writeback: implement [locked_]inode_to_wb_and_lock_list()
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34 * 4MB minimal write chunk size
35 */
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
38 struct wb_completion {
39 atomic_t cnt;
40 };
41
42 /*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
45 struct wb_writeback_work {
46 long nr_pages;
47 struct super_block *sb;
48 unsigned long *older_than_this;
49 enum writeback_sync_modes sync_mode;
50 unsigned int tagged_writepages:1;
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free:1; /* free on completion */
56 unsigned int single_wait:1;
57 unsigned int single_done:1;
58 enum wb_reason reason; /* why was writeback initiated? */
59
60 struct list_head list; /* pending work list */
61 struct wb_completion *done; /* set if the caller waits */
62 };
63
64 /*
65 * If one wants to wait for one or more wb_writeback_works, each work's
66 * ->done should be set to a wb_completion defined using the following
67 * macro. Once all work items are issued with wb_queue_work(), the caller
68 * can wait for the completion of all using wb_wait_for_completion(). Work
69 * items which are waited upon aren't freed automatically on completion.
70 */
71 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
72 struct wb_completion cmpl = { \
73 .cnt = ATOMIC_INIT(1), \
74 }
75
76
77 /*
78 * If an inode is constantly having its pages dirtied, but then the
79 * updates stop dirtytime_expire_interval seconds in the past, it's
80 * possible for the worst case time between when an inode has its
81 * timestamps updated and when they finally get written out to be two
82 * dirtytime_expire_intervals. We set the default to 12 hours (in
83 * seconds), which means most of the time inodes will have their
84 * timestamps written to disk after 12 hours, but in the worst case a
85 * few inodes might not their timestamps updated for 24 hours.
86 */
87 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
88
89 static inline struct inode *wb_inode(struct list_head *head)
90 {
91 return list_entry(head, struct inode, i_wb_list);
92 }
93
94 /*
95 * Include the creation of the trace points after defining the
96 * wb_writeback_work structure and inline functions so that the definition
97 * remains local to this file.
98 */
99 #define CREATE_TRACE_POINTS
100 #include <trace/events/writeback.h>
101
102 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
103
104 static bool wb_io_lists_populated(struct bdi_writeback *wb)
105 {
106 if (wb_has_dirty_io(wb)) {
107 return false;
108 } else {
109 set_bit(WB_has_dirty_io, &wb->state);
110 WARN_ON_ONCE(!wb->avg_write_bandwidth);
111 atomic_long_add(wb->avg_write_bandwidth,
112 &wb->bdi->tot_write_bandwidth);
113 return true;
114 }
115 }
116
117 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
118 {
119 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
120 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
121 clear_bit(WB_has_dirty_io, &wb->state);
122 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
123 &wb->bdi->tot_write_bandwidth) < 0);
124 }
125 }
126
127 /**
128 * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
129 * @inode: inode to be moved
130 * @wb: target bdi_writeback
131 * @head: one of @wb->b_{dirty|io|more_io}
132 *
133 * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
134 * Returns %true if @inode is the first occupant of the !dirty_time IO
135 * lists; otherwise, %false.
136 */
137 static bool inode_wb_list_move_locked(struct inode *inode,
138 struct bdi_writeback *wb,
139 struct list_head *head)
140 {
141 assert_spin_locked(&wb->list_lock);
142
143 list_move(&inode->i_wb_list, head);
144
145 /* dirty_time doesn't count as dirty_io until expiration */
146 if (head != &wb->b_dirty_time)
147 return wb_io_lists_populated(wb);
148
149 wb_io_lists_depopulated(wb);
150 return false;
151 }
152
153 /**
154 * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
155 * @inode: inode to be removed
156 * @wb: bdi_writeback @inode is being removed from
157 *
158 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
159 * clear %WB_has_dirty_io if all are empty afterwards.
160 */
161 static void inode_wb_list_del_locked(struct inode *inode,
162 struct bdi_writeback *wb)
163 {
164 assert_spin_locked(&wb->list_lock);
165
166 list_del_init(&inode->i_wb_list);
167 wb_io_lists_depopulated(wb);
168 }
169
170 static void wb_wakeup(struct bdi_writeback *wb)
171 {
172 spin_lock_bh(&wb->work_lock);
173 if (test_bit(WB_registered, &wb->state))
174 mod_delayed_work(bdi_wq, &wb->dwork, 0);
175 spin_unlock_bh(&wb->work_lock);
176 }
177
178 static void wb_queue_work(struct bdi_writeback *wb,
179 struct wb_writeback_work *work)
180 {
181 trace_writeback_queue(wb->bdi, work);
182
183 spin_lock_bh(&wb->work_lock);
184 if (!test_bit(WB_registered, &wb->state)) {
185 if (work->single_wait)
186 work->single_done = 1;
187 goto out_unlock;
188 }
189 if (work->done)
190 atomic_inc(&work->done->cnt);
191 list_add_tail(&work->list, &wb->work_list);
192 mod_delayed_work(bdi_wq, &wb->dwork, 0);
193 out_unlock:
194 spin_unlock_bh(&wb->work_lock);
195 }
196
197 /**
198 * wb_wait_for_completion - wait for completion of bdi_writeback_works
199 * @bdi: bdi work items were issued to
200 * @done: target wb_completion
201 *
202 * Wait for one or more work items issued to @bdi with their ->done field
203 * set to @done, which should have been defined with
204 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
205 * work items are completed. Work items which are waited upon aren't freed
206 * automatically on completion.
207 */
208 static void wb_wait_for_completion(struct backing_dev_info *bdi,
209 struct wb_completion *done)
210 {
211 atomic_dec(&done->cnt); /* put down the initial count */
212 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
213 }
214
215 #ifdef CONFIG_CGROUP_WRITEBACK
216
217 /* parameters for foreign inode detection, see wb_detach_inode() */
218 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
219 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
220 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
221 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
222
223 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
224 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
225 /* each slot's duration is 2s / 16 */
226 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
227 /* if foreign slots >= 8, switch */
228 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
229 /* one round can affect upto 5 slots */
230
231 void __inode_attach_wb(struct inode *inode, struct page *page)
232 {
233 struct backing_dev_info *bdi = inode_to_bdi(inode);
234 struct bdi_writeback *wb = NULL;
235
236 if (inode_cgwb_enabled(inode)) {
237 struct cgroup_subsys_state *memcg_css;
238
239 if (page) {
240 memcg_css = mem_cgroup_css_from_page(page);
241 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
242 } else {
243 /* must pin memcg_css, see wb_get_create() */
244 memcg_css = task_get_css(current, memory_cgrp_id);
245 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
246 css_put(memcg_css);
247 }
248 }
249
250 if (!wb)
251 wb = &bdi->wb;
252
253 /*
254 * There may be multiple instances of this function racing to
255 * update the same inode. Use cmpxchg() to tell the winner.
256 */
257 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
258 wb_put(wb);
259 }
260
261 /**
262 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
263 * @inode: inode of interest with i_lock held
264 *
265 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
266 * held on entry and is released on return. The returned wb is guaranteed
267 * to stay @inode's associated wb until its list_lock is released.
268 */
269 static struct bdi_writeback *
270 locked_inode_to_wb_and_lock_list(struct inode *inode)
271 __releases(&inode->i_lock)
272 __acquires(&wb->list_lock)
273 {
274 while (true) {
275 struct bdi_writeback *wb = inode_to_wb(inode);
276
277 /*
278 * inode_to_wb() association is protected by both
279 * @inode->i_lock and @wb->list_lock but list_lock nests
280 * outside i_lock. Drop i_lock and verify that the
281 * association hasn't changed after acquiring list_lock.
282 */
283 wb_get(wb);
284 spin_unlock(&inode->i_lock);
285 spin_lock(&wb->list_lock);
286 wb_put(wb); /* not gonna deref it anymore */
287
288 if (likely(wb == inode_to_wb(inode)))
289 return wb; /* @inode already has ref */
290
291 spin_unlock(&wb->list_lock);
292 cpu_relax();
293 spin_lock(&inode->i_lock);
294 }
295 }
296
297 /**
298 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
299 * @inode: inode of interest
300 *
301 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
302 * on entry.
303 */
304 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
305 __acquires(&wb->list_lock)
306 {
307 spin_lock(&inode->i_lock);
308 return locked_inode_to_wb_and_lock_list(inode);
309 }
310
311 /**
312 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
313 * @wbc: writeback_control of interest
314 * @inode: target inode
315 *
316 * @inode is locked and about to be written back under the control of @wbc.
317 * Record @inode's writeback context into @wbc and unlock the i_lock. On
318 * writeback completion, wbc_detach_inode() should be called. This is used
319 * to track the cgroup writeback context.
320 */
321 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
322 struct inode *inode)
323 {
324 wbc->wb = inode_to_wb(inode);
325 wbc->inode = inode;
326
327 wbc->wb_id = wbc->wb->memcg_css->id;
328 wbc->wb_lcand_id = inode->i_wb_frn_winner;
329 wbc->wb_tcand_id = 0;
330 wbc->wb_bytes = 0;
331 wbc->wb_lcand_bytes = 0;
332 wbc->wb_tcand_bytes = 0;
333
334 wb_get(wbc->wb);
335 spin_unlock(&inode->i_lock);
336 }
337
338 /**
339 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
340 * @wbc: writeback_control of the just finished writeback
341 *
342 * To be called after a writeback attempt of an inode finishes and undoes
343 * wbc_attach_and_unlock_inode(). Can be called under any context.
344 *
345 * As concurrent write sharing of an inode is expected to be very rare and
346 * memcg only tracks page ownership on first-use basis severely confining
347 * the usefulness of such sharing, cgroup writeback tracks ownership
348 * per-inode. While the support for concurrent write sharing of an inode
349 * is deemed unnecessary, an inode being written to by different cgroups at
350 * different points in time is a lot more common, and, more importantly,
351 * charging only by first-use can too readily lead to grossly incorrect
352 * behaviors (single foreign page can lead to gigabytes of writeback to be
353 * incorrectly attributed).
354 *
355 * To resolve this issue, cgroup writeback detects the majority dirtier of
356 * an inode and transfers the ownership to it. To avoid unnnecessary
357 * oscillation, the detection mechanism keeps track of history and gives
358 * out the switch verdict only if the foreign usage pattern is stable over
359 * a certain amount of time and/or writeback attempts.
360 *
361 * On each writeback attempt, @wbc tries to detect the majority writer
362 * using Boyer-Moore majority vote algorithm. In addition to the byte
363 * count from the majority voting, it also counts the bytes written for the
364 * current wb and the last round's winner wb (max of last round's current
365 * wb, the winner from two rounds ago, and the last round's majority
366 * candidate). Keeping track of the historical winner helps the algorithm
367 * to semi-reliably detect the most active writer even when it's not the
368 * absolute majority.
369 *
370 * Once the winner of the round is determined, whether the winner is
371 * foreign or not and how much IO time the round consumed is recorded in
372 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
373 * over a certain threshold, the switch verdict is given.
374 */
375 void wbc_detach_inode(struct writeback_control *wbc)
376 {
377 struct bdi_writeback *wb = wbc->wb;
378 struct inode *inode = wbc->inode;
379 u16 history = inode->i_wb_frn_history;
380 unsigned long avg_time = inode->i_wb_frn_avg_time;
381 unsigned long max_bytes, max_time;
382 int max_id;
383
384 /* pick the winner of this round */
385 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
386 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
387 max_id = wbc->wb_id;
388 max_bytes = wbc->wb_bytes;
389 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
390 max_id = wbc->wb_lcand_id;
391 max_bytes = wbc->wb_lcand_bytes;
392 } else {
393 max_id = wbc->wb_tcand_id;
394 max_bytes = wbc->wb_tcand_bytes;
395 }
396
397 /*
398 * Calculate the amount of IO time the winner consumed and fold it
399 * into the running average kept per inode. If the consumed IO
400 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
401 * deciding whether to switch or not. This is to prevent one-off
402 * small dirtiers from skewing the verdict.
403 */
404 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
405 wb->avg_write_bandwidth);
406 if (avg_time)
407 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
408 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
409 else
410 avg_time = max_time; /* immediate catch up on first run */
411
412 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
413 int slots;
414
415 /*
416 * The switch verdict is reached if foreign wb's consume
417 * more than a certain proportion of IO time in a
418 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
419 * history mask where each bit represents one sixteenth of
420 * the period. Determine the number of slots to shift into
421 * history from @max_time.
422 */
423 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
424 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
425 history <<= slots;
426 if (wbc->wb_id != max_id)
427 history |= (1U << slots) - 1;
428
429 /*
430 * Switch if the current wb isn't the consistent winner.
431 * If there are multiple closely competing dirtiers, the
432 * inode may switch across them repeatedly over time, which
433 * is okay. The main goal is avoiding keeping an inode on
434 * the wrong wb for an extended period of time.
435 */
436 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) {
437 /* switch */
438 max_id = 0;
439 avg_time = 0;
440 history = 0;
441 }
442 }
443
444 /*
445 * Multiple instances of this function may race to update the
446 * following fields but we don't mind occassional inaccuracies.
447 */
448 inode->i_wb_frn_winner = max_id;
449 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
450 inode->i_wb_frn_history = history;
451
452 wb_put(wbc->wb);
453 wbc->wb = NULL;
454 }
455
456 /**
457 * wbc_account_io - account IO issued during writeback
458 * @wbc: writeback_control of the writeback in progress
459 * @page: page being written out
460 * @bytes: number of bytes being written out
461 *
462 * @bytes from @page are about to written out during the writeback
463 * controlled by @wbc. Keep the book for foreign inode detection. See
464 * wbc_detach_inode().
465 */
466 void wbc_account_io(struct writeback_control *wbc, struct page *page,
467 size_t bytes)
468 {
469 int id;
470
471 /*
472 * pageout() path doesn't attach @wbc to the inode being written
473 * out. This is intentional as we don't want the function to block
474 * behind a slow cgroup. Ultimately, we want pageout() to kick off
475 * regular writeback instead of writing things out itself.
476 */
477 if (!wbc->wb)
478 return;
479
480 rcu_read_lock();
481 id = mem_cgroup_css_from_page(page)->id;
482 rcu_read_unlock();
483
484 if (id == wbc->wb_id) {
485 wbc->wb_bytes += bytes;
486 return;
487 }
488
489 if (id == wbc->wb_lcand_id)
490 wbc->wb_lcand_bytes += bytes;
491
492 /* Boyer-Moore majority vote algorithm */
493 if (!wbc->wb_tcand_bytes)
494 wbc->wb_tcand_id = id;
495 if (id == wbc->wb_tcand_id)
496 wbc->wb_tcand_bytes += bytes;
497 else
498 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
499 }
500
501 /**
502 * inode_congested - test whether an inode is congested
503 * @inode: inode to test for congestion
504 * @cong_bits: mask of WB_[a]sync_congested bits to test
505 *
506 * Tests whether @inode is congested. @cong_bits is the mask of congestion
507 * bits to test and the return value is the mask of set bits.
508 *
509 * If cgroup writeback is enabled for @inode, the congestion state is
510 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
511 * associated with @inode is congested; otherwise, the root wb's congestion
512 * state is used.
513 */
514 int inode_congested(struct inode *inode, int cong_bits)
515 {
516 if (inode) {
517 struct bdi_writeback *wb = inode_to_wb(inode);
518 if (wb)
519 return wb_congested(wb, cong_bits);
520 }
521
522 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
523 }
524 EXPORT_SYMBOL_GPL(inode_congested);
525
526 /**
527 * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
528 * @bdi: bdi the work item was issued to
529 * @work: work item to wait for
530 *
531 * Wait for the completion of @work which was issued to one of @bdi's
532 * bdi_writeback's. The caller must have set @work->single_wait before
533 * issuing it. This wait operates independently fo
534 * wb_wait_for_completion() and also disables automatic freeing of @work.
535 */
536 static void wb_wait_for_single_work(struct backing_dev_info *bdi,
537 struct wb_writeback_work *work)
538 {
539 if (WARN_ON_ONCE(!work->single_wait))
540 return;
541
542 wait_event(bdi->wb_waitq, work->single_done);
543
544 /*
545 * Paired with smp_wmb() in wb_do_writeback() and ensures that all
546 * modifications to @work prior to assertion of ->single_done is
547 * visible to the caller once this function returns.
548 */
549 smp_rmb();
550 }
551
552 /**
553 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
554 * @wb: target bdi_writeback to split @nr_pages to
555 * @nr_pages: number of pages to write for the whole bdi
556 *
557 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
558 * relation to the total write bandwidth of all wb's w/ dirty inodes on
559 * @wb->bdi.
560 */
561 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
562 {
563 unsigned long this_bw = wb->avg_write_bandwidth;
564 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
565
566 if (nr_pages == LONG_MAX)
567 return LONG_MAX;
568
569 /*
570 * This may be called on clean wb's and proportional distribution
571 * may not make sense, just use the original @nr_pages in those
572 * cases. In general, we wanna err on the side of writing more.
573 */
574 if (!tot_bw || this_bw >= tot_bw)
575 return nr_pages;
576 else
577 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
578 }
579
580 /**
581 * wb_clone_and_queue_work - clone a wb_writeback_work and issue it to a wb
582 * @wb: target bdi_writeback
583 * @base_work: source wb_writeback_work
584 *
585 * Try to make a clone of @base_work and issue it to @wb. If cloning
586 * succeeds, %true is returned; otherwise, @base_work is issued directly
587 * and %false is returned. In the latter case, the caller is required to
588 * wait for @base_work's completion using wb_wait_for_single_work().
589 *
590 * A clone is auto-freed on completion. @base_work never is.
591 */
592 static bool wb_clone_and_queue_work(struct bdi_writeback *wb,
593 struct wb_writeback_work *base_work)
594 {
595 struct wb_writeback_work *work;
596
597 work = kmalloc(sizeof(*work), GFP_ATOMIC);
598 if (work) {
599 *work = *base_work;
600 work->auto_free = 1;
601 work->single_wait = 0;
602 } else {
603 work = base_work;
604 work->auto_free = 0;
605 work->single_wait = 1;
606 }
607 work->single_done = 0;
608 wb_queue_work(wb, work);
609 return work != base_work;
610 }
611
612 /**
613 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
614 * @bdi: target backing_dev_info
615 * @base_work: wb_writeback_work to issue
616 * @skip_if_busy: skip wb's which already have writeback in progress
617 *
618 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
619 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
620 * distributed to the busy wbs according to each wb's proportion in the
621 * total active write bandwidth of @bdi.
622 */
623 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
624 struct wb_writeback_work *base_work,
625 bool skip_if_busy)
626 {
627 long nr_pages = base_work->nr_pages;
628 int next_blkcg_id = 0;
629 struct bdi_writeback *wb;
630 struct wb_iter iter;
631
632 might_sleep();
633
634 if (!bdi_has_dirty_io(bdi))
635 return;
636 restart:
637 rcu_read_lock();
638 bdi_for_each_wb(wb, bdi, &iter, next_blkcg_id) {
639 if (!wb_has_dirty_io(wb) ||
640 (skip_if_busy && writeback_in_progress(wb)))
641 continue;
642
643 base_work->nr_pages = wb_split_bdi_pages(wb, nr_pages);
644 if (!wb_clone_and_queue_work(wb, base_work)) {
645 next_blkcg_id = wb->blkcg_css->id + 1;
646 rcu_read_unlock();
647 wb_wait_for_single_work(bdi, base_work);
648 goto restart;
649 }
650 }
651 rcu_read_unlock();
652 }
653
654 #else /* CONFIG_CGROUP_WRITEBACK */
655
656 static struct bdi_writeback *
657 locked_inode_to_wb_and_lock_list(struct inode *inode)
658 __releases(&inode->i_lock)
659 __acquires(&wb->list_lock)
660 {
661 struct bdi_writeback *wb = inode_to_wb(inode);
662
663 spin_unlock(&inode->i_lock);
664 spin_lock(&wb->list_lock);
665 return wb;
666 }
667
668 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
669 __acquires(&wb->list_lock)
670 {
671 struct bdi_writeback *wb = inode_to_wb(inode);
672
673 spin_lock(&wb->list_lock);
674 return wb;
675 }
676
677 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
678 {
679 return nr_pages;
680 }
681
682 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
683 struct wb_writeback_work *base_work,
684 bool skip_if_busy)
685 {
686 might_sleep();
687
688 if (bdi_has_dirty_io(bdi) &&
689 (!skip_if_busy || !writeback_in_progress(&bdi->wb))) {
690 base_work->auto_free = 0;
691 base_work->single_wait = 0;
692 base_work->single_done = 0;
693 wb_queue_work(&bdi->wb, base_work);
694 }
695 }
696
697 #endif /* CONFIG_CGROUP_WRITEBACK */
698
699 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
700 bool range_cyclic, enum wb_reason reason)
701 {
702 struct wb_writeback_work *work;
703
704 if (!wb_has_dirty_io(wb))
705 return;
706
707 /*
708 * This is WB_SYNC_NONE writeback, so if allocation fails just
709 * wakeup the thread for old dirty data writeback
710 */
711 work = kzalloc(sizeof(*work), GFP_ATOMIC);
712 if (!work) {
713 trace_writeback_nowork(wb->bdi);
714 wb_wakeup(wb);
715 return;
716 }
717
718 work->sync_mode = WB_SYNC_NONE;
719 work->nr_pages = nr_pages;
720 work->range_cyclic = range_cyclic;
721 work->reason = reason;
722 work->auto_free = 1;
723
724 wb_queue_work(wb, work);
725 }
726
727 /**
728 * wb_start_background_writeback - start background writeback
729 * @wb: bdi_writback to write from
730 *
731 * Description:
732 * This makes sure WB_SYNC_NONE background writeback happens. When
733 * this function returns, it is only guaranteed that for given wb
734 * some IO is happening if we are over background dirty threshold.
735 * Caller need not hold sb s_umount semaphore.
736 */
737 void wb_start_background_writeback(struct bdi_writeback *wb)
738 {
739 /*
740 * We just wake up the flusher thread. It will perform background
741 * writeback as soon as there is no other work to do.
742 */
743 trace_writeback_wake_background(wb->bdi);
744 wb_wakeup(wb);
745 }
746
747 /*
748 * Remove the inode from the writeback list it is on.
749 */
750 void inode_wb_list_del(struct inode *inode)
751 {
752 struct bdi_writeback *wb;
753
754 wb = inode_to_wb_and_lock_list(inode);
755 inode_wb_list_del_locked(inode, wb);
756 spin_unlock(&wb->list_lock);
757 }
758
759 /*
760 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
761 * furthest end of its superblock's dirty-inode list.
762 *
763 * Before stamping the inode's ->dirtied_when, we check to see whether it is
764 * already the most-recently-dirtied inode on the b_dirty list. If that is
765 * the case then the inode must have been redirtied while it was being written
766 * out and we don't reset its dirtied_when.
767 */
768 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
769 {
770 if (!list_empty(&wb->b_dirty)) {
771 struct inode *tail;
772
773 tail = wb_inode(wb->b_dirty.next);
774 if (time_before(inode->dirtied_when, tail->dirtied_when))
775 inode->dirtied_when = jiffies;
776 }
777 inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
778 }
779
780 /*
781 * requeue inode for re-scanning after bdi->b_io list is exhausted.
782 */
783 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
784 {
785 inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
786 }
787
788 static void inode_sync_complete(struct inode *inode)
789 {
790 inode->i_state &= ~I_SYNC;
791 /* If inode is clean an unused, put it into LRU now... */
792 inode_add_lru(inode);
793 /* Waiters must see I_SYNC cleared before being woken up */
794 smp_mb();
795 wake_up_bit(&inode->i_state, __I_SYNC);
796 }
797
798 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
799 {
800 bool ret = time_after(inode->dirtied_when, t);
801 #ifndef CONFIG_64BIT
802 /*
803 * For inodes being constantly redirtied, dirtied_when can get stuck.
804 * It _appears_ to be in the future, but is actually in distant past.
805 * This test is necessary to prevent such wrapped-around relative times
806 * from permanently stopping the whole bdi writeback.
807 */
808 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
809 #endif
810 return ret;
811 }
812
813 #define EXPIRE_DIRTY_ATIME 0x0001
814
815 /*
816 * Move expired (dirtied before work->older_than_this) dirty inodes from
817 * @delaying_queue to @dispatch_queue.
818 */
819 static int move_expired_inodes(struct list_head *delaying_queue,
820 struct list_head *dispatch_queue,
821 int flags,
822 struct wb_writeback_work *work)
823 {
824 unsigned long *older_than_this = NULL;
825 unsigned long expire_time;
826 LIST_HEAD(tmp);
827 struct list_head *pos, *node;
828 struct super_block *sb = NULL;
829 struct inode *inode;
830 int do_sb_sort = 0;
831 int moved = 0;
832
833 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
834 older_than_this = work->older_than_this;
835 else if (!work->for_sync) {
836 expire_time = jiffies - (dirtytime_expire_interval * HZ);
837 older_than_this = &expire_time;
838 }
839 while (!list_empty(delaying_queue)) {
840 inode = wb_inode(delaying_queue->prev);
841 if (older_than_this &&
842 inode_dirtied_after(inode, *older_than_this))
843 break;
844 list_move(&inode->i_wb_list, &tmp);
845 moved++;
846 if (flags & EXPIRE_DIRTY_ATIME)
847 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
848 if (sb_is_blkdev_sb(inode->i_sb))
849 continue;
850 if (sb && sb != inode->i_sb)
851 do_sb_sort = 1;
852 sb = inode->i_sb;
853 }
854
855 /* just one sb in list, splice to dispatch_queue and we're done */
856 if (!do_sb_sort) {
857 list_splice(&tmp, dispatch_queue);
858 goto out;
859 }
860
861 /* Move inodes from one superblock together */
862 while (!list_empty(&tmp)) {
863 sb = wb_inode(tmp.prev)->i_sb;
864 list_for_each_prev_safe(pos, node, &tmp) {
865 inode = wb_inode(pos);
866 if (inode->i_sb == sb)
867 list_move(&inode->i_wb_list, dispatch_queue);
868 }
869 }
870 out:
871 return moved;
872 }
873
874 /*
875 * Queue all expired dirty inodes for io, eldest first.
876 * Before
877 * newly dirtied b_dirty b_io b_more_io
878 * =============> gf edc BA
879 * After
880 * newly dirtied b_dirty b_io b_more_io
881 * =============> g fBAedc
882 * |
883 * +--> dequeue for IO
884 */
885 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
886 {
887 int moved;
888
889 assert_spin_locked(&wb->list_lock);
890 list_splice_init(&wb->b_more_io, &wb->b_io);
891 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
892 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
893 EXPIRE_DIRTY_ATIME, work);
894 if (moved)
895 wb_io_lists_populated(wb);
896 trace_writeback_queue_io(wb, work, moved);
897 }
898
899 static int write_inode(struct inode *inode, struct writeback_control *wbc)
900 {
901 int ret;
902
903 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
904 trace_writeback_write_inode_start(inode, wbc);
905 ret = inode->i_sb->s_op->write_inode(inode, wbc);
906 trace_writeback_write_inode(inode, wbc);
907 return ret;
908 }
909 return 0;
910 }
911
912 /*
913 * Wait for writeback on an inode to complete. Called with i_lock held.
914 * Caller must make sure inode cannot go away when we drop i_lock.
915 */
916 static void __inode_wait_for_writeback(struct inode *inode)
917 __releases(inode->i_lock)
918 __acquires(inode->i_lock)
919 {
920 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
921 wait_queue_head_t *wqh;
922
923 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
924 while (inode->i_state & I_SYNC) {
925 spin_unlock(&inode->i_lock);
926 __wait_on_bit(wqh, &wq, bit_wait,
927 TASK_UNINTERRUPTIBLE);
928 spin_lock(&inode->i_lock);
929 }
930 }
931
932 /*
933 * Wait for writeback on an inode to complete. Caller must have inode pinned.
934 */
935 void inode_wait_for_writeback(struct inode *inode)
936 {
937 spin_lock(&inode->i_lock);
938 __inode_wait_for_writeback(inode);
939 spin_unlock(&inode->i_lock);
940 }
941
942 /*
943 * Sleep until I_SYNC is cleared. This function must be called with i_lock
944 * held and drops it. It is aimed for callers not holding any inode reference
945 * so once i_lock is dropped, inode can go away.
946 */
947 static void inode_sleep_on_writeback(struct inode *inode)
948 __releases(inode->i_lock)
949 {
950 DEFINE_WAIT(wait);
951 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
952 int sleep;
953
954 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
955 sleep = inode->i_state & I_SYNC;
956 spin_unlock(&inode->i_lock);
957 if (sleep)
958 schedule();
959 finish_wait(wqh, &wait);
960 }
961
962 /*
963 * Find proper writeback list for the inode depending on its current state and
964 * possibly also change of its state while we were doing writeback. Here we
965 * handle things such as livelock prevention or fairness of writeback among
966 * inodes. This function can be called only by flusher thread - noone else
967 * processes all inodes in writeback lists and requeueing inodes behind flusher
968 * thread's back can have unexpected consequences.
969 */
970 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
971 struct writeback_control *wbc)
972 {
973 if (inode->i_state & I_FREEING)
974 return;
975
976 /*
977 * Sync livelock prevention. Each inode is tagged and synced in one
978 * shot. If still dirty, it will be redirty_tail()'ed below. Update
979 * the dirty time to prevent enqueue and sync it again.
980 */
981 if ((inode->i_state & I_DIRTY) &&
982 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
983 inode->dirtied_when = jiffies;
984
985 if (wbc->pages_skipped) {
986 /*
987 * writeback is not making progress due to locked
988 * buffers. Skip this inode for now.
989 */
990 redirty_tail(inode, wb);
991 return;
992 }
993
994 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
995 /*
996 * We didn't write back all the pages. nfs_writepages()
997 * sometimes bales out without doing anything.
998 */
999 if (wbc->nr_to_write <= 0) {
1000 /* Slice used up. Queue for next turn. */
1001 requeue_io(inode, wb);
1002 } else {
1003 /*
1004 * Writeback blocked by something other than
1005 * congestion. Delay the inode for some time to
1006 * avoid spinning on the CPU (100% iowait)
1007 * retrying writeback of the dirty page/inode
1008 * that cannot be performed immediately.
1009 */
1010 redirty_tail(inode, wb);
1011 }
1012 } else if (inode->i_state & I_DIRTY) {
1013 /*
1014 * Filesystems can dirty the inode during writeback operations,
1015 * such as delayed allocation during submission or metadata
1016 * updates after data IO completion.
1017 */
1018 redirty_tail(inode, wb);
1019 } else if (inode->i_state & I_DIRTY_TIME) {
1020 inode->dirtied_when = jiffies;
1021 inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
1022 } else {
1023 /* The inode is clean. Remove from writeback lists. */
1024 inode_wb_list_del_locked(inode, wb);
1025 }
1026 }
1027
1028 /*
1029 * Write out an inode and its dirty pages. Do not update the writeback list
1030 * linkage. That is left to the caller. The caller is also responsible for
1031 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1032 */
1033 static int
1034 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1035 {
1036 struct address_space *mapping = inode->i_mapping;
1037 long nr_to_write = wbc->nr_to_write;
1038 unsigned dirty;
1039 int ret;
1040
1041 WARN_ON(!(inode->i_state & I_SYNC));
1042
1043 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1044
1045 ret = do_writepages(mapping, wbc);
1046
1047 /*
1048 * Make sure to wait on the data before writing out the metadata.
1049 * This is important for filesystems that modify metadata on data
1050 * I/O completion. We don't do it for sync(2) writeback because it has a
1051 * separate, external IO completion path and ->sync_fs for guaranteeing
1052 * inode metadata is written back correctly.
1053 */
1054 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1055 int err = filemap_fdatawait(mapping);
1056 if (ret == 0)
1057 ret = err;
1058 }
1059
1060 /*
1061 * Some filesystems may redirty the inode during the writeback
1062 * due to delalloc, clear dirty metadata flags right before
1063 * write_inode()
1064 */
1065 spin_lock(&inode->i_lock);
1066
1067 dirty = inode->i_state & I_DIRTY;
1068 if (inode->i_state & I_DIRTY_TIME) {
1069 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1070 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1071 unlikely(time_after(jiffies,
1072 (inode->dirtied_time_when +
1073 dirtytime_expire_interval * HZ)))) {
1074 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1075 trace_writeback_lazytime(inode);
1076 }
1077 } else
1078 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1079 inode->i_state &= ~dirty;
1080
1081 /*
1082 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1083 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1084 * either they see the I_DIRTY bits cleared or we see the dirtied
1085 * inode.
1086 *
1087 * I_DIRTY_PAGES is always cleared together above even if @mapping
1088 * still has dirty pages. The flag is reinstated after smp_mb() if
1089 * necessary. This guarantees that either __mark_inode_dirty()
1090 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1091 */
1092 smp_mb();
1093
1094 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1095 inode->i_state |= I_DIRTY_PAGES;
1096
1097 spin_unlock(&inode->i_lock);
1098
1099 if (dirty & I_DIRTY_TIME)
1100 mark_inode_dirty_sync(inode);
1101 /* Don't write the inode if only I_DIRTY_PAGES was set */
1102 if (dirty & ~I_DIRTY_PAGES) {
1103 int err = write_inode(inode, wbc);
1104 if (ret == 0)
1105 ret = err;
1106 }
1107 trace_writeback_single_inode(inode, wbc, nr_to_write);
1108 return ret;
1109 }
1110
1111 /*
1112 * Write out an inode's dirty pages. Either the caller has an active reference
1113 * on the inode or the inode has I_WILL_FREE set.
1114 *
1115 * This function is designed to be called for writing back one inode which
1116 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1117 * and does more profound writeback list handling in writeback_sb_inodes().
1118 */
1119 static int
1120 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
1121 struct writeback_control *wbc)
1122 {
1123 int ret = 0;
1124
1125 spin_lock(&inode->i_lock);
1126 if (!atomic_read(&inode->i_count))
1127 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1128 else
1129 WARN_ON(inode->i_state & I_WILL_FREE);
1130
1131 if (inode->i_state & I_SYNC) {
1132 if (wbc->sync_mode != WB_SYNC_ALL)
1133 goto out;
1134 /*
1135 * It's a data-integrity sync. We must wait. Since callers hold
1136 * inode reference or inode has I_WILL_FREE set, it cannot go
1137 * away under us.
1138 */
1139 __inode_wait_for_writeback(inode);
1140 }
1141 WARN_ON(inode->i_state & I_SYNC);
1142 /*
1143 * Skip inode if it is clean and we have no outstanding writeback in
1144 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1145 * function since flusher thread may be doing for example sync in
1146 * parallel and if we move the inode, it could get skipped. So here we
1147 * make sure inode is on some writeback list and leave it there unless
1148 * we have completely cleaned the inode.
1149 */
1150 if (!(inode->i_state & I_DIRTY_ALL) &&
1151 (wbc->sync_mode != WB_SYNC_ALL ||
1152 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1153 goto out;
1154 inode->i_state |= I_SYNC;
1155 wbc_attach_and_unlock_inode(wbc, inode);
1156
1157 ret = __writeback_single_inode(inode, wbc);
1158
1159 wbc_detach_inode(wbc);
1160 spin_lock(&wb->list_lock);
1161 spin_lock(&inode->i_lock);
1162 /*
1163 * If inode is clean, remove it from writeback lists. Otherwise don't
1164 * touch it. See comment above for explanation.
1165 */
1166 if (!(inode->i_state & I_DIRTY_ALL))
1167 inode_wb_list_del_locked(inode, wb);
1168 spin_unlock(&wb->list_lock);
1169 inode_sync_complete(inode);
1170 out:
1171 spin_unlock(&inode->i_lock);
1172 return ret;
1173 }
1174
1175 static long writeback_chunk_size(struct bdi_writeback *wb,
1176 struct wb_writeback_work *work)
1177 {
1178 long pages;
1179
1180 /*
1181 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1182 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1183 * here avoids calling into writeback_inodes_wb() more than once.
1184 *
1185 * The intended call sequence for WB_SYNC_ALL writeback is:
1186 *
1187 * wb_writeback()
1188 * writeback_sb_inodes() <== called only once
1189 * write_cache_pages() <== called once for each inode
1190 * (quickly) tag currently dirty pages
1191 * (maybe slowly) sync all tagged pages
1192 */
1193 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1194 pages = LONG_MAX;
1195 else {
1196 pages = min(wb->avg_write_bandwidth / 2,
1197 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1198 pages = min(pages, work->nr_pages);
1199 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1200 MIN_WRITEBACK_PAGES);
1201 }
1202
1203 return pages;
1204 }
1205
1206 /*
1207 * Write a portion of b_io inodes which belong to @sb.
1208 *
1209 * Return the number of pages and/or inodes written.
1210 */
1211 static long writeback_sb_inodes(struct super_block *sb,
1212 struct bdi_writeback *wb,
1213 struct wb_writeback_work *work)
1214 {
1215 struct writeback_control wbc = {
1216 .sync_mode = work->sync_mode,
1217 .tagged_writepages = work->tagged_writepages,
1218 .for_kupdate = work->for_kupdate,
1219 .for_background = work->for_background,
1220 .for_sync = work->for_sync,
1221 .range_cyclic = work->range_cyclic,
1222 .range_start = 0,
1223 .range_end = LLONG_MAX,
1224 };
1225 unsigned long start_time = jiffies;
1226 long write_chunk;
1227 long wrote = 0; /* count both pages and inodes */
1228
1229 while (!list_empty(&wb->b_io)) {
1230 struct inode *inode = wb_inode(wb->b_io.prev);
1231
1232 if (inode->i_sb != sb) {
1233 if (work->sb) {
1234 /*
1235 * We only want to write back data for this
1236 * superblock, move all inodes not belonging
1237 * to it back onto the dirty list.
1238 */
1239 redirty_tail(inode, wb);
1240 continue;
1241 }
1242
1243 /*
1244 * The inode belongs to a different superblock.
1245 * Bounce back to the caller to unpin this and
1246 * pin the next superblock.
1247 */
1248 break;
1249 }
1250
1251 /*
1252 * Don't bother with new inodes or inodes being freed, first
1253 * kind does not need periodic writeout yet, and for the latter
1254 * kind writeout is handled by the freer.
1255 */
1256 spin_lock(&inode->i_lock);
1257 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1258 spin_unlock(&inode->i_lock);
1259 redirty_tail(inode, wb);
1260 continue;
1261 }
1262 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1263 /*
1264 * If this inode is locked for writeback and we are not
1265 * doing writeback-for-data-integrity, move it to
1266 * b_more_io so that writeback can proceed with the
1267 * other inodes on s_io.
1268 *
1269 * We'll have another go at writing back this inode
1270 * when we completed a full scan of b_io.
1271 */
1272 spin_unlock(&inode->i_lock);
1273 requeue_io(inode, wb);
1274 trace_writeback_sb_inodes_requeue(inode);
1275 continue;
1276 }
1277 spin_unlock(&wb->list_lock);
1278
1279 /*
1280 * We already requeued the inode if it had I_SYNC set and we
1281 * are doing WB_SYNC_NONE writeback. So this catches only the
1282 * WB_SYNC_ALL case.
1283 */
1284 if (inode->i_state & I_SYNC) {
1285 /* Wait for I_SYNC. This function drops i_lock... */
1286 inode_sleep_on_writeback(inode);
1287 /* Inode may be gone, start again */
1288 spin_lock(&wb->list_lock);
1289 continue;
1290 }
1291 inode->i_state |= I_SYNC;
1292 wbc_attach_and_unlock_inode(&wbc, inode);
1293
1294 write_chunk = writeback_chunk_size(wb, work);
1295 wbc.nr_to_write = write_chunk;
1296 wbc.pages_skipped = 0;
1297
1298 /*
1299 * We use I_SYNC to pin the inode in memory. While it is set
1300 * evict_inode() will wait so the inode cannot be freed.
1301 */
1302 __writeback_single_inode(inode, &wbc);
1303
1304 wbc_detach_inode(&wbc);
1305 work->nr_pages -= write_chunk - wbc.nr_to_write;
1306 wrote += write_chunk - wbc.nr_to_write;
1307 spin_lock(&wb->list_lock);
1308 spin_lock(&inode->i_lock);
1309 if (!(inode->i_state & I_DIRTY_ALL))
1310 wrote++;
1311 requeue_inode(inode, wb, &wbc);
1312 inode_sync_complete(inode);
1313 spin_unlock(&inode->i_lock);
1314 cond_resched_lock(&wb->list_lock);
1315 /*
1316 * bail out to wb_writeback() often enough to check
1317 * background threshold and other termination conditions.
1318 */
1319 if (wrote) {
1320 if (time_is_before_jiffies(start_time + HZ / 10UL))
1321 break;
1322 if (work->nr_pages <= 0)
1323 break;
1324 }
1325 }
1326 return wrote;
1327 }
1328
1329 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1330 struct wb_writeback_work *work)
1331 {
1332 unsigned long start_time = jiffies;
1333 long wrote = 0;
1334
1335 while (!list_empty(&wb->b_io)) {
1336 struct inode *inode = wb_inode(wb->b_io.prev);
1337 struct super_block *sb = inode->i_sb;
1338
1339 if (!trylock_super(sb)) {
1340 /*
1341 * trylock_super() may fail consistently due to
1342 * s_umount being grabbed by someone else. Don't use
1343 * requeue_io() to avoid busy retrying the inode/sb.
1344 */
1345 redirty_tail(inode, wb);
1346 continue;
1347 }
1348 wrote += writeback_sb_inodes(sb, wb, work);
1349 up_read(&sb->s_umount);
1350
1351 /* refer to the same tests at the end of writeback_sb_inodes */
1352 if (wrote) {
1353 if (time_is_before_jiffies(start_time + HZ / 10UL))
1354 break;
1355 if (work->nr_pages <= 0)
1356 break;
1357 }
1358 }
1359 /* Leave any unwritten inodes on b_io */
1360 return wrote;
1361 }
1362
1363 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1364 enum wb_reason reason)
1365 {
1366 struct wb_writeback_work work = {
1367 .nr_pages = nr_pages,
1368 .sync_mode = WB_SYNC_NONE,
1369 .range_cyclic = 1,
1370 .reason = reason,
1371 };
1372
1373 spin_lock(&wb->list_lock);
1374 if (list_empty(&wb->b_io))
1375 queue_io(wb, &work);
1376 __writeback_inodes_wb(wb, &work);
1377 spin_unlock(&wb->list_lock);
1378
1379 return nr_pages - work.nr_pages;
1380 }
1381
1382 /*
1383 * Explicit flushing or periodic writeback of "old" data.
1384 *
1385 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1386 * dirtying-time in the inode's address_space. So this periodic writeback code
1387 * just walks the superblock inode list, writing back any inodes which are
1388 * older than a specific point in time.
1389 *
1390 * Try to run once per dirty_writeback_interval. But if a writeback event
1391 * takes longer than a dirty_writeback_interval interval, then leave a
1392 * one-second gap.
1393 *
1394 * older_than_this takes precedence over nr_to_write. So we'll only write back
1395 * all dirty pages if they are all attached to "old" mappings.
1396 */
1397 static long wb_writeback(struct bdi_writeback *wb,
1398 struct wb_writeback_work *work)
1399 {
1400 unsigned long wb_start = jiffies;
1401 long nr_pages = work->nr_pages;
1402 unsigned long oldest_jif;
1403 struct inode *inode;
1404 long progress;
1405
1406 oldest_jif = jiffies;
1407 work->older_than_this = &oldest_jif;
1408
1409 spin_lock(&wb->list_lock);
1410 for (;;) {
1411 /*
1412 * Stop writeback when nr_pages has been consumed
1413 */
1414 if (work->nr_pages <= 0)
1415 break;
1416
1417 /*
1418 * Background writeout and kupdate-style writeback may
1419 * run forever. Stop them if there is other work to do
1420 * so that e.g. sync can proceed. They'll be restarted
1421 * after the other works are all done.
1422 */
1423 if ((work->for_background || work->for_kupdate) &&
1424 !list_empty(&wb->work_list))
1425 break;
1426
1427 /*
1428 * For background writeout, stop when we are below the
1429 * background dirty threshold
1430 */
1431 if (work->for_background && !wb_over_bg_thresh(wb))
1432 break;
1433
1434 /*
1435 * Kupdate and background works are special and we want to
1436 * include all inodes that need writing. Livelock avoidance is
1437 * handled by these works yielding to any other work so we are
1438 * safe.
1439 */
1440 if (work->for_kupdate) {
1441 oldest_jif = jiffies -
1442 msecs_to_jiffies(dirty_expire_interval * 10);
1443 } else if (work->for_background)
1444 oldest_jif = jiffies;
1445
1446 trace_writeback_start(wb->bdi, work);
1447 if (list_empty(&wb->b_io))
1448 queue_io(wb, work);
1449 if (work->sb)
1450 progress = writeback_sb_inodes(work->sb, wb, work);
1451 else
1452 progress = __writeback_inodes_wb(wb, work);
1453 trace_writeback_written(wb->bdi, work);
1454
1455 wb_update_bandwidth(wb, wb_start);
1456
1457 /*
1458 * Did we write something? Try for more
1459 *
1460 * Dirty inodes are moved to b_io for writeback in batches.
1461 * The completion of the current batch does not necessarily
1462 * mean the overall work is done. So we keep looping as long
1463 * as made some progress on cleaning pages or inodes.
1464 */
1465 if (progress)
1466 continue;
1467 /*
1468 * No more inodes for IO, bail
1469 */
1470 if (list_empty(&wb->b_more_io))
1471 break;
1472 /*
1473 * Nothing written. Wait for some inode to
1474 * become available for writeback. Otherwise
1475 * we'll just busyloop.
1476 */
1477 if (!list_empty(&wb->b_more_io)) {
1478 trace_writeback_wait(wb->bdi, work);
1479 inode = wb_inode(wb->b_more_io.prev);
1480 spin_lock(&inode->i_lock);
1481 spin_unlock(&wb->list_lock);
1482 /* This function drops i_lock... */
1483 inode_sleep_on_writeback(inode);
1484 spin_lock(&wb->list_lock);
1485 }
1486 }
1487 spin_unlock(&wb->list_lock);
1488
1489 return nr_pages - work->nr_pages;
1490 }
1491
1492 /*
1493 * Return the next wb_writeback_work struct that hasn't been processed yet.
1494 */
1495 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1496 {
1497 struct wb_writeback_work *work = NULL;
1498
1499 spin_lock_bh(&wb->work_lock);
1500 if (!list_empty(&wb->work_list)) {
1501 work = list_entry(wb->work_list.next,
1502 struct wb_writeback_work, list);
1503 list_del_init(&work->list);
1504 }
1505 spin_unlock_bh(&wb->work_lock);
1506 return work;
1507 }
1508
1509 /*
1510 * Add in the number of potentially dirty inodes, because each inode
1511 * write can dirty pagecache in the underlying blockdev.
1512 */
1513 static unsigned long get_nr_dirty_pages(void)
1514 {
1515 return global_page_state(NR_FILE_DIRTY) +
1516 global_page_state(NR_UNSTABLE_NFS) +
1517 get_nr_dirty_inodes();
1518 }
1519
1520 static long wb_check_background_flush(struct bdi_writeback *wb)
1521 {
1522 if (wb_over_bg_thresh(wb)) {
1523
1524 struct wb_writeback_work work = {
1525 .nr_pages = LONG_MAX,
1526 .sync_mode = WB_SYNC_NONE,
1527 .for_background = 1,
1528 .range_cyclic = 1,
1529 .reason = WB_REASON_BACKGROUND,
1530 };
1531
1532 return wb_writeback(wb, &work);
1533 }
1534
1535 return 0;
1536 }
1537
1538 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1539 {
1540 unsigned long expired;
1541 long nr_pages;
1542
1543 /*
1544 * When set to zero, disable periodic writeback
1545 */
1546 if (!dirty_writeback_interval)
1547 return 0;
1548
1549 expired = wb->last_old_flush +
1550 msecs_to_jiffies(dirty_writeback_interval * 10);
1551 if (time_before(jiffies, expired))
1552 return 0;
1553
1554 wb->last_old_flush = jiffies;
1555 nr_pages = get_nr_dirty_pages();
1556
1557 if (nr_pages) {
1558 struct wb_writeback_work work = {
1559 .nr_pages = nr_pages,
1560 .sync_mode = WB_SYNC_NONE,
1561 .for_kupdate = 1,
1562 .range_cyclic = 1,
1563 .reason = WB_REASON_PERIODIC,
1564 };
1565
1566 return wb_writeback(wb, &work);
1567 }
1568
1569 return 0;
1570 }
1571
1572 /*
1573 * Retrieve work items and do the writeback they describe
1574 */
1575 static long wb_do_writeback(struct bdi_writeback *wb)
1576 {
1577 struct wb_writeback_work *work;
1578 long wrote = 0;
1579
1580 set_bit(WB_writeback_running, &wb->state);
1581 while ((work = get_next_work_item(wb)) != NULL) {
1582 struct wb_completion *done = work->done;
1583 bool need_wake_up = false;
1584
1585 trace_writeback_exec(wb->bdi, work);
1586
1587 wrote += wb_writeback(wb, work);
1588
1589 if (work->single_wait) {
1590 WARN_ON_ONCE(work->auto_free);
1591 /* paired w/ rmb in wb_wait_for_single_work() */
1592 smp_wmb();
1593 work->single_done = 1;
1594 need_wake_up = true;
1595 } else if (work->auto_free) {
1596 kfree(work);
1597 }
1598
1599 if (done && atomic_dec_and_test(&done->cnt))
1600 need_wake_up = true;
1601
1602 if (need_wake_up)
1603 wake_up_all(&wb->bdi->wb_waitq);
1604 }
1605
1606 /*
1607 * Check for periodic writeback, kupdated() style
1608 */
1609 wrote += wb_check_old_data_flush(wb);
1610 wrote += wb_check_background_flush(wb);
1611 clear_bit(WB_writeback_running, &wb->state);
1612
1613 return wrote;
1614 }
1615
1616 /*
1617 * Handle writeback of dirty data for the device backed by this bdi. Also
1618 * reschedules periodically and does kupdated style flushing.
1619 */
1620 void wb_workfn(struct work_struct *work)
1621 {
1622 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1623 struct bdi_writeback, dwork);
1624 long pages_written;
1625
1626 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1627 current->flags |= PF_SWAPWRITE;
1628
1629 if (likely(!current_is_workqueue_rescuer() ||
1630 !test_bit(WB_registered, &wb->state))) {
1631 /*
1632 * The normal path. Keep writing back @wb until its
1633 * work_list is empty. Note that this path is also taken
1634 * if @wb is shutting down even when we're running off the
1635 * rescuer as work_list needs to be drained.
1636 */
1637 do {
1638 pages_written = wb_do_writeback(wb);
1639 trace_writeback_pages_written(pages_written);
1640 } while (!list_empty(&wb->work_list));
1641 } else {
1642 /*
1643 * bdi_wq can't get enough workers and we're running off
1644 * the emergency worker. Don't hog it. Hopefully, 1024 is
1645 * enough for efficient IO.
1646 */
1647 pages_written = writeback_inodes_wb(wb, 1024,
1648 WB_REASON_FORKER_THREAD);
1649 trace_writeback_pages_written(pages_written);
1650 }
1651
1652 if (!list_empty(&wb->work_list))
1653 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1654 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1655 wb_wakeup_delayed(wb);
1656
1657 current->flags &= ~PF_SWAPWRITE;
1658 }
1659
1660 /*
1661 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1662 * the whole world.
1663 */
1664 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1665 {
1666 struct backing_dev_info *bdi;
1667
1668 if (!nr_pages)
1669 nr_pages = get_nr_dirty_pages();
1670
1671 rcu_read_lock();
1672 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1673 struct bdi_writeback *wb;
1674 struct wb_iter iter;
1675
1676 if (!bdi_has_dirty_io(bdi))
1677 continue;
1678
1679 bdi_for_each_wb(wb, bdi, &iter, 0)
1680 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1681 false, reason);
1682 }
1683 rcu_read_unlock();
1684 }
1685
1686 /*
1687 * Wake up bdi's periodically to make sure dirtytime inodes gets
1688 * written back periodically. We deliberately do *not* check the
1689 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1690 * kernel to be constantly waking up once there are any dirtytime
1691 * inodes on the system. So instead we define a separate delayed work
1692 * function which gets called much more rarely. (By default, only
1693 * once every 12 hours.)
1694 *
1695 * If there is any other write activity going on in the file system,
1696 * this function won't be necessary. But if the only thing that has
1697 * happened on the file system is a dirtytime inode caused by an atime
1698 * update, we need this infrastructure below to make sure that inode
1699 * eventually gets pushed out to disk.
1700 */
1701 static void wakeup_dirtytime_writeback(struct work_struct *w);
1702 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1703
1704 static void wakeup_dirtytime_writeback(struct work_struct *w)
1705 {
1706 struct backing_dev_info *bdi;
1707
1708 rcu_read_lock();
1709 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1710 struct bdi_writeback *wb;
1711 struct wb_iter iter;
1712
1713 bdi_for_each_wb(wb, bdi, &iter, 0)
1714 if (!list_empty(&bdi->wb.b_dirty_time))
1715 wb_wakeup(&bdi->wb);
1716 }
1717 rcu_read_unlock();
1718 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1719 }
1720
1721 static int __init start_dirtytime_writeback(void)
1722 {
1723 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1724 return 0;
1725 }
1726 __initcall(start_dirtytime_writeback);
1727
1728 int dirtytime_interval_handler(struct ctl_table *table, int write,
1729 void __user *buffer, size_t *lenp, loff_t *ppos)
1730 {
1731 int ret;
1732
1733 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1734 if (ret == 0 && write)
1735 mod_delayed_work(system_wq, &dirtytime_work, 0);
1736 return ret;
1737 }
1738
1739 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1740 {
1741 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1742 struct dentry *dentry;
1743 const char *name = "?";
1744
1745 dentry = d_find_alias(inode);
1746 if (dentry) {
1747 spin_lock(&dentry->d_lock);
1748 name = (const char *) dentry->d_name.name;
1749 }
1750 printk(KERN_DEBUG
1751 "%s(%d): dirtied inode %lu (%s) on %s\n",
1752 current->comm, task_pid_nr(current), inode->i_ino,
1753 name, inode->i_sb->s_id);
1754 if (dentry) {
1755 spin_unlock(&dentry->d_lock);
1756 dput(dentry);
1757 }
1758 }
1759 }
1760
1761 /**
1762 * __mark_inode_dirty - internal function
1763 * @inode: inode to mark
1764 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1765 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1766 * mark_inode_dirty_sync.
1767 *
1768 * Put the inode on the super block's dirty list.
1769 *
1770 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1771 * dirty list only if it is hashed or if it refers to a blockdev.
1772 * If it was not hashed, it will never be added to the dirty list
1773 * even if it is later hashed, as it will have been marked dirty already.
1774 *
1775 * In short, make sure you hash any inodes _before_ you start marking
1776 * them dirty.
1777 *
1778 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1779 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1780 * the kernel-internal blockdev inode represents the dirtying time of the
1781 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1782 * page->mapping->host, so the page-dirtying time is recorded in the internal
1783 * blockdev inode.
1784 */
1785 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1786 void __mark_inode_dirty(struct inode *inode, int flags)
1787 {
1788 struct super_block *sb = inode->i_sb;
1789 int dirtytime;
1790
1791 trace_writeback_mark_inode_dirty(inode, flags);
1792
1793 /*
1794 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1795 * dirty the inode itself
1796 */
1797 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
1798 trace_writeback_dirty_inode_start(inode, flags);
1799
1800 if (sb->s_op->dirty_inode)
1801 sb->s_op->dirty_inode(inode, flags);
1802
1803 trace_writeback_dirty_inode(inode, flags);
1804 }
1805 if (flags & I_DIRTY_INODE)
1806 flags &= ~I_DIRTY_TIME;
1807 dirtytime = flags & I_DIRTY_TIME;
1808
1809 /*
1810 * Paired with smp_mb() in __writeback_single_inode() for the
1811 * following lockless i_state test. See there for details.
1812 */
1813 smp_mb();
1814
1815 if (((inode->i_state & flags) == flags) ||
1816 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1817 return;
1818
1819 if (unlikely(block_dump))
1820 block_dump___mark_inode_dirty(inode);
1821
1822 spin_lock(&inode->i_lock);
1823 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1824 goto out_unlock_inode;
1825 if ((inode->i_state & flags) != flags) {
1826 const int was_dirty = inode->i_state & I_DIRTY;
1827
1828 inode_attach_wb(inode, NULL);
1829
1830 if (flags & I_DIRTY_INODE)
1831 inode->i_state &= ~I_DIRTY_TIME;
1832 inode->i_state |= flags;
1833
1834 /*
1835 * If the inode is being synced, just update its dirty state.
1836 * The unlocker will place the inode on the appropriate
1837 * superblock list, based upon its state.
1838 */
1839 if (inode->i_state & I_SYNC)
1840 goto out_unlock_inode;
1841
1842 /*
1843 * Only add valid (hashed) inodes to the superblock's
1844 * dirty list. Add blockdev inodes as well.
1845 */
1846 if (!S_ISBLK(inode->i_mode)) {
1847 if (inode_unhashed(inode))
1848 goto out_unlock_inode;
1849 }
1850 if (inode->i_state & I_FREEING)
1851 goto out_unlock_inode;
1852
1853 /*
1854 * If the inode was already on b_dirty/b_io/b_more_io, don't
1855 * reposition it (that would break b_dirty time-ordering).
1856 */
1857 if (!was_dirty) {
1858 struct bdi_writeback *wb;
1859 struct list_head *dirty_list;
1860 bool wakeup_bdi = false;
1861
1862 wb = locked_inode_to_wb_and_lock_list(inode);
1863
1864 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
1865 !test_bit(WB_registered, &wb->state),
1866 "bdi-%s not registered\n", wb->bdi->name);
1867
1868 inode->dirtied_when = jiffies;
1869 if (dirtytime)
1870 inode->dirtied_time_when = jiffies;
1871
1872 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
1873 dirty_list = &wb->b_dirty;
1874 else
1875 dirty_list = &wb->b_dirty_time;
1876
1877 wakeup_bdi = inode_wb_list_move_locked(inode, wb,
1878 dirty_list);
1879
1880 spin_unlock(&wb->list_lock);
1881 trace_writeback_dirty_inode_enqueue(inode);
1882
1883 /*
1884 * If this is the first dirty inode for this bdi,
1885 * we have to wake-up the corresponding bdi thread
1886 * to make sure background write-back happens
1887 * later.
1888 */
1889 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
1890 wb_wakeup_delayed(wb);
1891 return;
1892 }
1893 }
1894 out_unlock_inode:
1895 spin_unlock(&inode->i_lock);
1896
1897 }
1898 EXPORT_SYMBOL(__mark_inode_dirty);
1899
1900 static void wait_sb_inodes(struct super_block *sb)
1901 {
1902 struct inode *inode, *old_inode = NULL;
1903
1904 /*
1905 * We need to be protected against the filesystem going from
1906 * r/o to r/w or vice versa.
1907 */
1908 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1909
1910 spin_lock(&inode_sb_list_lock);
1911
1912 /*
1913 * Data integrity sync. Must wait for all pages under writeback,
1914 * because there may have been pages dirtied before our sync
1915 * call, but which had writeout started before we write it out.
1916 * In which case, the inode may not be on the dirty list, but
1917 * we still have to wait for that writeout.
1918 */
1919 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1920 struct address_space *mapping = inode->i_mapping;
1921
1922 spin_lock(&inode->i_lock);
1923 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1924 (mapping->nrpages == 0)) {
1925 spin_unlock(&inode->i_lock);
1926 continue;
1927 }
1928 __iget(inode);
1929 spin_unlock(&inode->i_lock);
1930 spin_unlock(&inode_sb_list_lock);
1931
1932 /*
1933 * We hold a reference to 'inode' so it couldn't have been
1934 * removed from s_inodes list while we dropped the
1935 * inode_sb_list_lock. We cannot iput the inode now as we can
1936 * be holding the last reference and we cannot iput it under
1937 * inode_sb_list_lock. So we keep the reference and iput it
1938 * later.
1939 */
1940 iput(old_inode);
1941 old_inode = inode;
1942
1943 filemap_fdatawait(mapping);
1944
1945 cond_resched();
1946
1947 spin_lock(&inode_sb_list_lock);
1948 }
1949 spin_unlock(&inode_sb_list_lock);
1950 iput(old_inode);
1951 }
1952
1953 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
1954 enum wb_reason reason, bool skip_if_busy)
1955 {
1956 DEFINE_WB_COMPLETION_ONSTACK(done);
1957 struct wb_writeback_work work = {
1958 .sb = sb,
1959 .sync_mode = WB_SYNC_NONE,
1960 .tagged_writepages = 1,
1961 .done = &done,
1962 .nr_pages = nr,
1963 .reason = reason,
1964 };
1965 struct backing_dev_info *bdi = sb->s_bdi;
1966
1967 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1968 return;
1969 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1970
1971 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
1972 wb_wait_for_completion(bdi, &done);
1973 }
1974
1975 /**
1976 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1977 * @sb: the superblock
1978 * @nr: the number of pages to write
1979 * @reason: reason why some writeback work initiated
1980 *
1981 * Start writeback on some inodes on this super_block. No guarantees are made
1982 * on how many (if any) will be written, and this function does not wait
1983 * for IO completion of submitted IO.
1984 */
1985 void writeback_inodes_sb_nr(struct super_block *sb,
1986 unsigned long nr,
1987 enum wb_reason reason)
1988 {
1989 __writeback_inodes_sb_nr(sb, nr, reason, false);
1990 }
1991 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1992
1993 /**
1994 * writeback_inodes_sb - writeback dirty inodes from given super_block
1995 * @sb: the superblock
1996 * @reason: reason why some writeback work was initiated
1997 *
1998 * Start writeback on some inodes on this super_block. No guarantees are made
1999 * on how many (if any) will be written, and this function does not wait
2000 * for IO completion of submitted IO.
2001 */
2002 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2003 {
2004 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2005 }
2006 EXPORT_SYMBOL(writeback_inodes_sb);
2007
2008 /**
2009 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2010 * @sb: the superblock
2011 * @nr: the number of pages to write
2012 * @reason: the reason of writeback
2013 *
2014 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2015 * Returns 1 if writeback was started, 0 if not.
2016 */
2017 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2018 enum wb_reason reason)
2019 {
2020 if (!down_read_trylock(&sb->s_umount))
2021 return false;
2022
2023 __writeback_inodes_sb_nr(sb, nr, reason, true);
2024 up_read(&sb->s_umount);
2025 return true;
2026 }
2027 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2028
2029 /**
2030 * try_to_writeback_inodes_sb - try to start writeback if none underway
2031 * @sb: the superblock
2032 * @reason: reason why some writeback work was initiated
2033 *
2034 * Implement by try_to_writeback_inodes_sb_nr()
2035 * Returns 1 if writeback was started, 0 if not.
2036 */
2037 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2038 {
2039 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2040 }
2041 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2042
2043 /**
2044 * sync_inodes_sb - sync sb inode pages
2045 * @sb: the superblock
2046 *
2047 * This function writes and waits on any dirty inode belonging to this
2048 * super_block.
2049 */
2050 void sync_inodes_sb(struct super_block *sb)
2051 {
2052 DEFINE_WB_COMPLETION_ONSTACK(done);
2053 struct wb_writeback_work work = {
2054 .sb = sb,
2055 .sync_mode = WB_SYNC_ALL,
2056 .nr_pages = LONG_MAX,
2057 .range_cyclic = 0,
2058 .done = &done,
2059 .reason = WB_REASON_SYNC,
2060 .for_sync = 1,
2061 };
2062 struct backing_dev_info *bdi = sb->s_bdi;
2063
2064 /* Nothing to do? */
2065 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2066 return;
2067 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2068
2069 bdi_split_work_to_wbs(bdi, &work, false);
2070 wb_wait_for_completion(bdi, &done);
2071
2072 wait_sb_inodes(sb);
2073 }
2074 EXPORT_SYMBOL(sync_inodes_sb);
2075
2076 /**
2077 * write_inode_now - write an inode to disk
2078 * @inode: inode to write to disk
2079 * @sync: whether the write should be synchronous or not
2080 *
2081 * This function commits an inode to disk immediately if it is dirty. This is
2082 * primarily needed by knfsd.
2083 *
2084 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2085 */
2086 int write_inode_now(struct inode *inode, int sync)
2087 {
2088 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
2089 struct writeback_control wbc = {
2090 .nr_to_write = LONG_MAX,
2091 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2092 .range_start = 0,
2093 .range_end = LLONG_MAX,
2094 };
2095
2096 if (!mapping_cap_writeback_dirty(inode->i_mapping))
2097 wbc.nr_to_write = 0;
2098
2099 might_sleep();
2100 return writeback_single_inode(inode, wb, &wbc);
2101 }
2102 EXPORT_SYMBOL(write_inode_now);
2103
2104 /**
2105 * sync_inode - write an inode and its pages to disk.
2106 * @inode: the inode to sync
2107 * @wbc: controls the writeback mode
2108 *
2109 * sync_inode() will write an inode and its pages to disk. It will also
2110 * correctly update the inode on its superblock's dirty inode lists and will
2111 * update inode->i_state.
2112 *
2113 * The caller must have a ref on the inode.
2114 */
2115 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2116 {
2117 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
2118 }
2119 EXPORT_SYMBOL(sync_inode);
2120
2121 /**
2122 * sync_inode_metadata - write an inode to disk
2123 * @inode: the inode to sync
2124 * @wait: wait for I/O to complete.
2125 *
2126 * Write an inode to disk and adjust its dirty state after completion.
2127 *
2128 * Note: only writes the actual inode, no associated data or other metadata.
2129 */
2130 int sync_inode_metadata(struct inode *inode, int wait)
2131 {
2132 struct writeback_control wbc = {
2133 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2134 .nr_to_write = 0, /* metadata-only */
2135 };
2136
2137 return sync_inode(inode, &wbc);
2138 }
2139 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.150511 seconds and 6 git commands to generate.