writeback: implement backing_dev_info->tot_write_bandwidth
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31
32 /*
33 * 4MB minimal write chunk size
34 */
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
50 enum wb_reason reason; /* why was writeback initiated? */
51
52 struct list_head list; /* pending work list */
53 struct completion *done; /* set if the caller waits */
54 };
55
56 /*
57 * If an inode is constantly having its pages dirtied, but then the
58 * updates stop dirtytime_expire_interval seconds in the past, it's
59 * possible for the worst case time between when an inode has its
60 * timestamps updated and when they finally get written out to be two
61 * dirtytime_expire_intervals. We set the default to 12 hours (in
62 * seconds), which means most of the time inodes will have their
63 * timestamps written to disk after 12 hours, but in the worst case a
64 * few inodes might not their timestamps updated for 24 hours.
65 */
66 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
67
68 /**
69 * writeback_in_progress - determine whether there is writeback in progress
70 * @bdi: the device's backing_dev_info structure.
71 *
72 * Determine whether there is writeback waiting to be handled against a
73 * backing device.
74 */
75 int writeback_in_progress(struct backing_dev_info *bdi)
76 {
77 return test_bit(WB_writeback_running, &bdi->wb.state);
78 }
79 EXPORT_SYMBOL(writeback_in_progress);
80
81 static inline struct inode *wb_inode(struct list_head *head)
82 {
83 return list_entry(head, struct inode, i_wb_list);
84 }
85
86 /*
87 * Include the creation of the trace points after defining the
88 * wb_writeback_work structure and inline functions so that the definition
89 * remains local to this file.
90 */
91 #define CREATE_TRACE_POINTS
92 #include <trace/events/writeback.h>
93
94 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
95
96 static bool wb_io_lists_populated(struct bdi_writeback *wb)
97 {
98 if (wb_has_dirty_io(wb)) {
99 return false;
100 } else {
101 set_bit(WB_has_dirty_io, &wb->state);
102 atomic_long_add(wb->avg_write_bandwidth,
103 &wb->bdi->tot_write_bandwidth);
104 return true;
105 }
106 }
107
108 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
109 {
110 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
111 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
112 clear_bit(WB_has_dirty_io, &wb->state);
113 atomic_long_sub(wb->avg_write_bandwidth,
114 &wb->bdi->tot_write_bandwidth);
115 }
116 }
117
118 /**
119 * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
120 * @inode: inode to be moved
121 * @wb: target bdi_writeback
122 * @head: one of @wb->b_{dirty|io|more_io}
123 *
124 * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
125 * Returns %true if @inode is the first occupant of the !dirty_time IO
126 * lists; otherwise, %false.
127 */
128 static bool inode_wb_list_move_locked(struct inode *inode,
129 struct bdi_writeback *wb,
130 struct list_head *head)
131 {
132 assert_spin_locked(&wb->list_lock);
133
134 list_move(&inode->i_wb_list, head);
135
136 /* dirty_time doesn't count as dirty_io until expiration */
137 if (head != &wb->b_dirty_time)
138 return wb_io_lists_populated(wb);
139
140 wb_io_lists_depopulated(wb);
141 return false;
142 }
143
144 /**
145 * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
146 * @inode: inode to be removed
147 * @wb: bdi_writeback @inode is being removed from
148 *
149 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
150 * clear %WB_has_dirty_io if all are empty afterwards.
151 */
152 static void inode_wb_list_del_locked(struct inode *inode,
153 struct bdi_writeback *wb)
154 {
155 assert_spin_locked(&wb->list_lock);
156
157 list_del_init(&inode->i_wb_list);
158 wb_io_lists_depopulated(wb);
159 }
160
161 static void wb_wakeup(struct bdi_writeback *wb)
162 {
163 spin_lock_bh(&wb->work_lock);
164 if (test_bit(WB_registered, &wb->state))
165 mod_delayed_work(bdi_wq, &wb->dwork, 0);
166 spin_unlock_bh(&wb->work_lock);
167 }
168
169 static void wb_queue_work(struct bdi_writeback *wb,
170 struct wb_writeback_work *work)
171 {
172 trace_writeback_queue(wb->bdi, work);
173
174 spin_lock_bh(&wb->work_lock);
175 if (!test_bit(WB_registered, &wb->state)) {
176 if (work->done)
177 complete(work->done);
178 goto out_unlock;
179 }
180 list_add_tail(&work->list, &wb->work_list);
181 mod_delayed_work(bdi_wq, &wb->dwork, 0);
182 out_unlock:
183 spin_unlock_bh(&wb->work_lock);
184 }
185
186 static void __wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
187 bool range_cyclic, enum wb_reason reason)
188 {
189 struct wb_writeback_work *work;
190
191 /*
192 * This is WB_SYNC_NONE writeback, so if allocation fails just
193 * wakeup the thread for old dirty data writeback
194 */
195 work = kzalloc(sizeof(*work), GFP_ATOMIC);
196 if (!work) {
197 trace_writeback_nowork(wb->bdi);
198 wb_wakeup(wb);
199 return;
200 }
201
202 work->sync_mode = WB_SYNC_NONE;
203 work->nr_pages = nr_pages;
204 work->range_cyclic = range_cyclic;
205 work->reason = reason;
206
207 wb_queue_work(wb, work);
208 }
209
210 #ifdef CONFIG_CGROUP_WRITEBACK
211
212 /**
213 * inode_congested - test whether an inode is congested
214 * @inode: inode to test for congestion
215 * @cong_bits: mask of WB_[a]sync_congested bits to test
216 *
217 * Tests whether @inode is congested. @cong_bits is the mask of congestion
218 * bits to test and the return value is the mask of set bits.
219 *
220 * If cgroup writeback is enabled for @inode, the congestion state is
221 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
222 * associated with @inode is congested; otherwise, the root wb's congestion
223 * state is used.
224 */
225 int inode_congested(struct inode *inode, int cong_bits)
226 {
227 if (inode) {
228 struct bdi_writeback *wb = inode_to_wb(inode);
229 if (wb)
230 return wb_congested(wb, cong_bits);
231 }
232
233 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
234 }
235 EXPORT_SYMBOL_GPL(inode_congested);
236
237 #endif /* CONFIG_CGROUP_WRITEBACK */
238
239 /**
240 * bdi_start_writeback - start writeback
241 * @bdi: the backing device to write from
242 * @nr_pages: the number of pages to write
243 * @reason: reason why some writeback work was initiated
244 *
245 * Description:
246 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
247 * started when this function returns, we make no guarantees on
248 * completion. Caller need not hold sb s_umount semaphore.
249 *
250 */
251 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
252 enum wb_reason reason)
253 {
254 __wb_start_writeback(&bdi->wb, nr_pages, true, reason);
255 }
256
257 /**
258 * bdi_start_background_writeback - start background writeback
259 * @bdi: the backing device to write from
260 *
261 * Description:
262 * This makes sure WB_SYNC_NONE background writeback happens. When
263 * this function returns, it is only guaranteed that for given BDI
264 * some IO is happening if we are over background dirty threshold.
265 * Caller need not hold sb s_umount semaphore.
266 */
267 void bdi_start_background_writeback(struct backing_dev_info *bdi)
268 {
269 /*
270 * We just wake up the flusher thread. It will perform background
271 * writeback as soon as there is no other work to do.
272 */
273 trace_writeback_wake_background(bdi);
274 wb_wakeup(&bdi->wb);
275 }
276
277 /*
278 * Remove the inode from the writeback list it is on.
279 */
280 void inode_wb_list_del(struct inode *inode)
281 {
282 struct bdi_writeback *wb = inode_to_wb(inode);
283
284 spin_lock(&wb->list_lock);
285 inode_wb_list_del_locked(inode, wb);
286 spin_unlock(&wb->list_lock);
287 }
288
289 /*
290 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
291 * furthest end of its superblock's dirty-inode list.
292 *
293 * Before stamping the inode's ->dirtied_when, we check to see whether it is
294 * already the most-recently-dirtied inode on the b_dirty list. If that is
295 * the case then the inode must have been redirtied while it was being written
296 * out and we don't reset its dirtied_when.
297 */
298 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
299 {
300 if (!list_empty(&wb->b_dirty)) {
301 struct inode *tail;
302
303 tail = wb_inode(wb->b_dirty.next);
304 if (time_before(inode->dirtied_when, tail->dirtied_when))
305 inode->dirtied_when = jiffies;
306 }
307 inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
308 }
309
310 /*
311 * requeue inode for re-scanning after bdi->b_io list is exhausted.
312 */
313 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
314 {
315 inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
316 }
317
318 static void inode_sync_complete(struct inode *inode)
319 {
320 inode->i_state &= ~I_SYNC;
321 /* If inode is clean an unused, put it into LRU now... */
322 inode_add_lru(inode);
323 /* Waiters must see I_SYNC cleared before being woken up */
324 smp_mb();
325 wake_up_bit(&inode->i_state, __I_SYNC);
326 }
327
328 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
329 {
330 bool ret = time_after(inode->dirtied_when, t);
331 #ifndef CONFIG_64BIT
332 /*
333 * For inodes being constantly redirtied, dirtied_when can get stuck.
334 * It _appears_ to be in the future, but is actually in distant past.
335 * This test is necessary to prevent such wrapped-around relative times
336 * from permanently stopping the whole bdi writeback.
337 */
338 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
339 #endif
340 return ret;
341 }
342
343 #define EXPIRE_DIRTY_ATIME 0x0001
344
345 /*
346 * Move expired (dirtied before work->older_than_this) dirty inodes from
347 * @delaying_queue to @dispatch_queue.
348 */
349 static int move_expired_inodes(struct list_head *delaying_queue,
350 struct list_head *dispatch_queue,
351 int flags,
352 struct wb_writeback_work *work)
353 {
354 unsigned long *older_than_this = NULL;
355 unsigned long expire_time;
356 LIST_HEAD(tmp);
357 struct list_head *pos, *node;
358 struct super_block *sb = NULL;
359 struct inode *inode;
360 int do_sb_sort = 0;
361 int moved = 0;
362
363 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
364 older_than_this = work->older_than_this;
365 else if (!work->for_sync) {
366 expire_time = jiffies - (dirtytime_expire_interval * HZ);
367 older_than_this = &expire_time;
368 }
369 while (!list_empty(delaying_queue)) {
370 inode = wb_inode(delaying_queue->prev);
371 if (older_than_this &&
372 inode_dirtied_after(inode, *older_than_this))
373 break;
374 list_move(&inode->i_wb_list, &tmp);
375 moved++;
376 if (flags & EXPIRE_DIRTY_ATIME)
377 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
378 if (sb_is_blkdev_sb(inode->i_sb))
379 continue;
380 if (sb && sb != inode->i_sb)
381 do_sb_sort = 1;
382 sb = inode->i_sb;
383 }
384
385 /* just one sb in list, splice to dispatch_queue and we're done */
386 if (!do_sb_sort) {
387 list_splice(&tmp, dispatch_queue);
388 goto out;
389 }
390
391 /* Move inodes from one superblock together */
392 while (!list_empty(&tmp)) {
393 sb = wb_inode(tmp.prev)->i_sb;
394 list_for_each_prev_safe(pos, node, &tmp) {
395 inode = wb_inode(pos);
396 if (inode->i_sb == sb)
397 list_move(&inode->i_wb_list, dispatch_queue);
398 }
399 }
400 out:
401 return moved;
402 }
403
404 /*
405 * Queue all expired dirty inodes for io, eldest first.
406 * Before
407 * newly dirtied b_dirty b_io b_more_io
408 * =============> gf edc BA
409 * After
410 * newly dirtied b_dirty b_io b_more_io
411 * =============> g fBAedc
412 * |
413 * +--> dequeue for IO
414 */
415 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
416 {
417 int moved;
418
419 assert_spin_locked(&wb->list_lock);
420 list_splice_init(&wb->b_more_io, &wb->b_io);
421 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
422 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
423 EXPIRE_DIRTY_ATIME, work);
424 if (moved)
425 wb_io_lists_populated(wb);
426 trace_writeback_queue_io(wb, work, moved);
427 }
428
429 static int write_inode(struct inode *inode, struct writeback_control *wbc)
430 {
431 int ret;
432
433 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
434 trace_writeback_write_inode_start(inode, wbc);
435 ret = inode->i_sb->s_op->write_inode(inode, wbc);
436 trace_writeback_write_inode(inode, wbc);
437 return ret;
438 }
439 return 0;
440 }
441
442 /*
443 * Wait for writeback on an inode to complete. Called with i_lock held.
444 * Caller must make sure inode cannot go away when we drop i_lock.
445 */
446 static void __inode_wait_for_writeback(struct inode *inode)
447 __releases(inode->i_lock)
448 __acquires(inode->i_lock)
449 {
450 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
451 wait_queue_head_t *wqh;
452
453 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
454 while (inode->i_state & I_SYNC) {
455 spin_unlock(&inode->i_lock);
456 __wait_on_bit(wqh, &wq, bit_wait,
457 TASK_UNINTERRUPTIBLE);
458 spin_lock(&inode->i_lock);
459 }
460 }
461
462 /*
463 * Wait for writeback on an inode to complete. Caller must have inode pinned.
464 */
465 void inode_wait_for_writeback(struct inode *inode)
466 {
467 spin_lock(&inode->i_lock);
468 __inode_wait_for_writeback(inode);
469 spin_unlock(&inode->i_lock);
470 }
471
472 /*
473 * Sleep until I_SYNC is cleared. This function must be called with i_lock
474 * held and drops it. It is aimed for callers not holding any inode reference
475 * so once i_lock is dropped, inode can go away.
476 */
477 static void inode_sleep_on_writeback(struct inode *inode)
478 __releases(inode->i_lock)
479 {
480 DEFINE_WAIT(wait);
481 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
482 int sleep;
483
484 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
485 sleep = inode->i_state & I_SYNC;
486 spin_unlock(&inode->i_lock);
487 if (sleep)
488 schedule();
489 finish_wait(wqh, &wait);
490 }
491
492 /*
493 * Find proper writeback list for the inode depending on its current state and
494 * possibly also change of its state while we were doing writeback. Here we
495 * handle things such as livelock prevention or fairness of writeback among
496 * inodes. This function can be called only by flusher thread - noone else
497 * processes all inodes in writeback lists and requeueing inodes behind flusher
498 * thread's back can have unexpected consequences.
499 */
500 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
501 struct writeback_control *wbc)
502 {
503 if (inode->i_state & I_FREEING)
504 return;
505
506 /*
507 * Sync livelock prevention. Each inode is tagged and synced in one
508 * shot. If still dirty, it will be redirty_tail()'ed below. Update
509 * the dirty time to prevent enqueue and sync it again.
510 */
511 if ((inode->i_state & I_DIRTY) &&
512 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
513 inode->dirtied_when = jiffies;
514
515 if (wbc->pages_skipped) {
516 /*
517 * writeback is not making progress due to locked
518 * buffers. Skip this inode for now.
519 */
520 redirty_tail(inode, wb);
521 return;
522 }
523
524 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
525 /*
526 * We didn't write back all the pages. nfs_writepages()
527 * sometimes bales out without doing anything.
528 */
529 if (wbc->nr_to_write <= 0) {
530 /* Slice used up. Queue for next turn. */
531 requeue_io(inode, wb);
532 } else {
533 /*
534 * Writeback blocked by something other than
535 * congestion. Delay the inode for some time to
536 * avoid spinning on the CPU (100% iowait)
537 * retrying writeback of the dirty page/inode
538 * that cannot be performed immediately.
539 */
540 redirty_tail(inode, wb);
541 }
542 } else if (inode->i_state & I_DIRTY) {
543 /*
544 * Filesystems can dirty the inode during writeback operations,
545 * such as delayed allocation during submission or metadata
546 * updates after data IO completion.
547 */
548 redirty_tail(inode, wb);
549 } else if (inode->i_state & I_DIRTY_TIME) {
550 inode->dirtied_when = jiffies;
551 inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
552 } else {
553 /* The inode is clean. Remove from writeback lists. */
554 inode_wb_list_del_locked(inode, wb);
555 }
556 }
557
558 /*
559 * Write out an inode and its dirty pages. Do not update the writeback list
560 * linkage. That is left to the caller. The caller is also responsible for
561 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
562 */
563 static int
564 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
565 {
566 struct address_space *mapping = inode->i_mapping;
567 long nr_to_write = wbc->nr_to_write;
568 unsigned dirty;
569 int ret;
570
571 WARN_ON(!(inode->i_state & I_SYNC));
572
573 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
574
575 ret = do_writepages(mapping, wbc);
576
577 /*
578 * Make sure to wait on the data before writing out the metadata.
579 * This is important for filesystems that modify metadata on data
580 * I/O completion. We don't do it for sync(2) writeback because it has a
581 * separate, external IO completion path and ->sync_fs for guaranteeing
582 * inode metadata is written back correctly.
583 */
584 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
585 int err = filemap_fdatawait(mapping);
586 if (ret == 0)
587 ret = err;
588 }
589
590 /*
591 * Some filesystems may redirty the inode during the writeback
592 * due to delalloc, clear dirty metadata flags right before
593 * write_inode()
594 */
595 spin_lock(&inode->i_lock);
596
597 dirty = inode->i_state & I_DIRTY;
598 if (inode->i_state & I_DIRTY_TIME) {
599 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
600 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
601 unlikely(time_after(jiffies,
602 (inode->dirtied_time_when +
603 dirtytime_expire_interval * HZ)))) {
604 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
605 trace_writeback_lazytime(inode);
606 }
607 } else
608 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
609 inode->i_state &= ~dirty;
610
611 /*
612 * Paired with smp_mb() in __mark_inode_dirty(). This allows
613 * __mark_inode_dirty() to test i_state without grabbing i_lock -
614 * either they see the I_DIRTY bits cleared or we see the dirtied
615 * inode.
616 *
617 * I_DIRTY_PAGES is always cleared together above even if @mapping
618 * still has dirty pages. The flag is reinstated after smp_mb() if
619 * necessary. This guarantees that either __mark_inode_dirty()
620 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
621 */
622 smp_mb();
623
624 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
625 inode->i_state |= I_DIRTY_PAGES;
626
627 spin_unlock(&inode->i_lock);
628
629 if (dirty & I_DIRTY_TIME)
630 mark_inode_dirty_sync(inode);
631 /* Don't write the inode if only I_DIRTY_PAGES was set */
632 if (dirty & ~I_DIRTY_PAGES) {
633 int err = write_inode(inode, wbc);
634 if (ret == 0)
635 ret = err;
636 }
637 trace_writeback_single_inode(inode, wbc, nr_to_write);
638 return ret;
639 }
640
641 /*
642 * Write out an inode's dirty pages. Either the caller has an active reference
643 * on the inode or the inode has I_WILL_FREE set.
644 *
645 * This function is designed to be called for writing back one inode which
646 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
647 * and does more profound writeback list handling in writeback_sb_inodes().
648 */
649 static int
650 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
651 struct writeback_control *wbc)
652 {
653 int ret = 0;
654
655 spin_lock(&inode->i_lock);
656 if (!atomic_read(&inode->i_count))
657 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
658 else
659 WARN_ON(inode->i_state & I_WILL_FREE);
660
661 if (inode->i_state & I_SYNC) {
662 if (wbc->sync_mode != WB_SYNC_ALL)
663 goto out;
664 /*
665 * It's a data-integrity sync. We must wait. Since callers hold
666 * inode reference or inode has I_WILL_FREE set, it cannot go
667 * away under us.
668 */
669 __inode_wait_for_writeback(inode);
670 }
671 WARN_ON(inode->i_state & I_SYNC);
672 /*
673 * Skip inode if it is clean and we have no outstanding writeback in
674 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
675 * function since flusher thread may be doing for example sync in
676 * parallel and if we move the inode, it could get skipped. So here we
677 * make sure inode is on some writeback list and leave it there unless
678 * we have completely cleaned the inode.
679 */
680 if (!(inode->i_state & I_DIRTY_ALL) &&
681 (wbc->sync_mode != WB_SYNC_ALL ||
682 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
683 goto out;
684 inode->i_state |= I_SYNC;
685 spin_unlock(&inode->i_lock);
686
687 ret = __writeback_single_inode(inode, wbc);
688
689 spin_lock(&wb->list_lock);
690 spin_lock(&inode->i_lock);
691 /*
692 * If inode is clean, remove it from writeback lists. Otherwise don't
693 * touch it. See comment above for explanation.
694 */
695 if (!(inode->i_state & I_DIRTY_ALL))
696 inode_wb_list_del_locked(inode, wb);
697 spin_unlock(&wb->list_lock);
698 inode_sync_complete(inode);
699 out:
700 spin_unlock(&inode->i_lock);
701 return ret;
702 }
703
704 static long writeback_chunk_size(struct bdi_writeback *wb,
705 struct wb_writeback_work *work)
706 {
707 long pages;
708
709 /*
710 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
711 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
712 * here avoids calling into writeback_inodes_wb() more than once.
713 *
714 * The intended call sequence for WB_SYNC_ALL writeback is:
715 *
716 * wb_writeback()
717 * writeback_sb_inodes() <== called only once
718 * write_cache_pages() <== called once for each inode
719 * (quickly) tag currently dirty pages
720 * (maybe slowly) sync all tagged pages
721 */
722 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
723 pages = LONG_MAX;
724 else {
725 pages = min(wb->avg_write_bandwidth / 2,
726 global_dirty_limit / DIRTY_SCOPE);
727 pages = min(pages, work->nr_pages);
728 pages = round_down(pages + MIN_WRITEBACK_PAGES,
729 MIN_WRITEBACK_PAGES);
730 }
731
732 return pages;
733 }
734
735 /*
736 * Write a portion of b_io inodes which belong to @sb.
737 *
738 * Return the number of pages and/or inodes written.
739 */
740 static long writeback_sb_inodes(struct super_block *sb,
741 struct bdi_writeback *wb,
742 struct wb_writeback_work *work)
743 {
744 struct writeback_control wbc = {
745 .sync_mode = work->sync_mode,
746 .tagged_writepages = work->tagged_writepages,
747 .for_kupdate = work->for_kupdate,
748 .for_background = work->for_background,
749 .for_sync = work->for_sync,
750 .range_cyclic = work->range_cyclic,
751 .range_start = 0,
752 .range_end = LLONG_MAX,
753 };
754 unsigned long start_time = jiffies;
755 long write_chunk;
756 long wrote = 0; /* count both pages and inodes */
757
758 while (!list_empty(&wb->b_io)) {
759 struct inode *inode = wb_inode(wb->b_io.prev);
760
761 if (inode->i_sb != sb) {
762 if (work->sb) {
763 /*
764 * We only want to write back data for this
765 * superblock, move all inodes not belonging
766 * to it back onto the dirty list.
767 */
768 redirty_tail(inode, wb);
769 continue;
770 }
771
772 /*
773 * The inode belongs to a different superblock.
774 * Bounce back to the caller to unpin this and
775 * pin the next superblock.
776 */
777 break;
778 }
779
780 /*
781 * Don't bother with new inodes or inodes being freed, first
782 * kind does not need periodic writeout yet, and for the latter
783 * kind writeout is handled by the freer.
784 */
785 spin_lock(&inode->i_lock);
786 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
787 spin_unlock(&inode->i_lock);
788 redirty_tail(inode, wb);
789 continue;
790 }
791 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
792 /*
793 * If this inode is locked for writeback and we are not
794 * doing writeback-for-data-integrity, move it to
795 * b_more_io so that writeback can proceed with the
796 * other inodes on s_io.
797 *
798 * We'll have another go at writing back this inode
799 * when we completed a full scan of b_io.
800 */
801 spin_unlock(&inode->i_lock);
802 requeue_io(inode, wb);
803 trace_writeback_sb_inodes_requeue(inode);
804 continue;
805 }
806 spin_unlock(&wb->list_lock);
807
808 /*
809 * We already requeued the inode if it had I_SYNC set and we
810 * are doing WB_SYNC_NONE writeback. So this catches only the
811 * WB_SYNC_ALL case.
812 */
813 if (inode->i_state & I_SYNC) {
814 /* Wait for I_SYNC. This function drops i_lock... */
815 inode_sleep_on_writeback(inode);
816 /* Inode may be gone, start again */
817 spin_lock(&wb->list_lock);
818 continue;
819 }
820 inode->i_state |= I_SYNC;
821 spin_unlock(&inode->i_lock);
822
823 write_chunk = writeback_chunk_size(wb, work);
824 wbc.nr_to_write = write_chunk;
825 wbc.pages_skipped = 0;
826
827 /*
828 * We use I_SYNC to pin the inode in memory. While it is set
829 * evict_inode() will wait so the inode cannot be freed.
830 */
831 __writeback_single_inode(inode, &wbc);
832
833 work->nr_pages -= write_chunk - wbc.nr_to_write;
834 wrote += write_chunk - wbc.nr_to_write;
835 spin_lock(&wb->list_lock);
836 spin_lock(&inode->i_lock);
837 if (!(inode->i_state & I_DIRTY_ALL))
838 wrote++;
839 requeue_inode(inode, wb, &wbc);
840 inode_sync_complete(inode);
841 spin_unlock(&inode->i_lock);
842 cond_resched_lock(&wb->list_lock);
843 /*
844 * bail out to wb_writeback() often enough to check
845 * background threshold and other termination conditions.
846 */
847 if (wrote) {
848 if (time_is_before_jiffies(start_time + HZ / 10UL))
849 break;
850 if (work->nr_pages <= 0)
851 break;
852 }
853 }
854 return wrote;
855 }
856
857 static long __writeback_inodes_wb(struct bdi_writeback *wb,
858 struct wb_writeback_work *work)
859 {
860 unsigned long start_time = jiffies;
861 long wrote = 0;
862
863 while (!list_empty(&wb->b_io)) {
864 struct inode *inode = wb_inode(wb->b_io.prev);
865 struct super_block *sb = inode->i_sb;
866
867 if (!trylock_super(sb)) {
868 /*
869 * trylock_super() may fail consistently due to
870 * s_umount being grabbed by someone else. Don't use
871 * requeue_io() to avoid busy retrying the inode/sb.
872 */
873 redirty_tail(inode, wb);
874 continue;
875 }
876 wrote += writeback_sb_inodes(sb, wb, work);
877 up_read(&sb->s_umount);
878
879 /* refer to the same tests at the end of writeback_sb_inodes */
880 if (wrote) {
881 if (time_is_before_jiffies(start_time + HZ / 10UL))
882 break;
883 if (work->nr_pages <= 0)
884 break;
885 }
886 }
887 /* Leave any unwritten inodes on b_io */
888 return wrote;
889 }
890
891 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
892 enum wb_reason reason)
893 {
894 struct wb_writeback_work work = {
895 .nr_pages = nr_pages,
896 .sync_mode = WB_SYNC_NONE,
897 .range_cyclic = 1,
898 .reason = reason,
899 };
900
901 spin_lock(&wb->list_lock);
902 if (list_empty(&wb->b_io))
903 queue_io(wb, &work);
904 __writeback_inodes_wb(wb, &work);
905 spin_unlock(&wb->list_lock);
906
907 return nr_pages - work.nr_pages;
908 }
909
910 static bool over_bground_thresh(struct bdi_writeback *wb)
911 {
912 unsigned long background_thresh, dirty_thresh;
913
914 global_dirty_limits(&background_thresh, &dirty_thresh);
915
916 if (global_page_state(NR_FILE_DIRTY) +
917 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
918 return true;
919
920 if (wb_stat(wb, WB_RECLAIMABLE) > wb_dirty_limit(wb, background_thresh))
921 return true;
922
923 return false;
924 }
925
926 /*
927 * Called under wb->list_lock. If there are multiple wb per bdi,
928 * only the flusher working on the first wb should do it.
929 */
930 static void wb_update_bandwidth(struct bdi_writeback *wb,
931 unsigned long start_time)
932 {
933 __wb_update_bandwidth(wb, 0, 0, 0, 0, 0, start_time);
934 }
935
936 /*
937 * Explicit flushing or periodic writeback of "old" data.
938 *
939 * Define "old": the first time one of an inode's pages is dirtied, we mark the
940 * dirtying-time in the inode's address_space. So this periodic writeback code
941 * just walks the superblock inode list, writing back any inodes which are
942 * older than a specific point in time.
943 *
944 * Try to run once per dirty_writeback_interval. But if a writeback event
945 * takes longer than a dirty_writeback_interval interval, then leave a
946 * one-second gap.
947 *
948 * older_than_this takes precedence over nr_to_write. So we'll only write back
949 * all dirty pages if they are all attached to "old" mappings.
950 */
951 static long wb_writeback(struct bdi_writeback *wb,
952 struct wb_writeback_work *work)
953 {
954 unsigned long wb_start = jiffies;
955 long nr_pages = work->nr_pages;
956 unsigned long oldest_jif;
957 struct inode *inode;
958 long progress;
959
960 oldest_jif = jiffies;
961 work->older_than_this = &oldest_jif;
962
963 spin_lock(&wb->list_lock);
964 for (;;) {
965 /*
966 * Stop writeback when nr_pages has been consumed
967 */
968 if (work->nr_pages <= 0)
969 break;
970
971 /*
972 * Background writeout and kupdate-style writeback may
973 * run forever. Stop them if there is other work to do
974 * so that e.g. sync can proceed. They'll be restarted
975 * after the other works are all done.
976 */
977 if ((work->for_background || work->for_kupdate) &&
978 !list_empty(&wb->work_list))
979 break;
980
981 /*
982 * For background writeout, stop when we are below the
983 * background dirty threshold
984 */
985 if (work->for_background && !over_bground_thresh(wb))
986 break;
987
988 /*
989 * Kupdate and background works are special and we want to
990 * include all inodes that need writing. Livelock avoidance is
991 * handled by these works yielding to any other work so we are
992 * safe.
993 */
994 if (work->for_kupdate) {
995 oldest_jif = jiffies -
996 msecs_to_jiffies(dirty_expire_interval * 10);
997 } else if (work->for_background)
998 oldest_jif = jiffies;
999
1000 trace_writeback_start(wb->bdi, work);
1001 if (list_empty(&wb->b_io))
1002 queue_io(wb, work);
1003 if (work->sb)
1004 progress = writeback_sb_inodes(work->sb, wb, work);
1005 else
1006 progress = __writeback_inodes_wb(wb, work);
1007 trace_writeback_written(wb->bdi, work);
1008
1009 wb_update_bandwidth(wb, wb_start);
1010
1011 /*
1012 * Did we write something? Try for more
1013 *
1014 * Dirty inodes are moved to b_io for writeback in batches.
1015 * The completion of the current batch does not necessarily
1016 * mean the overall work is done. So we keep looping as long
1017 * as made some progress on cleaning pages or inodes.
1018 */
1019 if (progress)
1020 continue;
1021 /*
1022 * No more inodes for IO, bail
1023 */
1024 if (list_empty(&wb->b_more_io))
1025 break;
1026 /*
1027 * Nothing written. Wait for some inode to
1028 * become available for writeback. Otherwise
1029 * we'll just busyloop.
1030 */
1031 if (!list_empty(&wb->b_more_io)) {
1032 trace_writeback_wait(wb->bdi, work);
1033 inode = wb_inode(wb->b_more_io.prev);
1034 spin_lock(&inode->i_lock);
1035 spin_unlock(&wb->list_lock);
1036 /* This function drops i_lock... */
1037 inode_sleep_on_writeback(inode);
1038 spin_lock(&wb->list_lock);
1039 }
1040 }
1041 spin_unlock(&wb->list_lock);
1042
1043 return nr_pages - work->nr_pages;
1044 }
1045
1046 /*
1047 * Return the next wb_writeback_work struct that hasn't been processed yet.
1048 */
1049 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1050 {
1051 struct wb_writeback_work *work = NULL;
1052
1053 spin_lock_bh(&wb->work_lock);
1054 if (!list_empty(&wb->work_list)) {
1055 work = list_entry(wb->work_list.next,
1056 struct wb_writeback_work, list);
1057 list_del_init(&work->list);
1058 }
1059 spin_unlock_bh(&wb->work_lock);
1060 return work;
1061 }
1062
1063 /*
1064 * Add in the number of potentially dirty inodes, because each inode
1065 * write can dirty pagecache in the underlying blockdev.
1066 */
1067 static unsigned long get_nr_dirty_pages(void)
1068 {
1069 return global_page_state(NR_FILE_DIRTY) +
1070 global_page_state(NR_UNSTABLE_NFS) +
1071 get_nr_dirty_inodes();
1072 }
1073
1074 static long wb_check_background_flush(struct bdi_writeback *wb)
1075 {
1076 if (over_bground_thresh(wb)) {
1077
1078 struct wb_writeback_work work = {
1079 .nr_pages = LONG_MAX,
1080 .sync_mode = WB_SYNC_NONE,
1081 .for_background = 1,
1082 .range_cyclic = 1,
1083 .reason = WB_REASON_BACKGROUND,
1084 };
1085
1086 return wb_writeback(wb, &work);
1087 }
1088
1089 return 0;
1090 }
1091
1092 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1093 {
1094 unsigned long expired;
1095 long nr_pages;
1096
1097 /*
1098 * When set to zero, disable periodic writeback
1099 */
1100 if (!dirty_writeback_interval)
1101 return 0;
1102
1103 expired = wb->last_old_flush +
1104 msecs_to_jiffies(dirty_writeback_interval * 10);
1105 if (time_before(jiffies, expired))
1106 return 0;
1107
1108 wb->last_old_flush = jiffies;
1109 nr_pages = get_nr_dirty_pages();
1110
1111 if (nr_pages) {
1112 struct wb_writeback_work work = {
1113 .nr_pages = nr_pages,
1114 .sync_mode = WB_SYNC_NONE,
1115 .for_kupdate = 1,
1116 .range_cyclic = 1,
1117 .reason = WB_REASON_PERIODIC,
1118 };
1119
1120 return wb_writeback(wb, &work);
1121 }
1122
1123 return 0;
1124 }
1125
1126 /*
1127 * Retrieve work items and do the writeback they describe
1128 */
1129 static long wb_do_writeback(struct bdi_writeback *wb)
1130 {
1131 struct wb_writeback_work *work;
1132 long wrote = 0;
1133
1134 set_bit(WB_writeback_running, &wb->state);
1135 while ((work = get_next_work_item(wb)) != NULL) {
1136
1137 trace_writeback_exec(wb->bdi, work);
1138
1139 wrote += wb_writeback(wb, work);
1140
1141 /*
1142 * Notify the caller of completion if this is a synchronous
1143 * work item, otherwise just free it.
1144 */
1145 if (work->done)
1146 complete(work->done);
1147 else
1148 kfree(work);
1149 }
1150
1151 /*
1152 * Check for periodic writeback, kupdated() style
1153 */
1154 wrote += wb_check_old_data_flush(wb);
1155 wrote += wb_check_background_flush(wb);
1156 clear_bit(WB_writeback_running, &wb->state);
1157
1158 return wrote;
1159 }
1160
1161 /*
1162 * Handle writeback of dirty data for the device backed by this bdi. Also
1163 * reschedules periodically and does kupdated style flushing.
1164 */
1165 void wb_workfn(struct work_struct *work)
1166 {
1167 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1168 struct bdi_writeback, dwork);
1169 long pages_written;
1170
1171 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1172 current->flags |= PF_SWAPWRITE;
1173
1174 if (likely(!current_is_workqueue_rescuer() ||
1175 !test_bit(WB_registered, &wb->state))) {
1176 /*
1177 * The normal path. Keep writing back @wb until its
1178 * work_list is empty. Note that this path is also taken
1179 * if @wb is shutting down even when we're running off the
1180 * rescuer as work_list needs to be drained.
1181 */
1182 do {
1183 pages_written = wb_do_writeback(wb);
1184 trace_writeback_pages_written(pages_written);
1185 } while (!list_empty(&wb->work_list));
1186 } else {
1187 /*
1188 * bdi_wq can't get enough workers and we're running off
1189 * the emergency worker. Don't hog it. Hopefully, 1024 is
1190 * enough for efficient IO.
1191 */
1192 pages_written = writeback_inodes_wb(wb, 1024,
1193 WB_REASON_FORKER_THREAD);
1194 trace_writeback_pages_written(pages_written);
1195 }
1196
1197 if (!list_empty(&wb->work_list))
1198 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1199 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1200 wb_wakeup_delayed(wb);
1201
1202 current->flags &= ~PF_SWAPWRITE;
1203 }
1204
1205 /*
1206 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1207 * the whole world.
1208 */
1209 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1210 {
1211 struct backing_dev_info *bdi;
1212
1213 if (!nr_pages)
1214 nr_pages = get_nr_dirty_pages();
1215
1216 rcu_read_lock();
1217 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1218 if (!bdi_has_dirty_io(bdi))
1219 continue;
1220 __wb_start_writeback(&bdi->wb, nr_pages, false, reason);
1221 }
1222 rcu_read_unlock();
1223 }
1224
1225 /*
1226 * Wake up bdi's periodically to make sure dirtytime inodes gets
1227 * written back periodically. We deliberately do *not* check the
1228 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1229 * kernel to be constantly waking up once there are any dirtytime
1230 * inodes on the system. So instead we define a separate delayed work
1231 * function which gets called much more rarely. (By default, only
1232 * once every 12 hours.)
1233 *
1234 * If there is any other write activity going on in the file system,
1235 * this function won't be necessary. But if the only thing that has
1236 * happened on the file system is a dirtytime inode caused by an atime
1237 * update, we need this infrastructure below to make sure that inode
1238 * eventually gets pushed out to disk.
1239 */
1240 static void wakeup_dirtytime_writeback(struct work_struct *w);
1241 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1242
1243 static void wakeup_dirtytime_writeback(struct work_struct *w)
1244 {
1245 struct backing_dev_info *bdi;
1246
1247 rcu_read_lock();
1248 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1249 if (list_empty(&bdi->wb.b_dirty_time))
1250 continue;
1251 wb_wakeup(&bdi->wb);
1252 }
1253 rcu_read_unlock();
1254 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1255 }
1256
1257 static int __init start_dirtytime_writeback(void)
1258 {
1259 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1260 return 0;
1261 }
1262 __initcall(start_dirtytime_writeback);
1263
1264 int dirtytime_interval_handler(struct ctl_table *table, int write,
1265 void __user *buffer, size_t *lenp, loff_t *ppos)
1266 {
1267 int ret;
1268
1269 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1270 if (ret == 0 && write)
1271 mod_delayed_work(system_wq, &dirtytime_work, 0);
1272 return ret;
1273 }
1274
1275 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1276 {
1277 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1278 struct dentry *dentry;
1279 const char *name = "?";
1280
1281 dentry = d_find_alias(inode);
1282 if (dentry) {
1283 spin_lock(&dentry->d_lock);
1284 name = (const char *) dentry->d_name.name;
1285 }
1286 printk(KERN_DEBUG
1287 "%s(%d): dirtied inode %lu (%s) on %s\n",
1288 current->comm, task_pid_nr(current), inode->i_ino,
1289 name, inode->i_sb->s_id);
1290 if (dentry) {
1291 spin_unlock(&dentry->d_lock);
1292 dput(dentry);
1293 }
1294 }
1295 }
1296
1297 /**
1298 * __mark_inode_dirty - internal function
1299 * @inode: inode to mark
1300 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1301 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1302 * mark_inode_dirty_sync.
1303 *
1304 * Put the inode on the super block's dirty list.
1305 *
1306 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1307 * dirty list only if it is hashed or if it refers to a blockdev.
1308 * If it was not hashed, it will never be added to the dirty list
1309 * even if it is later hashed, as it will have been marked dirty already.
1310 *
1311 * In short, make sure you hash any inodes _before_ you start marking
1312 * them dirty.
1313 *
1314 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1315 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1316 * the kernel-internal blockdev inode represents the dirtying time of the
1317 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1318 * page->mapping->host, so the page-dirtying time is recorded in the internal
1319 * blockdev inode.
1320 */
1321 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1322 void __mark_inode_dirty(struct inode *inode, int flags)
1323 {
1324 struct super_block *sb = inode->i_sb;
1325 struct backing_dev_info *bdi = NULL;
1326 int dirtytime;
1327
1328 trace_writeback_mark_inode_dirty(inode, flags);
1329
1330 /*
1331 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1332 * dirty the inode itself
1333 */
1334 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
1335 trace_writeback_dirty_inode_start(inode, flags);
1336
1337 if (sb->s_op->dirty_inode)
1338 sb->s_op->dirty_inode(inode, flags);
1339
1340 trace_writeback_dirty_inode(inode, flags);
1341 }
1342 if (flags & I_DIRTY_INODE)
1343 flags &= ~I_DIRTY_TIME;
1344 dirtytime = flags & I_DIRTY_TIME;
1345
1346 /*
1347 * Paired with smp_mb() in __writeback_single_inode() for the
1348 * following lockless i_state test. See there for details.
1349 */
1350 smp_mb();
1351
1352 if (((inode->i_state & flags) == flags) ||
1353 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1354 return;
1355
1356 if (unlikely(block_dump))
1357 block_dump___mark_inode_dirty(inode);
1358
1359 spin_lock(&inode->i_lock);
1360 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1361 goto out_unlock_inode;
1362 if ((inode->i_state & flags) != flags) {
1363 const int was_dirty = inode->i_state & I_DIRTY;
1364
1365 inode_attach_wb(inode, NULL);
1366
1367 if (flags & I_DIRTY_INODE)
1368 inode->i_state &= ~I_DIRTY_TIME;
1369 inode->i_state |= flags;
1370
1371 /*
1372 * If the inode is being synced, just update its dirty state.
1373 * The unlocker will place the inode on the appropriate
1374 * superblock list, based upon its state.
1375 */
1376 if (inode->i_state & I_SYNC)
1377 goto out_unlock_inode;
1378
1379 /*
1380 * Only add valid (hashed) inodes to the superblock's
1381 * dirty list. Add blockdev inodes as well.
1382 */
1383 if (!S_ISBLK(inode->i_mode)) {
1384 if (inode_unhashed(inode))
1385 goto out_unlock_inode;
1386 }
1387 if (inode->i_state & I_FREEING)
1388 goto out_unlock_inode;
1389
1390 /*
1391 * If the inode was already on b_dirty/b_io/b_more_io, don't
1392 * reposition it (that would break b_dirty time-ordering).
1393 */
1394 if (!was_dirty) {
1395 struct list_head *dirty_list;
1396 bool wakeup_bdi = false;
1397 bdi = inode_to_bdi(inode);
1398
1399 spin_unlock(&inode->i_lock);
1400 spin_lock(&bdi->wb.list_lock);
1401
1402 WARN(bdi_cap_writeback_dirty(bdi) &&
1403 !test_bit(WB_registered, &bdi->wb.state),
1404 "bdi-%s not registered\n", bdi->name);
1405
1406 inode->dirtied_when = jiffies;
1407 if (dirtytime)
1408 inode->dirtied_time_when = jiffies;
1409
1410 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
1411 dirty_list = &bdi->wb.b_dirty;
1412 else
1413 dirty_list = &bdi->wb.b_dirty_time;
1414
1415 wakeup_bdi = inode_wb_list_move_locked(inode, &bdi->wb,
1416 dirty_list);
1417
1418 spin_unlock(&bdi->wb.list_lock);
1419 trace_writeback_dirty_inode_enqueue(inode);
1420
1421 /*
1422 * If this is the first dirty inode for this bdi,
1423 * we have to wake-up the corresponding bdi thread
1424 * to make sure background write-back happens
1425 * later.
1426 */
1427 if (bdi_cap_writeback_dirty(bdi) && wakeup_bdi)
1428 wb_wakeup_delayed(&bdi->wb);
1429 return;
1430 }
1431 }
1432 out_unlock_inode:
1433 spin_unlock(&inode->i_lock);
1434
1435 }
1436 EXPORT_SYMBOL(__mark_inode_dirty);
1437
1438 static void wait_sb_inodes(struct super_block *sb)
1439 {
1440 struct inode *inode, *old_inode = NULL;
1441
1442 /*
1443 * We need to be protected against the filesystem going from
1444 * r/o to r/w or vice versa.
1445 */
1446 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1447
1448 spin_lock(&inode_sb_list_lock);
1449
1450 /*
1451 * Data integrity sync. Must wait for all pages under writeback,
1452 * because there may have been pages dirtied before our sync
1453 * call, but which had writeout started before we write it out.
1454 * In which case, the inode may not be on the dirty list, but
1455 * we still have to wait for that writeout.
1456 */
1457 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1458 struct address_space *mapping = inode->i_mapping;
1459
1460 spin_lock(&inode->i_lock);
1461 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1462 (mapping->nrpages == 0)) {
1463 spin_unlock(&inode->i_lock);
1464 continue;
1465 }
1466 __iget(inode);
1467 spin_unlock(&inode->i_lock);
1468 spin_unlock(&inode_sb_list_lock);
1469
1470 /*
1471 * We hold a reference to 'inode' so it couldn't have been
1472 * removed from s_inodes list while we dropped the
1473 * inode_sb_list_lock. We cannot iput the inode now as we can
1474 * be holding the last reference and we cannot iput it under
1475 * inode_sb_list_lock. So we keep the reference and iput it
1476 * later.
1477 */
1478 iput(old_inode);
1479 old_inode = inode;
1480
1481 filemap_fdatawait(mapping);
1482
1483 cond_resched();
1484
1485 spin_lock(&inode_sb_list_lock);
1486 }
1487 spin_unlock(&inode_sb_list_lock);
1488 iput(old_inode);
1489 }
1490
1491 /**
1492 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1493 * @sb: the superblock
1494 * @nr: the number of pages to write
1495 * @reason: reason why some writeback work initiated
1496 *
1497 * Start writeback on some inodes on this super_block. No guarantees are made
1498 * on how many (if any) will be written, and this function does not wait
1499 * for IO completion of submitted IO.
1500 */
1501 void writeback_inodes_sb_nr(struct super_block *sb,
1502 unsigned long nr,
1503 enum wb_reason reason)
1504 {
1505 DECLARE_COMPLETION_ONSTACK(done);
1506 struct wb_writeback_work work = {
1507 .sb = sb,
1508 .sync_mode = WB_SYNC_NONE,
1509 .tagged_writepages = 1,
1510 .done = &done,
1511 .nr_pages = nr,
1512 .reason = reason,
1513 };
1514
1515 if (sb->s_bdi == &noop_backing_dev_info)
1516 return;
1517 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1518 wb_queue_work(&sb->s_bdi->wb, &work);
1519 wait_for_completion(&done);
1520 }
1521 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1522
1523 /**
1524 * writeback_inodes_sb - writeback dirty inodes from given super_block
1525 * @sb: the superblock
1526 * @reason: reason why some writeback work was initiated
1527 *
1528 * Start writeback on some inodes on this super_block. No guarantees are made
1529 * on how many (if any) will be written, and this function does not wait
1530 * for IO completion of submitted IO.
1531 */
1532 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1533 {
1534 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1535 }
1536 EXPORT_SYMBOL(writeback_inodes_sb);
1537
1538 /**
1539 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1540 * @sb: the superblock
1541 * @nr: the number of pages to write
1542 * @reason: the reason of writeback
1543 *
1544 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1545 * Returns 1 if writeback was started, 0 if not.
1546 */
1547 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1548 unsigned long nr,
1549 enum wb_reason reason)
1550 {
1551 if (writeback_in_progress(sb->s_bdi))
1552 return 1;
1553
1554 if (!down_read_trylock(&sb->s_umount))
1555 return 0;
1556
1557 writeback_inodes_sb_nr(sb, nr, reason);
1558 up_read(&sb->s_umount);
1559 return 1;
1560 }
1561 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1562
1563 /**
1564 * try_to_writeback_inodes_sb - try to start writeback if none underway
1565 * @sb: the superblock
1566 * @reason: reason why some writeback work was initiated
1567 *
1568 * Implement by try_to_writeback_inodes_sb_nr()
1569 * Returns 1 if writeback was started, 0 if not.
1570 */
1571 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1572 {
1573 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1574 }
1575 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1576
1577 /**
1578 * sync_inodes_sb - sync sb inode pages
1579 * @sb: the superblock
1580 *
1581 * This function writes and waits on any dirty inode belonging to this
1582 * super_block.
1583 */
1584 void sync_inodes_sb(struct super_block *sb)
1585 {
1586 DECLARE_COMPLETION_ONSTACK(done);
1587 struct wb_writeback_work work = {
1588 .sb = sb,
1589 .sync_mode = WB_SYNC_ALL,
1590 .nr_pages = LONG_MAX,
1591 .range_cyclic = 0,
1592 .done = &done,
1593 .reason = WB_REASON_SYNC,
1594 .for_sync = 1,
1595 };
1596
1597 /* Nothing to do? */
1598 if (sb->s_bdi == &noop_backing_dev_info)
1599 return;
1600 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1601
1602 wb_queue_work(&sb->s_bdi->wb, &work);
1603 wait_for_completion(&done);
1604
1605 wait_sb_inodes(sb);
1606 }
1607 EXPORT_SYMBOL(sync_inodes_sb);
1608
1609 /**
1610 * write_inode_now - write an inode to disk
1611 * @inode: inode to write to disk
1612 * @sync: whether the write should be synchronous or not
1613 *
1614 * This function commits an inode to disk immediately if it is dirty. This is
1615 * primarily needed by knfsd.
1616 *
1617 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1618 */
1619 int write_inode_now(struct inode *inode, int sync)
1620 {
1621 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1622 struct writeback_control wbc = {
1623 .nr_to_write = LONG_MAX,
1624 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1625 .range_start = 0,
1626 .range_end = LLONG_MAX,
1627 };
1628
1629 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1630 wbc.nr_to_write = 0;
1631
1632 might_sleep();
1633 return writeback_single_inode(inode, wb, &wbc);
1634 }
1635 EXPORT_SYMBOL(write_inode_now);
1636
1637 /**
1638 * sync_inode - write an inode and its pages to disk.
1639 * @inode: the inode to sync
1640 * @wbc: controls the writeback mode
1641 *
1642 * sync_inode() will write an inode and its pages to disk. It will also
1643 * correctly update the inode on its superblock's dirty inode lists and will
1644 * update inode->i_state.
1645 *
1646 * The caller must have a ref on the inode.
1647 */
1648 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1649 {
1650 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1651 }
1652 EXPORT_SYMBOL(sync_inode);
1653
1654 /**
1655 * sync_inode_metadata - write an inode to disk
1656 * @inode: the inode to sync
1657 * @wait: wait for I/O to complete.
1658 *
1659 * Write an inode to disk and adjust its dirty state after completion.
1660 *
1661 * Note: only writes the actual inode, no associated data or other metadata.
1662 */
1663 int sync_inode_metadata(struct inode *inode, int wait)
1664 {
1665 struct writeback_control wbc = {
1666 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1667 .nr_to_write = 0, /* metadata-only */
1668 };
1669
1670 return sync_inode(inode, &wbc);
1671 }
1672 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.175156 seconds and 6 git commands to generate.