin_unlock(&wb->list_lock);
977
978 return nr_pages - work->nr_pages;
979 }
980
981 /*
982 * Return the next wb_writeback_work struct that hasn't been processed yet.
983 */
984 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
985 {
986 struct wb_writeback_work *work = NULL;
987
988 spin_lock_bh(&wb->work_lock);
989 if (!list_empty(&wb->work_list)) {
990 work = list_entry(wb->work_list.next,
991 struct wb_writeback_work, list);
992 list_del_init(&work->list);
993 }
994 spin_unlock_bh(&wb->work_lock);
995 return work;
996 }
997
998 /*
999 * Add in the number of potentially dirty inodes, because each inode
1000 * write can dirty pagecache in the underlying blockdev.
1001 */
1002 static unsigned long get_nr_dirty_pages(void)
1003 {
1004 return global_page_state(NR_FILE_DIRTY) +
1005 global_page_state(NR_UNSTABLE_NFS) +
1006 get_nr_dirty_inodes();
1007 }
1008
1009 static long wb_check_background_flush(struct bdi_writeback *wb)
1010 {
1011 if (over_bground_thresh(wb)) {
1012
1013 struct wb_writeback_work work = {
1014 .nr_pages = LONG_MAX,
1015 .sync_mode = WB_SYNC_NONE,
1016 .for_background = 1,
1017 .range_cyclic = 1,
1018 .reason = WB_REASON_BACKGROUND,
1019 };
1020
1021 return wb_writeback(wb, &work);
1022 }
1023
1024 return 0;
1025 }
1026
1027 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1028 {
1029 unsigned long expired;
1030 long nr_pages;
1031
1032 /*
1033 * When set to zero, disable periodic writeback
1034 */
1035 if (!dirty_writeback_interval)
1036 return 0;
1037
1038 expired = wb->last_old_flush +
1039 msecs_to_jiffies(dirty_writeback_interval * 10);
1040 if (time_before(jiffies, expired))
1041 return 0;
1042
1043 wb->last_old_flush = jiffies;
1044 nr_pages = get_nr_dirty_pages();
1045
1046 if (nr_pages) {
1047 struct wb_writeback_work work = {
1048 .nr_pages = nr_pages,
1049 .sync_mode = WB_SYNC_NONE,
1050 .for_kupdate = 1,
1051 .range_cyclic = 1,
1052 .reason = WB_REASON_PERIODIC,
1053 };
1054
1055 return wb_writeback(wb, &work);
1056 }
1057
1058 return 0;
1059 }
1060
1061 /*
1062 * Retrieve work items and do the writeback they describe
1063 */
1064 static long wb_do_writeback(struct bdi_writeback *wb)
1065 {
1066 struct wb_writeback_work *work;
1067 long wrote = 0;
1068
1069 set_bit(WB_writeback_running, &wb->state);
1070 while ((work = get_next_work_item(wb)) != NULL) {
1071
1072 trace_writeback_exec(wb->bdi, work);
1073
1074 wrote += wb_writeback(wb, work);
1075
1076 /*
1077 * Notify the caller of completion if this is a synchronous
1078 * work item, otherwise just free it.
1079 */
1080 if (work->done)
1081 complete(work->done);
1082 else
1083 kfree(work);
1084 }
1085
1086 /*
1087 * Check for periodic writeback, kupdated() style
1088 */
1089 wrote += wb_check_old_data_flush(wb);
1090 wrote += wb_check_background_flush(wb);
1091 clear_bit(WB_writeback_running, &wb->state);
1092
1093 return wrote;
1094 }
1095
1096 /*
1097 * Handle writeback of dirty data for the device backed by this bdi. Also
1098 * reschedules periodically and does kupdated style flushing.
1099 */
1100 void wb_workfn(struct work_struct *work)
1101 {
1102 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1103 struct bdi_writeback, dwork);
1104 long pages_written;
1105
1106 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1107 current->flags |= PF_SWAPWRITE;
1108
1109 if (likely(!current_is_workqueue_rescuer() ||
1110 !test_bit(WB_registered, &wb->state))) {
1111 /*
1112 * The normal path. Keep writing back @wb until its
1113 * work_list is empty. Note that this path is also taken
1114 * if @wb is shutting down even when we're running off the
1115 * rescuer as work_list needs to be drained.
1116 */
1117 do {
1118 pages_written = wb_do_writeback(wb);
1119 trace_writeback_pages_written(pages_written);
1120 } while (!list_empty(&wb->work_list));
1121 } else {
1122 /*
1123 * bdi_wq can't get enough workers and we're running off
1124 * the emergency worker. Don't hog it. Hopefully, 1024 is
1125 * enough for efficient IO.
1126 */
1127 pages_written = writeback_inodes_wb(wb, 1024,
1128 WB_REASON_FORKER_THREAD);
1129 trace_writeback_pages_written(pages_written);
1130 }
1131
1132 if (!list_empty(&wb->work_list))
1133 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1134 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1135 wb_wakeup_delayed(wb);
1136
1137 current->flags &= ~PF_SWAPWRITE;
1138 }
1139
1140 /*
1141 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1142 * the whole world.
1143 */
1144 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1145 {
1146 struct backing_dev_info *bdi;
1147
1148 if (!nr_pages)
1149 nr_pages = get_nr_dirty_pages();
1150
1151 rcu_read_lock();
1152 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1153 if (!bdi_has_dirty_io(bdi))
1154 continue;
1155 __wb_start_writeback(&bdi->wb, nr_pages, false, reason);
1156 }
1157 rcu_read_unlock();
1158 }
1159
1160 /*
1161 * Wake up bdi's periodically to make sure dirtytime inodes gets
1162 * written back periodically. We deliberately do *not* check the
1163 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1164 * kernel to be constantly waking up once there are any dirtytime
1165 * inodes on the system. So instead we define a separate delayed work
1166 * function which gets called much more rarely. (By default, only
1167 * once every 12 hours.)
1168 *
1169 * If there is any other write activity going on in the file system,
1170 * this function won't be necessary. But if the only thing that has
1171 * happened on the file system is a dirtytime inode caused by an atime
1172 * update, we need this infrastructure below to make sure that inode
1173 * eventually gets pushed out to disk.
1174 */
1175 static void wakeup_dirtytime_writeback(struct work_struct *w);
1176 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1177
1178 static void wakeup_dirtytime_writeback(struct work_struct *w)
1179 {
1180 struct backing_dev_info *bdi;
1181
1182 rcu_read_lock();
1183 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1184 if (list_empty(&bdi->wb.b_dirty_time))
1185 continue;
1186 wb_wakeup(&bdi->wb);
1187 }
1188 rcu_read_unlock();
1189 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1190 }
1191
1192 static int __init start_dirtytime_writeback(void)
1193 {
1194 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1195 return 0;
1196 }
1197 __initcall(start_dirtytime_writeback);
1198
1199 int dirtytime_interval_handler(struct ctl_table *table, int write,
1200 void __user *buffer, size_t *lenp, loff_t *ppos)
1201 {
1202 int ret;
1203
1204 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1205 if (ret == 0 && write)
1206 mod_delayed_work(system_wq, &dirtytime_work, 0);
1207 return ret;
1208 }
1209
1210 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1211 {
1212 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1213 struct dentry *dentry;
1214 const char *name = "?";
1215
1216 dentry = d_find_alias(inode);
1217 if (dentry) {
1218 spin_lock(&dentry->d_lock);
1219 name = (const char *) dentry->d_name.name;
1220 }
1221 printk(KERN_DEBUG
1222 "%s(%d): dirtied inode %lu (%s) on %s\n",
1223 current->comm, task_pid_nr(current), inode->i_ino,
1224 name, inode->i_sb->s_id);
1225 if (dentry) {
1226 spin_unlock(&dentry->d_lock);
1227 dput(dentry);
1228 }
1229 }
1230 }
1231
1232 /**
1233 * __mark_inode_dirty - internal function
1234 * @inode: inode to mark
1235 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1236 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1237 * mark_inode_dirty_sync.
1238 *
1239 * Put the inode on the super block's dirty list.
1240 *
1241 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1242 * dirty list only if it is hashed or if it refers to a blockdev.
1243 * If it was not hashed, it will never be added to the dirty list
1244 * even if it is later hashed, as it will have been marked dirty already.
1245 *
1246 * In short, make sure you hash any inodes _before_ you start marking
1247 * them dirty.
1248 *
1249 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1250 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1251 * the kernel-internal blockdev inode represents the dirtying time of the
1252 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1253 * page->mapping->host, so the page-dirtying time is recorded in the internal
1254 * blockdev inode.
1255 */
1256 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1257 void __mark_inode_dirty(struct inode *inode, int flags)
1258 {
1259 struct super_block *sb = inode->i_sb;
1260 struct backing_dev_info *bdi = NULL;
1261 int dirtytime;
1262
1263 trace_writeback_mark_inode_dirty(inode, flags);
1264
1265 /*
1266 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1267 * dirty the inode itself
1268 */
1269 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
1270 trace_writeback_dirty_inode_start(inode, flags);
1271
1272 if (sb->s_op->dirty_inode)
1273 sb->s_op->dirty_inode(inode, flags);
1274
1275 trace_writeback_dirty_inode(inode, flags);
1276 }
1277 if (flags & I_DIRTY_INODE)
1278 flags &= ~I_DIRTY_TIME;
1279 dirtytime = flags & I_DIRTY_TIME;
1280
1281 /*
1282 * Paired with smp_mb() in __writeback_single_inode() for the
1283 * following lockless i_state test. See there for details.
1284 */
1285 smp_mb();
1286
1287 if (((inode->i_state & flags) == flags) ||
1288 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1289 return;
1290
1291 if (unlikely(block_dump))
1292 block_dump___mark_inode_dirty(inode);
1293
1294 spin_lock(&inode->i_lock);
1295 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1296 goto out_unlock_inode;
1297 if ((inode->i_state & flags) != flags) {
1298 const int was_dirty = inode->i_state & I_DIRTY;
1299
1300 inode_attach_wb(inode, NULL);
1301
1302 if (flags & I_DIRTY_INODE)
1303 inode->i_state &= ~I_DIRTY_TIME;
1304 inode->i_state |= flags;
1305
1306 /*
1307 * If the inode is being synced, just update its dirty state.
1308 * The unlocker will place the inode on the appropriate
1309 * superblock list, based upon its state.
1310 */
1311 if (inode->i_state & I_SYNC)
1312 goto out_unlock_inode;
1313
1314 /*
1315 * Only add valid (hashed) inodes to the superblock's
1316 * dirty list. Add blockdev inodes as well.
1317 */
1318 if (!S_ISBLK(inode->i_mode)) {
1319 if (inode_unhashed(inode))
1320 goto out_unlock_inode;
1321 }
1322 if (inode->i_state & I_FREEING)
1323 goto out_unlock_inode;
1324
1325 /*
1326 * If the inode was already on b_dirty/b_io/b_more_io, don't
1327 * reposition it (that would break b_dirty time-ordering).
1328 */
1329 if (!was_dirty) {
1330 bool wakeup_bdi = false;
1331 bdi = inode_to_bdi(inode);
1332
1333 spin_unlock(&inode->i_lock);
1334 spin_lock(&bdi->wb.list_lock);
1335 if (bdi_cap_writeback_dirty(bdi)) {
1336 WARN(!test_bit(WB_registered, &bdi->wb.state),
1337 "bdi-%s not registered\n", bdi->name);
1338
1339 /*
1340 * If this is the first dirty inode for this
1341 * bdi, we have to wake-up the corresponding
1342 * bdi thread to make sure background
1343 * write-back happens later.
1344 */
1345 if (!wb_has_dirty_io(&bdi->wb))
1346 wakeup_bdi = true;
1347 }
1348
1349 inode->dirtied_when = jiffies;
1350 if (dirtytime)
1351 inode->dirtied_time_when = jiffies;
1352 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
1353 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1354 else
1355 list_move(&inode->i_wb_list,
1356 &bdi->wb.b_dirty_time);
1357 spin_unlock(&bdi->wb.list_lock);
1358 trace_writeback_dirty_inode_enqueue(inode);
1359
1360 if (wakeup_bdi)
1361 wb_wakeup_delayed(&bdi->wb);
1362 return;
1363 }
1364 }
1365 out_unlock_inode:
1366 spin_unlock(&inode->i_lock);
1367
1368 }
1369 EXPORT_SYMBOL(__mark_inode_dirty);
1370
1371 static void wait_sb_inodes(struct super_block *sb)
1372 {
1373 struct inode *inode, *old_inode = NULL;
1374
1375 /*
1376 * We need to be protected against the filesystem going from
1377 * r/o to r/w or vice versa.
1378 */
1379 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1380
1381 spin_lock(&inode_sb_list_lock);
1382
1383 /*
1384 * Data integrity sync. Must wait for all pages under writeback,
1385 * because there may have been pages dirtied before our sync
1386 * call, but which had writeout started before we write it out.
1387 * In which case, the inode may not be on the dirty list, but
1388 * we still have to wait for that writeout.
1389 */
1390 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1391 struct address_space *mapping = inode->i_mapping;
1392
1393 spin_lock(&inode->i_lock);
1394 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1395 (mapping->nrpages == 0)) {
1396 spin_unlock(&inode->i_lock);
1397 continue;
1398 }
1399 __iget(inode);
1400 spin_unlock(&inode->i_lock);
1401 spin_unlock(&inode_sb_list_lock);
1402
1403 /*
1404 * We hold a reference to 'inode' so it couldn't have been
1405 * removed from s_inodes list while we dropped the
1406 * inode_sb_list_lock. We cannot iput the inode now as we can
1407 * be holding the last reference and we cannot iput it under
1408 * inode_sb_list_lock. So we keep the reference and iput it
1409 * later.
1410 */
1411 iput(old_inode);
1412 old_inode = inode;
1413
1414 filemap_fdatawait(mapping);
1415
1416 cond_resched();
1417
1418 spin_lock(&inode_sb_list_lock);
1419 }
1420 spin_unlock(&inode_sb_list_lock);
1421 iput(old_inode);
1422 }
1423
1424 /**
1425 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1426 * @sb: the superblock
1427 * @nr: the number of pages to write
1428 * @reason: reason why some writeback work initiated
1429 *
1430 * Start writeback on some inodes on this super_block. No guarantees are made
1431 * on how many (if any) will be written, and this function does not wait
1432 * for IO completion of submitted IO.
1433 */
1434 void writeback_inodes_sb_nr(struct super_block *sb,
1435 unsigned long nr,
1436 enum wb_reason reason)
1437 {
1438 DECLARE_COMPLETION_ONSTACK(done);
1439 struct wb_writeback_work work = {
1440 .sb = sb,
1441 .sync_mode = WB_SYNC_NONE,
1442 .tagged_writepages = 1,
1443 .done = &done,
1444 .nr_pages = nr,
1445 .reason = reason,
1446 };
1447
1448 if (sb->s_bdi == &noop_backing_dev_info)
1449 return;
1450 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1451 wb_queue_work(&sb->s_bdi->wb, &work);
1452 wait_for_completion(&done);
1453 }
1454 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1455
1456 /**
1457 * writeback_inodes_sb - writeback dirty inodes from given super_block
1458 * @sb: the superblock
1459 * @reason: reason why some writeback work was initiated
1460 *
1461 * Start writeback on some inodes on this super_block. No guarantees are made
1462 * on how many (if any) will be written, and this function does not wait
1463 * for IO completion of submitted IO.
1464 */
1465 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1466 {
1467 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1468 }
1469 EXPORT_SYMBOL(writeback_inodes_sb);
1470
1471 /**
1472 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1473 * @sb: the superblock
1474 * @nr: the number of pages to write
1475 * @reason: the reason of writeback
1476 *
1477 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1478 * Returns 1 if writeback was started, 0 if not.
1479 */
1480 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1481 unsigned long nr,
1482 enum wb_reason reason)
1483 {
1484 if (writeback_in_progress(sb->s_bdi))
1485 return 1;
1486
1487 if (!down_read_trylock(&sb->s_umount))
1488 return 0;
1489
1490 writeback_inodes_sb_nr(sb, nr, reason);
1491 up_read(&sb->s_umount);
1492 return 1;
1493 }
1494 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1495
1496 /**
1497 * try_to_writeback_inodes_sb - try to start writeback if none underway
1498 * @sb: the superblock
1499 * @reason: reason why some writeback work was initiated
1500 *
1501 * Implement by try_to_writeback_inodes_sb_nr()
1502 * Returns 1 if writeback was started, 0 if not.
1503 */
1504 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1505 {
1506 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1507 }
1508 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1509
1510 /**
1511 * sync_inodes_sb - sync sb inode pages
1512 * @sb: the superblock
1513 *
1514 * This function writes and waits on any dirty inode belonging to this
1515 * super_block.
1516 */
1517 void sync_inodes_sb(struct super_block *sb)
1518 {
1519 DECLARE_COMPLETION_ONSTACK(done);
1520 struct wb_writeback_work work = {
1521 .sb = sb,
1522 .sync_mode = WB_SYNC_ALL,
1523 .nr_pages = LONG_MAX,
1524 .range_cyclic = 0,
1525 .done = &done,
1526 .reason = WB_REASON_SYNC,
1527 .for_sync = 1,
1528 };
1529
1530 /* Nothing to do? */
1531 if (sb->s_bdi == &noop_backing_dev_info)
1532 return;
1533 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1534
1535 wb_queue_work(&sb->s_bdi->wb, &work);
1536 wait_for_completion(&done);
1537
1538 wait_sb_inodes(sb);
1539 }
1540 EXPORT_SYMBOL(sync_inodes_sb);
1541
1542 /**
1543 * write_inode_now - write an inode to disk
1544 * @inode: inode to write to disk
1545 * @sync: whether the write should be synchronous or not
1546 *
1547 * This function commits an inode to disk immediately if it is dirty. This is
1548 * primarily needed by knfsd.
1549 *
1550 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1551 */
1552 int write_inode_now(struct inode *inode, int sync)
1553 {
1554 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1555 struct writeback_control wbc = {
1556 .nr_to_write = LONG_MAX,
1557 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1558 .range_start = 0,
1559 .range_end = LLONG_MAX,
1560 };
1561
1562 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1563 wbc.nr_to_write = 0;
1564
1565 might_sleep();
1566 return writeback_single_inode(inode, wb, &wbc);
1567 }
1568 EXPORT_SYMBOL(write_inode_now);
1569
1570 /**
1571 * sync_inode - write an inode and its pages to disk.
1572 * @inode: the inode to sync
1573 * @wbc: controls the writeback mode
1574 *
1575 * sync_inode() will write an inode and its pages to disk. It will also
1576 * correctly update the inode on its superblock's dirty inode lists and will
1577 * update inode->i_state.
1578 *
1579 * The caller must have a ref on the inode.
1580 */
1581 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1582 {
1583 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1584 }
1585 EXPORT_SYMBOL(sync_inode);
1586
1587 /**
1588 * sync_inode_metadata - write an inode to disk
1589 * @inode: the inode to sync
1590 * @wait: wait for I/O to complete.
1591 *
1592 * Write an inode to disk and adjust its dirty state after completion.
1593 *
1594 * Note: only writes the actual inode, no associated data or other metadata.
1595 */
1596 int sync_inode_metadata(struct inode *inode, int wait)
1597 {
1598 struct writeback_control wbc = {
1599 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1600 .nr_to_write = 0, /* metadata-only */
1601 };
1602
1603 return sync_inode(inode, &wbc);
1604 }
1605 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.106582 seconds and 6 git commands to generate.