writeback: make bdi_start_background_writeback() take bdi_writeback instead of backin...
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31
32 /*
33 * 4MB minimal write chunk size
34 */
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
50 enum wb_reason reason; /* why was writeback initiated? */
51
52 struct list_head list; /* pending work list */
53 struct completion *done; /* set if the caller waits */
54 };
55
56 /*
57 * If an inode is constantly having its pages dirtied, but then the
58 * updates stop dirtytime_expire_interval seconds in the past, it's
59 * possible for the worst case time between when an inode has its
60 * timestamps updated and when they finally get written out to be two
61 * dirtytime_expire_intervals. We set the default to 12 hours (in
62 * seconds), which means most of the time inodes will have their
63 * timestamps written to disk after 12 hours, but in the worst case a
64 * few inodes might not their timestamps updated for 24 hours.
65 */
66 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
67
68 static inline struct inode *wb_inode(struct list_head *head)
69 {
70 return list_entry(head, struct inode, i_wb_list);
71 }
72
73 /*
74 * Include the creation of the trace points after defining the
75 * wb_writeback_work structure and inline functions so that the definition
76 * remains local to this file.
77 */
78 #define CREATE_TRACE_POINTS
79 #include <trace/events/writeback.h>
80
81 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
82
83 static bool wb_io_lists_populated(struct bdi_writeback *wb)
84 {
85 if (wb_has_dirty_io(wb)) {
86 return false;
87 } else {
88 set_bit(WB_has_dirty_io, &wb->state);
89 WARN_ON_ONCE(!wb->avg_write_bandwidth);
90 atomic_long_add(wb->avg_write_bandwidth,
91 &wb->bdi->tot_write_bandwidth);
92 return true;
93 }
94 }
95
96 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
97 {
98 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
99 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
100 clear_bit(WB_has_dirty_io, &wb->state);
101 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
102 &wb->bdi->tot_write_bandwidth) < 0);
103 }
104 }
105
106 /**
107 * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
108 * @inode: inode to be moved
109 * @wb: target bdi_writeback
110 * @head: one of @wb->b_{dirty|io|more_io}
111 *
112 * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
113 * Returns %true if @inode is the first occupant of the !dirty_time IO
114 * lists; otherwise, %false.
115 */
116 static bool inode_wb_list_move_locked(struct inode *inode,
117 struct bdi_writeback *wb,
118 struct list_head *head)
119 {
120 assert_spin_locked(&wb->list_lock);
121
122 list_move(&inode->i_wb_list, head);
123
124 /* dirty_time doesn't count as dirty_io until expiration */
125 if (head != &wb->b_dirty_time)
126 return wb_io_lists_populated(wb);
127
128 wb_io_lists_depopulated(wb);
129 return false;
130 }
131
132 /**
133 * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
134 * @inode: inode to be removed
135 * @wb: bdi_writeback @inode is being removed from
136 *
137 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
138 * clear %WB_has_dirty_io if all are empty afterwards.
139 */
140 static void inode_wb_list_del_locked(struct inode *inode,
141 struct bdi_writeback *wb)
142 {
143 assert_spin_locked(&wb->list_lock);
144
145 list_del_init(&inode->i_wb_list);
146 wb_io_lists_depopulated(wb);
147 }
148
149 static void wb_wakeup(struct bdi_writeback *wb)
150 {
151 spin_lock_bh(&wb->work_lock);
152 if (test_bit(WB_registered, &wb->state))
153 mod_delayed_work(bdi_wq, &wb->dwork, 0);
154 spin_unlock_bh(&wb->work_lock);
155 }
156
157 static void wb_queue_work(struct bdi_writeback *wb,
158 struct wb_writeback_work *work)
159 {
160 trace_writeback_queue(wb->bdi, work);
161
162 spin_lock_bh(&wb->work_lock);
163 if (!test_bit(WB_registered, &wb->state)) {
164 if (work->done)
165 complete(work->done);
166 goto out_unlock;
167 }
168 list_add_tail(&work->list, &wb->work_list);
169 mod_delayed_work(bdi_wq, &wb->dwork, 0);
170 out_unlock:
171 spin_unlock_bh(&wb->work_lock);
172 }
173
174 #ifdef CONFIG_CGROUP_WRITEBACK
175
176 /**
177 * inode_congested - test whether an inode is congested
178 * @inode: inode to test for congestion
179 * @cong_bits: mask of WB_[a]sync_congested bits to test
180 *
181 * Tests whether @inode is congested. @cong_bits is the mask of congestion
182 * bits to test and the return value is the mask of set bits.
183 *
184 * If cgroup writeback is enabled for @inode, the congestion state is
185 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
186 * associated with @inode is congested; otherwise, the root wb's congestion
187 * state is used.
188 */
189 int inode_congested(struct inode *inode, int cong_bits)
190 {
191 if (inode) {
192 struct bdi_writeback *wb = inode_to_wb(inode);
193 if (wb)
194 return wb_congested(wb, cong_bits);
195 }
196
197 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
198 }
199 EXPORT_SYMBOL_GPL(inode_congested);
200
201 #endif /* CONFIG_CGROUP_WRITEBACK */
202
203 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
204 bool range_cyclic, enum wb_reason reason)
205 {
206 struct wb_writeback_work *work;
207
208 if (!wb_has_dirty_io(wb))
209 return;
210
211 /*
212 * This is WB_SYNC_NONE writeback, so if allocation fails just
213 * wakeup the thread for old dirty data writeback
214 */
215 work = kzalloc(sizeof(*work), GFP_ATOMIC);
216 if (!work) {
217 trace_writeback_nowork(wb->bdi);
218 wb_wakeup(wb);
219 return;
220 }
221
222 work->sync_mode = WB_SYNC_NONE;
223 work->nr_pages = nr_pages;
224 work->range_cyclic = range_cyclic;
225 work->reason = reason;
226
227 wb_queue_work(wb, work);
228 }
229
230 /**
231 * wb_start_background_writeback - start background writeback
232 * @wb: bdi_writback to write from
233 *
234 * Description:
235 * This makes sure WB_SYNC_NONE background writeback happens. When
236 * this function returns, it is only guaranteed that for given wb
237 * some IO is happening if we are over background dirty threshold.
238 * Caller need not hold sb s_umount semaphore.
239 */
240 void wb_start_background_writeback(struct bdi_writeback *wb)
241 {
242 /*
243 * We just wake up the flusher thread. It will perform background
244 * writeback as soon as there is no other work to do.
245 */
246 trace_writeback_wake_background(wb->bdi);
247 wb_wakeup(wb);
248 }
249
250 /*
251 * Remove the inode from the writeback list it is on.
252 */
253 void inode_wb_list_del(struct inode *inode)
254 {
255 struct bdi_writeback *wb = inode_to_wb(inode);
256
257 spin_lock(&wb->list_lock);
258 inode_wb_list_del_locked(inode, wb);
259 spin_unlock(&wb->list_lock);
260 }
261
262 /*
263 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
264 * furthest end of its superblock's dirty-inode list.
265 *
266 * Before stamping the inode's ->dirtied_when, we check to see whether it is
267 * already the most-recently-dirtied inode on the b_dirty list. If that is
268 * the case then the inode must have been redirtied while it was being written
269 * out and we don't reset its dirtied_when.
270 */
271 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
272 {
273 if (!list_empty(&wb->b_dirty)) {
274 struct inode *tail;
275
276 tail = wb_inode(wb->b_dirty.next);
277 if (time_before(inode->dirtied_when, tail->dirtied_when))
278 inode->dirtied_when = jiffies;
279 }
280 inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
281 }
282
283 /*
284 * requeue inode for re-scanning after bdi->b_io list is exhausted.
285 */
286 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
287 {
288 inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
289 }
290
291 static void inode_sync_complete(struct inode *inode)
292 {
293 inode->i_state &= ~I_SYNC;
294 /* If inode is clean an unused, put it into LRU now... */
295 inode_add_lru(inode);
296 /* Waiters must see I_SYNC cleared before being woken up */
297 smp_mb();
298 wake_up_bit(&inode->i_state, __I_SYNC);
299 }
300
301 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
302 {
303 bool ret = time_after(inode->dirtied_when, t);
304 #ifndef CONFIG_64BIT
305 /*
306 * For inodes being constantly redirtied, dirtied_when can get stuck.
307 * It _appears_ to be in the future, but is actually in distant past.
308 * This test is necessary to prevent such wrapped-around relative times
309 * from permanently stopping the whole bdi writeback.
310 */
311 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
312 #endif
313 return ret;
314 }
315
316 #define EXPIRE_DIRTY_ATIME 0x0001
317
318 /*
319 * Move expired (dirtied before work->older_than_this) dirty inodes from
320 * @delaying_queue to @dispatch_queue.
321 */
322 static int move_expired_inodes(struct list_head *delaying_queue,
323 struct list_head *dispatch_queue,
324 int flags,
325 struct wb_writeback_work *work)
326 {
327 unsigned long *older_than_this = NULL;
328 unsigned long expire_time;
329 LIST_HEAD(tmp);
330 struct list_head *pos, *node;
331 struct super_block *sb = NULL;
332 struct inode *inode;
333 int do_sb_sort = 0;
334 int moved = 0;
335
336 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
337 older_than_this = work->older_than_this;
338 else if (!work->for_sync) {
339 expire_time = jiffies - (dirtytime_expire_interval * HZ);
340 older_than_this = &expire_time;
341 }
342 while (!list_empty(delaying_queue)) {
343 inode = wb_inode(delaying_queue->prev);
344 if (older_than_this &&
345 inode_dirtied_after(inode, *older_than_this))
346 break;
347 list_move(&inode->i_wb_list, &tmp);
348 moved++;
349 if (flags & EXPIRE_DIRTY_ATIME)
350 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
351 if (sb_is_blkdev_sb(inode->i_sb))
352 continue;
353 if (sb && sb != inode->i_sb)
354 do_sb_sort = 1;
355 sb = inode->i_sb;
356 }
357
358 /* just one sb in list, splice to dispatch_queue and we're done */
359 if (!do_sb_sort) {
360 list_splice(&tmp, dispatch_queue);
361 goto out;
362 }
363
364 /* Move inodes from one superblock together */
365 while (!list_empty(&tmp)) {
366 sb = wb_inode(tmp.prev)->i_sb;
367 list_for_each_prev_safe(pos, node, &tmp) {
368 inode = wb_inode(pos);
369 if (inode->i_sb == sb)
370 list_move(&inode->i_wb_list, dispatch_queue);
371 }
372 }
373 out:
374 return moved;
375 }
376
377 /*
378 * Queue all expired dirty inodes for io, eldest first.
379 * Before
380 * newly dirtied b_dirty b_io b_more_io
381 * =============> gf edc BA
382 * After
383 * newly dirtied b_dirty b_io b_more_io
384 * =============> g fBAedc
385 * |
386 * +--> dequeue for IO
387 */
388 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
389 {
390 int moved;
391
392 assert_spin_locked(&wb->list_lock);
393 list_splice_init(&wb->b_more_io, &wb->b_io);
394 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
395 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
396 EXPIRE_DIRTY_ATIME, work);
397 if (moved)
398 wb_io_lists_populated(wb);
399 trace_writeback_queue_io(wb, work, moved);
400 }
401
402 static int write_inode(struct inode *inode, struct writeback_control *wbc)
403 {
404 int ret;
405
406 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
407 trace_writeback_write_inode_start(inode, wbc);
408 ret = inode->i_sb->s_op->write_inode(inode, wbc);
409 trace_writeback_write_inode(inode, wbc);
410 return ret;
411 }
412 return 0;
413 }
414
415 /*
416 * Wait for writeback on an inode to complete. Called with i_lock held.
417 * Caller must make sure inode cannot go away when we drop i_lock.
418 */
419 static void __inode_wait_for_writeback(struct inode *inode)
420 __releases(inode->i_lock)
421 __acquires(inode->i_lock)
422 {
423 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
424 wait_queue_head_t *wqh;
425
426 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
427 while (inode->i_state & I_SYNC) {
428 spin_unlock(&inode->i_lock);
429 __wait_on_bit(wqh, &wq, bit_wait,
430 TASK_UNINTERRUPTIBLE);
431 spin_lock(&inode->i_lock);
432 }
433 }
434
435 /*
436 * Wait for writeback on an inode to complete. Caller must have inode pinned.
437 */
438 void inode_wait_for_writeback(struct inode *inode)
439 {
440 spin_lock(&inode->i_lock);
441 __inode_wait_for_writeback(inode);
442 spin_unlock(&inode->i_lock);
443 }
444
445 /*
446 * Sleep until I_SYNC is cleared. This function must be called with i_lock
447 * held and drops it. It is aimed for callers not holding any inode reference
448 * so once i_lock is dropped, inode can go away.
449 */
450 static void inode_sleep_on_writeback(struct inode *inode)
451 __releases(inode->i_lock)
452 {
453 DEFINE_WAIT(wait);
454 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
455 int sleep;
456
457 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
458 sleep = inode->i_state & I_SYNC;
459 spin_unlock(&inode->i_lock);
460 if (sleep)
461 schedule();
462 finish_wait(wqh, &wait);
463 }
464
465 /*
466 * Find proper writeback list for the inode depending on its current state and
467 * possibly also change of its state while we were doing writeback. Here we
468 * handle things such as livelock prevention or fairness of writeback among
469 * inodes. This function can be called only by flusher thread - noone else
470 * processes all inodes in writeback lists and requeueing inodes behind flusher
471 * thread's back can have unexpected consequences.
472 */
473 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
474 struct writeback_control *wbc)
475 {
476 if (inode->i_state & I_FREEING)
477 return;
478
479 /*
480 * Sync livelock prevention. Each inode is tagged and synced in one
481 * shot. If still dirty, it will be redirty_tail()'ed below. Update
482 * the dirty time to prevent enqueue and sync it again.
483 */
484 if ((inode->i_state & I_DIRTY) &&
485 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
486 inode->dirtied_when = jiffies;
487
488 if (wbc->pages_skipped) {
489 /*
490 * writeback is not making progress due to locked
491 * buffers. Skip this inode for now.
492 */
493 redirty_tail(inode, wb);
494 return;
495 }
496
497 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
498 /*
499 * We didn't write back all the pages. nfs_writepages()
500 * sometimes bales out without doing anything.
501 */
502 if (wbc->nr_to_write <= 0) {
503 /* Slice used up. Queue for next turn. */
504 requeue_io(inode, wb);
505 } else {
506 /*
507 * Writeback blocked by something other than
508 * congestion. Delay the inode for some time to
509 * avoid spinning on the CPU (100% iowait)
510 * retrying writeback of the dirty page/inode
511 * that cannot be performed immediately.
512 */
513 redirty_tail(inode, wb);
514 }
515 } else if (inode->i_state & I_DIRTY) {
516 /*
517 * Filesystems can dirty the inode during writeback operations,
518 * such as delayed allocation during submission or metadata
519 * updates after data IO completion.
520 */
521 redirty_tail(inode, wb);
522 } else if (inode->i_state & I_DIRTY_TIME) {
523 inode->dirtied_when = jiffies;
524 inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
525 } else {
526 /* The inode is clean. Remove from writeback lists. */
527 inode_wb_list_del_locked(inode, wb);
528 }
529 }
530
531 /*
532 * Write out an inode and its dirty pages. Do not update the writeback list
533 * linkage. That is left to the caller. The caller is also responsible for
534 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
535 */
536 static int
537 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
538 {
539 struct address_space *mapping = inode->i_mapping;
540 long nr_to_write = wbc->nr_to_write;
541 unsigned dirty;
542 int ret;
543
544 WARN_ON(!(inode->i_state & I_SYNC));
545
546 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
547
548 ret = do_writepages(mapping, wbc);
549
550 /*
551 * Make sure to wait on the data before writing out the metadata.
552 * This is important for filesystems that modify metadata on data
553 * I/O completion. We don't do it for sync(2) writeback because it has a
554 * separate, external IO completion path and ->sync_fs for guaranteeing
555 * inode metadata is written back correctly.
556 */
557 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
558 int err = filemap_fdatawait(mapping);
559 if (ret == 0)
560 ret = err;
561 }
562
563 /*
564 * Some filesystems may redirty the inode during the writeback
565 * due to delalloc, clear dirty metadata flags right before
566 * write_inode()
567 */
568 spin_lock(&inode->i_lock);
569
570 dirty = inode->i_state & I_DIRTY;
571 if (inode->i_state & I_DIRTY_TIME) {
572 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
573 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
574 unlikely(time_after(jiffies,
575 (inode->dirtied_time_when +
576 dirtytime_expire_interval * HZ)))) {
577 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
578 trace_writeback_lazytime(inode);
579 }
580 } else
581 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
582 inode->i_state &= ~dirty;
583
584 /*
585 * Paired with smp_mb() in __mark_inode_dirty(). This allows
586 * __mark_inode_dirty() to test i_state without grabbing i_lock -
587 * either they see the I_DIRTY bits cleared or we see the dirtied
588 * inode.
589 *
590 * I_DIRTY_PAGES is always cleared together above even if @mapping
591 * still has dirty pages. The flag is reinstated after smp_mb() if
592 * necessary. This guarantees that either __mark_inode_dirty()
593 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
594 */
595 smp_mb();
596
597 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
598 inode->i_state |= I_DIRTY_PAGES;
599
600 spin_unlock(&inode->i_lock);
601
602 if (dirty & I_DIRTY_TIME)
603 mark_inode_dirty_sync(inode);
604 /* Don't write the inode if only I_DIRTY_PAGES was set */
605 if (dirty & ~I_DIRTY_PAGES) {
606 int err = write_inode(inode, wbc);
607 if (ret == 0)
608 ret = err;
609 }
610 trace_writeback_single_inode(inode, wbc, nr_to_write);
611 return ret;
612 }
613
614 /*
615 * Write out an inode's dirty pages. Either the caller has an active reference
616 * on the inode or the inode has I_WILL_FREE set.
617 *
618 * This function is designed to be called for writing back one inode which
619 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
620 * and does more profound writeback list handling in writeback_sb_inodes().
621 */
622 static int
623 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
624 struct writeback_control *wbc)
625 {
626 int ret = 0;
627
628 spin_lock(&inode->i_lock);
629 if (!atomic_read(&inode->i_count))
630 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
631 else
632 WARN_ON(inode->i_state & I_WILL_FREE);
633
634 if (inode->i_state & I_SYNC) {
635 if (wbc->sync_mode != WB_SYNC_ALL)
636 goto out;
637 /*
638 * It's a data-integrity sync. We must wait. Since callers hold
639 * inode reference or inode has I_WILL_FREE set, it cannot go
640 * away under us.
641 */
642 __inode_wait_for_writeback(inode);
643 }
644 WARN_ON(inode->i_state & I_SYNC);
645 /*
646 * Skip inode if it is clean and we have no outstanding writeback in
647 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
648 * function since flusher thread may be doing for example sync in
649 * parallel and if we move the inode, it could get skipped. So here we
650 * make sure inode is on some writeback list and leave it there unless
651 * we have completely cleaned the inode.
652 */
653 if (!(inode->i_state & I_DIRTY_ALL) &&
654 (wbc->sync_mode != WB_SYNC_ALL ||
655 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
656 goto out;
657 inode->i_state |= I_SYNC;
658 spin_unlock(&inode->i_lock);
659
660 ret = __writeback_single_inode(inode, wbc);
661
662 spin_lock(&wb->list_lock);
663 spin_lock(&inode->i_lock);
664 /*
665 * If inode is clean, remove it from writeback lists. Otherwise don't
666 * touch it. See comment above for explanation.
667 */
668 if (!(inode->i_state & I_DIRTY_ALL))
669 inode_wb_list_del_locked(inode, wb);
670 spin_unlock(&wb->list_lock);
671 inode_sync_complete(inode);
672 out:
673 spin_unlock(&inode->i_lock);
674 return ret;
675 }
676
677 static long writeback_chunk_size(struct bdi_writeback *wb,
678 struct wb_writeback_work *work)
679 {
680 long pages;
681
682 /*
683 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
684 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
685 * here avoids calling into writeback_inodes_wb() more than once.
686 *
687 * The intended call sequence for WB_SYNC_ALL writeback is:
688 *
689 * wb_writeback()
690 * writeback_sb_inodes() <== called only once
691 * write_cache_pages() <== called once for each inode
692 * (quickly) tag currently dirty pages
693 * (maybe slowly) sync all tagged pages
694 */
695 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
696 pages = LONG_MAX;
697 else {
698 pages = min(wb->avg_write_bandwidth / 2,
699 global_dirty_limit / DIRTY_SCOPE);
700 pages = min(pages, work->nr_pages);
701 pages = round_down(pages + MIN_WRITEBACK_PAGES,
702 MIN_WRITEBACK_PAGES);
703 }
704
705 return pages;
706 }
707
708 /*
709 * Write a portion of b_io inodes which belong to @sb.
710 *
711 * Return the number of pages and/or inodes written.
712 */
713 static long writeback_sb_inodes(struct super_block *sb,
714 struct bdi_writeback *wb,
715 struct wb_writeback_work *work)
716 {
717 struct writeback_control wbc = {
718 .sync_mode = work->sync_mode,
719 .tagged_writepages = work->tagged_writepages,
720 .for_kupdate = work->for_kupdate,
721 .for_background = work->for_background,
722 .for_sync = work->for_sync,
723 .range_cyclic = work->range_cyclic,
724 .range_start = 0,
725 .range_end = LLONG_MAX,
726 };
727 unsigned long start_time = jiffies;
728 long write_chunk;
729 long wrote = 0; /* count both pages and inodes */
730
731 while (!list_empty(&wb->b_io)) {
732 struct inode *inode = wb_inode(wb->b_io.prev);
733
734 if (inode->i_sb != sb) {
735 if (work->sb) {
736 /*
737 * We only want to write back data for this
738 * superblock, move all inodes not belonging
739 * to it back onto the dirty list.
740 */
741 redirty_tail(inode, wb);
742 continue;
743 }
744
745 /*
746 * The inode belongs to a different superblock.
747 * Bounce back to the caller to unpin this and
748 * pin the next superblock.
749 */
750 break;
751 }
752
753 /*
754 * Don't bother with new inodes or inodes being freed, first
755 * kind does not need periodic writeout yet, and for the latter
756 * kind writeout is handled by the freer.
757 */
758 spin_lock(&inode->i_lock);
759 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
760 spin_unlock(&inode->i_lock);
761 redirty_tail(inode, wb);
762 continue;
763 }
764 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
765 /*
766 * If this inode is locked for writeback and we are not
767 * doing writeback-for-data-integrity, move it to
768 * b_more_io so that writeback can proceed with the
769 * other inodes on s_io.
770 *
771 * We'll have another go at writing back this inode
772 * when we completed a full scan of b_io.
773 */
774 spin_unlock(&inode->i_lock);
775 requeue_io(inode, wb);
776 trace_writeback_sb_inodes_requeue(inode);
777 continue;
778 }
779 spin_unlock(&wb->list_lock);
780
781 /*
782 * We already requeued the inode if it had I_SYNC set and we
783 * are doing WB_SYNC_NONE writeback. So this catches only the
784 * WB_SYNC_ALL case.
785 */
786 if (inode->i_state & I_SYNC) {
787 /* Wait for I_SYNC. This function drops i_lock... */
788 inode_sleep_on_writeback(inode);
789 /* Inode may be gone, start again */
790 spin_lock(&wb->list_lock);
791 continue;
792 }
793 inode->i_state |= I_SYNC;
794 spin_unlock(&inode->i_lock);
795
796 write_chunk = writeback_chunk_size(wb, work);
797 wbc.nr_to_write = write_chunk;
798 wbc.pages_skipped = 0;
799
800 /*
801 * We use I_SYNC to pin the inode in memory. While it is set
802 * evict_inode() will wait so the inode cannot be freed.
803 */
804 __writeback_single_inode(inode, &wbc);
805
806 work->nr_pages -= write_chunk - wbc.nr_to_write;
807 wrote += write_chunk - wbc.nr_to_write;
808 spin_lock(&wb->list_lock);
809 spin_lock(&inode->i_lock);
810 if (!(inode->i_state & I_DIRTY_ALL))
811 wrote++;
812 requeue_inode(inode, wb, &wbc);
813 inode_sync_complete(inode);
814 spin_unlock(&inode->i_lock);
815 cond_resched_lock(&wb->list_lock);
816 /*
817 * bail out to wb_writeback() often enough to check
818 * background threshold and other termination conditions.
819 */
820 if (wrote) {
821 if (time_is_before_jiffies(start_time + HZ / 10UL))
822 break;
823 if (work->nr_pages <= 0)
824 break;
825 }
826 }
827 return wrote;
828 }
829
830 static long __writeback_inodes_wb(struct bdi_writeback *wb,
831 struct wb_writeback_work *work)
832 {
833 unsigned long start_time = jiffies;
834 long wrote = 0;
835
836 while (!list_empty(&wb->b_io)) {
837 struct inode *inode = wb_inode(wb->b_io.prev);
838 struct super_block *sb = inode->i_sb;
839
840 if (!trylock_super(sb)) {
841 /*
842 * trylock_super() may fail consistently due to
843 * s_umount being grabbed by someone else. Don't use
844 * requeue_io() to avoid busy retrying the inode/sb.
845 */
846 redirty_tail(inode, wb);
847 continue;
848 }
849 wrote += writeback_sb_inodes(sb, wb, work);
850 up_read(&sb->s_umount);
851
852 /* refer to the same tests at the end of writeback_sb_inodes */
853 if (wrote) {
854 if (time_is_before_jiffies(start_time + HZ / 10UL))
855 break;
856 if (work->nr_pages <= 0)
857 break;
858 }
859 }
860 /* Leave any unwritten inodes on b_io */
861 return wrote;
862 }
863
864 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
865 enum wb_reason reason)
866 {
867 struct wb_writeback_work work = {
868 .nr_pages = nr_pages,
869 .sync_mode = WB_SYNC_NONE,
870 .range_cyclic = 1,
871 .reason = reason,
872 };
873
874 spin_lock(&wb->list_lock);
875 if (list_empty(&wb->b_io))
876 queue_io(wb, &work);
877 __writeback_inodes_wb(wb, &work);
878 spin_unlock(&wb->list_lock);
879
880 return nr_pages - work.nr_pages;
881 }
882
883 static bool over_bground_thresh(struct bdi_writeback *wb)
884 {
885 unsigned long background_thresh, dirty_thresh;
886
887 global_dirty_limits(&background_thresh, &dirty_thresh);
888
889 if (global_page_state(NR_FILE_DIRTY) +
890 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
891 return true;
892
893 if (wb_stat(wb, WB_RECLAIMABLE) > wb_dirty_limit(wb, background_thresh))
894 return true;
895
896 return false;
897 }
898
899 /*
900 * Called under wb->list_lock. If there are multiple wb per bdi,
901 * only the flusher working on the first wb should do it.
902 */
903 static void wb_update_bandwidth(struct bdi_writeback *wb,
904 unsigned long start_time)
905 {
906 __wb_update_bandwidth(wb, 0, 0, 0, 0, 0, start_time);
907 }
908
909 /*
910 * Explicit flushing or periodic writeback of "old" data.
911 *
912 * Define "old": the first time one of an inode's pages is dirtied, we mark the
913 * dirtying-time in the inode's address_space. So this periodic writeback code
914 * just walks the superblock inode list, writing back any inodes which are
915 * older than a specific point in time.
916 *
917 * Try to run once per dirty_writeback_interval. But if a writeback event
918 * takes longer than a dirty_writeback_interval interval, then leave a
919 * one-second gap.
920 *
921 * older_than_this takes precedence over nr_to_write. So we'll only write back
922 * all dirty pages if they are all attached to "old" mappings.
923 */
924 static long wb_writeback(struct bdi_writeback *wb,
925 struct wb_writeback_work *work)
926 {
927 unsigned long wb_start = jiffies;
928 long nr_pages = work->nr_pages;
929 unsigned long oldest_jif;
930 struct inode *inode;
931 long progress;
932
933 oldest_jif = jiffies;
934 work->older_than_this = &oldest_jif;
935
936 spin_lock(&wb->list_lock);
937 for (;;) {
938 /*
939 * Stop writeback when nr_pages has been consumed
940 */
941 if (work->nr_pages <= 0)
942 break;
943
944 /*
945 * Background writeout and kupdate-style writeback may
946 * run forever. Stop them if there is other work to do
947 * so that e.g. sync can proceed. They'll be restarted
948 * after the other works are all done.
949 */
950 if ((work->for_background || work->for_kupdate) &&
951 !list_empty(&wb->work_list))
952 break;
953
954 /*
955 * For background writeout, stop when we are below the
956 * background dirty threshold
957 */
958 if (work->for_background && !over_bground_thresh(wb))
959 break;
960
961 /*
962 * Kupdate and background works are special and we want to
963 * include all inodes that need writing. Livelock avoidance is
964 * handled by these works yielding to any other work so we are
965 * safe.
966 */
967 if (work->for_kupdate) {
968 oldest_jif = jiffies -
969 msecs_to_jiffies(dirty_expire_interval * 10);
970 } else if (work->for_background)
971 oldest_jif = jiffies;
972
973 trace_writeback_start(wb->bdi, work);
974 if (list_empty(&wb->b_io))
975 queue_io(wb, work);
976 if (work->sb)
977 progress = writeback_sb_inodes(work->sb, wb, work);
978 else
979 progress = __writeback_inodes_wb(wb, work);
980 trace_writeback_written(wb->bdi, work);
981
982 wb_update_bandwidth(wb, wb_start);
983
984 /*
985 * Did we write something? Try for more
986 *
987 * Dirty inodes are moved to b_io for writeback in batches.
988 * The completion of the current batch does not necessarily
989 * mean the overall work is done. So we keep looping as long
990 * as made some progress on cleaning pages or inodes.
991 */
992 if (progress)
993 continue;
994 /*
995 * No more inodes for IO, bail
996 */
997 if (list_empty(&wb->b_more_io))
998 break;
999 /*
1000 * Nothing written. Wait for some inode to
1001 * become available for writeback. Otherwise
1002 * we'll just busyloop.
1003 */
1004 if (!list_empty(&wb->b_more_io)) {
1005 trace_writeback_wait(wb->bdi, work);
1006 inode = wb_inode(wb->b_more_io.prev);
1007 spin_lock(&inode->i_lock);
1008 spin_unlock(&wb->list_lock);
1009 /* This function drops i_lock... */
1010 inode_sleep_on_writeback(inode);
1011 spin_lock(&wb->list_lock);
1012 }
1013 }
1014 spin_unlock(&wb->list_lock);
1015
1016 return nr_pages - work->nr_pages;
1017 }
1018
1019 /*
1020 * Return the next wb_writeback_work struct that hasn't been processed yet.
1021 */
1022 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1023 {
1024 struct wb_writeback_work *work = NULL;
1025
1026 spin_lock_bh(&wb->work_lock);
1027 if (!list_empty(&wb->work_list)) {
1028 work = list_entry(wb->work_list.next,
1029 struct wb_writeback_work, list);
1030 list_del_init(&work->list);
1031 }
1032 spin_unlock_bh(&wb->work_lock);
1033 return work;
1034 }
1035
1036 /*
1037 * Add in the number of potentially dirty inodes, because each inode
1038 * write can dirty pagecache in the underlying blockdev.
1039 */
1040 static unsigned long get_nr_dirty_pages(void)
1041 {
1042 return global_page_state(NR_FILE_DIRTY) +
1043 global_page_state(NR_UNSTABLE_NFS) +
1044 get_nr_dirty_inodes();
1045 }
1046
1047 static long wb_check_background_flush(struct bdi_writeback *wb)
1048 {
1049 if (over_bground_thresh(wb)) {
1050
1051 struct wb_writeback_work work = {
1052 .nr_pages = LONG_MAX,
1053 .sync_mode = WB_SYNC_NONE,
1054 .for_background = 1,
1055 .range_cyclic = 1,
1056 .reason = WB_REASON_BACKGROUND,
1057 };
1058
1059 return wb_writeback(wb, &work);
1060 }
1061
1062 return 0;
1063 }
1064
1065 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1066 {
1067 unsigned long expired;
1068 long nr_pages;
1069
1070 /*
1071 * When set to zero, disable periodic writeback
1072 */
1073 if (!dirty_writeback_interval)
1074 return 0;
1075
1076 expired = wb->last_old_flush +
1077 msecs_to_jiffies(dirty_writeback_interval * 10);
1078 if (time_before(jiffies, expired))
1079 return 0;
1080
1081 wb->last_old_flush = jiffies;
1082 nr_pages = get_nr_dirty_pages();
1083
1084 if (nr_pages) {
1085 struct wb_writeback_work work = {
1086 .nr_pages = nr_pages,
1087 .sync_mode = WB_SYNC_NONE,
1088 .for_kupdate = 1,
1089 .range_cyclic = 1,
1090 .reason = WB_REASON_PERIODIC,
1091 };
1092
1093 return wb_writeback(wb, &work);
1094 }
1095
1096 return 0;
1097 }
1098
1099 /*
1100 * Retrieve work items and do the writeback they describe
1101 */
1102 static long wb_do_writeback(struct bdi_writeback *wb)
1103 {
1104 struct wb_writeback_work *work;
1105 long wrote = 0;
1106
1107 set_bit(WB_writeback_running, &wb->state);
1108 while ((work = get_next_work_item(wb)) != NULL) {
1109
1110 trace_writeback_exec(wb->bdi, work);
1111
1112 wrote += wb_writeback(wb, work);
1113
1114 /*
1115 * Notify the caller of completion if this is a synchronous
1116 * work item, otherwise just free it.
1117 */
1118 if (work->done)
1119 complete(work->done);
1120 else
1121 kfree(work);
1122 }
1123
1124 /*
1125 * Check for periodic writeback, kupdated() style
1126 */
1127 wrote += wb_check_old_data_flush(wb);
1128 wrote += wb_check_background_flush(wb);
1129 clear_bit(WB_writeback_running, &wb->state);
1130
1131 return wrote;
1132 }
1133
1134 /*
1135 * Handle writeback of dirty data for the device backed by this bdi. Also
1136 * reschedules periodically and does kupdated style flushing.
1137 */
1138 void wb_workfn(struct work_struct *work)
1139 {
1140 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1141 struct bdi_writeback, dwork);
1142 long pages_written;
1143
1144 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1145 current->flags |= PF_SWAPWRITE;
1146
1147 if (likely(!current_is_workqueue_rescuer() ||
1148 !test_bit(WB_registered, &wb->state))) {
1149 /*
1150 * The normal path. Keep writing back @wb until its
1151 * work_list is empty. Note that this path is also taken
1152 * if @wb is shutting down even when we're running off the
1153 * rescuer as work_list needs to be drained.
1154 */
1155 do {
1156 pages_written = wb_do_writeback(wb);
1157 trace_writeback_pages_written(pages_written);
1158 } while (!list_empty(&wb->work_list));
1159 } else {
1160 /*
1161 * bdi_wq can't get enough workers and we're running off
1162 * the emergency worker. Don't hog it. Hopefully, 1024 is
1163 * enough for efficient IO.
1164 */
1165 pages_written = writeback_inodes_wb(wb, 1024,
1166 WB_REASON_FORKER_THREAD);
1167 trace_writeback_pages_written(pages_written);
1168 }
1169
1170 if (!list_empty(&wb->work_list))
1171 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1172 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1173 wb_wakeup_delayed(wb);
1174
1175 current->flags &= ~PF_SWAPWRITE;
1176 }
1177
1178 /*
1179 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1180 * the whole world.
1181 */
1182 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1183 {
1184 struct backing_dev_info *bdi;
1185
1186 if (!nr_pages)
1187 nr_pages = get_nr_dirty_pages();
1188
1189 rcu_read_lock();
1190 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1191 wb_start_writeback(&bdi->wb, nr_pages, false, reason);
1192 rcu_read_unlock();
1193 }
1194
1195 /*
1196 * Wake up bdi's periodically to make sure dirtytime inodes gets
1197 * written back periodically. We deliberately do *not* check the
1198 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1199 * kernel to be constantly waking up once there are any dirtytime
1200 * inodes on the system. So instead we define a separate delayed work
1201 * function which gets called much more rarely. (By default, only
1202 * once every 12 hours.)
1203 *
1204 * If there is any other write activity going on in the file system,
1205 * this function won't be necessary. But if the only thing that has
1206 * happened on the file system is a dirtytime inode caused by an atime
1207 * update, we need this infrastructure below to make sure that inode
1208 * eventually gets pushed out to disk.
1209 */
1210 static void wakeup_dirtytime_writeback(struct work_struct *w);
1211 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1212
1213 static void wakeup_dirtytime_writeback(struct work_struct *w)
1214 {
1215 struct backing_dev_info *bdi;
1216
1217 rcu_read_lock();
1218 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1219 if (list_empty(&bdi->wb.b_dirty_time))
1220 continue;
1221 wb_wakeup(&bdi->wb);
1222 }
1223 rcu_read_unlock();
1224 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1225 }
1226
1227 static int __init start_dirtytime_writeback(void)
1228 {
1229 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1230 return 0;
1231 }
1232 __initcall(start_dirtytime_writeback);
1233
1234 int dirtytime_interval_handler(struct ctl_table *table, int write,
1235 void __user *buffer, size_t *lenp, loff_t *ppos)
1236 {
1237 int ret;
1238
1239 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1240 if (ret == 0 && write)
1241 mod_delayed_work(system_wq, &dirtytime_work, 0);
1242 return ret;
1243 }
1244
1245 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1246 {
1247 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1248 struct dentry *dentry;
1249 const char *name = "?";
1250
1251 dentry = d_find_alias(inode);
1252 if (dentry) {
1253 spin_lock(&dentry->d_lock);
1254 name = (const char *) dentry->d_name.name;
1255 }
1256 printk(KERN_DEBUG
1257 "%s(%d): dirtied inode %lu (%s) on %s\n",
1258 current->comm, task_pid_nr(current), inode->i_ino,
1259 name, inode->i_sb->s_id);
1260 if (dentry) {
1261 spin_unlock(&dentry->d_lock);
1262 dput(dentry);
1263 }
1264 }
1265 }
1266
1267 /**
1268 * __mark_inode_dirty - internal function
1269 * @inode: inode to mark
1270 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1271 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1272 * mark_inode_dirty_sync.
1273 *
1274 * Put the inode on the super block's dirty list.
1275 *
1276 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1277 * dirty list only if it is hashed or if it refers to a blockdev.
1278 * If it was not hashed, it will never be added to the dirty list
1279 * even if it is later hashed, as it will have been marked dirty already.
1280 *
1281 * In short, make sure you hash any inodes _before_ you start marking
1282 * them dirty.
1283 *
1284 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1285 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1286 * the kernel-internal blockdev inode represents the dirtying time of the
1287 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1288 * page->mapping->host, so the page-dirtying time is recorded in the internal
1289 * blockdev inode.
1290 */
1291 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1292 void __mark_inode_dirty(struct inode *inode, int flags)
1293 {
1294 struct super_block *sb = inode->i_sb;
1295 struct backing_dev_info *bdi = NULL;
1296 int dirtytime;
1297
1298 trace_writeback_mark_inode_dirty(inode, flags);
1299
1300 /*
1301 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1302 * dirty the inode itself
1303 */
1304 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
1305 trace_writeback_dirty_inode_start(inode, flags);
1306
1307 if (sb->s_op->dirty_inode)
1308 sb->s_op->dirty_inode(inode, flags);
1309
1310 trace_writeback_dirty_inode(inode, flags);
1311 }
1312 if (flags & I_DIRTY_INODE)
1313 flags &= ~I_DIRTY_TIME;
1314 dirtytime = flags & I_DIRTY_TIME;
1315
1316 /*
1317 * Paired with smp_mb() in __writeback_single_inode() for the
1318 * following lockless i_state test. See there for details.
1319 */
1320 smp_mb();
1321
1322 if (((inode->i_state & flags) == flags) ||
1323 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1324 return;
1325
1326 if (unlikely(block_dump))
1327 block_dump___mark_inode_dirty(inode);
1328
1329 spin_lock(&inode->i_lock);
1330 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1331 goto out_unlock_inode;
1332 if ((inode->i_state & flags) != flags) {
1333 const int was_dirty = inode->i_state & I_DIRTY;
1334
1335 inode_attach_wb(inode, NULL);
1336
1337 if (flags & I_DIRTY_INODE)
1338 inode->i_state &= ~I_DIRTY_TIME;
1339 inode->i_state |= flags;
1340
1341 /*
1342 * If the inode is being synced, just update its dirty state.
1343 * The unlocker will place the inode on the appropriate
1344 * superblock list, based upon its state.
1345 */
1346 if (inode->i_state & I_SYNC)
1347 goto out_unlock_inode;
1348
1349 /*
1350 * Only add valid (hashed) inodes to the superblock's
1351 * dirty list. Add blockdev inodes as well.
1352 */
1353 if (!S_ISBLK(inode->i_mode)) {
1354 if (inode_unhashed(inode))
1355 goto out_unlock_inode;
1356 }
1357 if (inode->i_state & I_FREEING)
1358 goto out_unlock_inode;
1359
1360 /*
1361 * If the inode was already on b_dirty/b_io/b_more_io, don't
1362 * reposition it (that would break b_dirty time-ordering).
1363 */
1364 if (!was_dirty) {
1365 struct list_head *dirty_list;
1366 bool wakeup_bdi = false;
1367 bdi = inode_to_bdi(inode);
1368
1369 spin_unlock(&inode->i_lock);
1370 spin_lock(&bdi->wb.list_lock);
1371
1372 WARN(bdi_cap_writeback_dirty(bdi) &&
1373 !test_bit(WB_registered, &bdi->wb.state),
1374 "bdi-%s not registered\n", bdi->name);
1375
1376 inode->dirtied_when = jiffies;
1377 if (dirtytime)
1378 inode->dirtied_time_when = jiffies;
1379
1380 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
1381 dirty_list = &bdi->wb.b_dirty;
1382 else
1383 dirty_list = &bdi->wb.b_dirty_time;
1384
1385 wakeup_bdi = inode_wb_list_move_locked(inode, &bdi->wb,
1386 dirty_list);
1387
1388 spin_unlock(&bdi->wb.list_lock);
1389 trace_writeback_dirty_inode_enqueue(inode);
1390
1391 /*
1392 * If this is the first dirty inode for this bdi,
1393 * we have to wake-up the corresponding bdi thread
1394 * to make sure background write-back happens
1395 * later.
1396 */
1397 if (bdi_cap_writeback_dirty(bdi) && wakeup_bdi)
1398 wb_wakeup_delayed(&bdi->wb);
1399 return;
1400 }
1401 }
1402 out_unlock_inode:
1403 spin_unlock(&inode->i_lock);
1404
1405 }
1406 EXPORT_SYMBOL(__mark_inode_dirty);
1407
1408 static void wait_sb_inodes(struct super_block *sb)
1409 {
1410 struct inode *inode, *old_inode = NULL;
1411
1412 /*
1413 * We need to be protected against the filesystem going from
1414 * r/o to r/w or vice versa.
1415 */
1416 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1417
1418 spin_lock(&inode_sb_list_lock);
1419
1420 /*
1421 * Data integrity sync. Must wait for all pages under writeback,
1422 * because there may have been pages dirtied before our sync
1423 * call, but which had writeout started before we write it out.
1424 * In which case, the inode may not be on the dirty list, but
1425 * we still have to wait for that writeout.
1426 */
1427 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1428 struct address_space *mapping = inode->i_mapping;
1429
1430 spin_lock(&inode->i_lock);
1431 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1432 (mapping->nrpages == 0)) {
1433 spin_unlock(&inode->i_lock);
1434 continue;
1435 }
1436 __iget(inode);
1437 spin_unlock(&inode->i_lock);
1438 spin_unlock(&inode_sb_list_lock);
1439
1440 /*
1441 * We hold a reference to 'inode' so it couldn't have been
1442 * removed from s_inodes list while we dropped the
1443 * inode_sb_list_lock. We cannot iput the inode now as we can
1444 * be holding the last reference and we cannot iput it under
1445 * inode_sb_list_lock. So we keep the reference and iput it
1446 * later.
1447 */
1448 iput(old_inode);
1449 old_inode = inode;
1450
1451 filemap_fdatawait(mapping);
1452
1453 cond_resched();
1454
1455 spin_lock(&inode_sb_list_lock);
1456 }
1457 spin_unlock(&inode_sb_list_lock);
1458 iput(old_inode);
1459 }
1460
1461 /**
1462 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1463 * @sb: the superblock
1464 * @nr: the number of pages to write
1465 * @reason: reason why some writeback work initiated
1466 *
1467 * Start writeback on some inodes on this super_block. No guarantees are made
1468 * on how many (if any) will be written, and this function does not wait
1469 * for IO completion of submitted IO.
1470 */
1471 void writeback_inodes_sb_nr(struct super_block *sb,
1472 unsigned long nr,
1473 enum wb_reason reason)
1474 {
1475 DECLARE_COMPLETION_ONSTACK(done);
1476 struct wb_writeback_work work = {
1477 .sb = sb,
1478 .sync_mode = WB_SYNC_NONE,
1479 .tagged_writepages = 1,
1480 .done = &done,
1481 .nr_pages = nr,
1482 .reason = reason,
1483 };
1484 struct backing_dev_info *bdi = sb->s_bdi;
1485
1486 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1487 return;
1488 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1489 wb_queue_work(&bdi->wb, &work);
1490 wait_for_completion(&done);
1491 }
1492 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1493
1494 /**
1495 * writeback_inodes_sb - writeback dirty inodes from given super_block
1496 * @sb: the superblock
1497 * @reason: reason why some writeback work was initiated
1498 *
1499 * Start writeback on some inodes on this super_block. No guarantees are made
1500 * on how many (if any) will be written, and this function does not wait
1501 * for IO completion of submitted IO.
1502 */
1503 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1504 {
1505 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1506 }
1507 EXPORT_SYMBOL(writeback_inodes_sb);
1508
1509 /**
1510 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1511 * @sb: the superblock
1512 * @nr: the number of pages to write
1513 * @reason: the reason of writeback
1514 *
1515 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1516 * Returns 1 if writeback was started, 0 if not.
1517 */
1518 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1519 unsigned long nr,
1520 enum wb_reason reason)
1521 {
1522 if (writeback_in_progress(&sb->s_bdi->wb))
1523 return 1;
1524
1525 if (!down_read_trylock(&sb->s_umount))
1526 return 0;
1527
1528 writeback_inodes_sb_nr(sb, nr, reason);
1529 up_read(&sb->s_umount);
1530 return 1;
1531 }
1532 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1533
1534 /**
1535 * try_to_writeback_inodes_sb - try to start writeback if none underway
1536 * @sb: the superblock
1537 * @reason: reason why some writeback work was initiated
1538 *
1539 * Implement by try_to_writeback_inodes_sb_nr()
1540 * Returns 1 if writeback was started, 0 if not.
1541 */
1542 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1543 {
1544 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1545 }
1546 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1547
1548 /**
1549 * sync_inodes_sb - sync sb inode pages
1550 * @sb: the superblock
1551 *
1552 * This function writes and waits on any dirty inode belonging to this
1553 * super_block.
1554 */
1555 void sync_inodes_sb(struct super_block *sb)
1556 {
1557 DECLARE_COMPLETION_ONSTACK(done);
1558 struct wb_writeback_work work = {
1559 .sb = sb,
1560 .sync_mode = WB_SYNC_ALL,
1561 .nr_pages = LONG_MAX,
1562 .range_cyclic = 0,
1563 .done = &done,
1564 .reason = WB_REASON_SYNC,
1565 .for_sync = 1,
1566 };
1567 struct backing_dev_info *bdi = sb->s_bdi;
1568
1569 /* Nothing to do? */
1570 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1571 return;
1572 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1573
1574 wb_queue_work(&bdi->wb, &work);
1575 wait_for_completion(&done);
1576
1577 wait_sb_inodes(sb);
1578 }
1579 EXPORT_SYMBOL(sync_inodes_sb);
1580
1581 /**
1582 * write_inode_now - write an inode to disk
1583 * @inode: inode to write to disk
1584 * @sync: whether the write should be synchronous or not
1585 *
1586 * This function commits an inode to disk immediately if it is dirty. This is
1587 * primarily needed by knfsd.
1588 *
1589 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1590 */
1591 int write_inode_now(struct inode *inode, int sync)
1592 {
1593 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1594 struct writeback_control wbc = {
1595 .nr_to_write = LONG_MAX,
1596 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1597 .range_start = 0,
1598 .range_end = LLONG_MAX,
1599 };
1600
1601 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1602 wbc.nr_to_write = 0;
1603
1604 might_sleep();
1605 return writeback_single_inode(inode, wb, &wbc);
1606 }
1607 EXPORT_SYMBOL(write_inode_now);
1608
1609 /**
1610 * sync_inode - write an inode and its pages to disk.
1611 * @inode: the inode to sync
1612 * @wbc: controls the writeback mode
1613 *
1614 * sync_inode() will write an inode and its pages to disk. It will also
1615 * correctly update the inode on its superblock's dirty inode lists and will
1616 * update inode->i_state.
1617 *
1618 * The caller must have a ref on the inode.
1619 */
1620 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1621 {
1622 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1623 }
1624 EXPORT_SYMBOL(sync_inode);
1625
1626 /**
1627 * sync_inode_metadata - write an inode to disk
1628 * @inode: the inode to sync
1629 * @wait: wait for I/O to complete.
1630 *
1631 * Write an inode to disk and adjust its dirty state after completion.
1632 *
1633 * Note: only writes the actual inode, no associated data or other metadata.
1634 */
1635 int sync_inode_metadata(struct inode *inode, int wait)
1636 {
1637 struct writeback_control wbc = {
1638 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1639 .nr_to_write = 0, /* metadata-only */
1640 };
1641
1642 return sync_inode(inode, &wbc);
1643 }
1644 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.062883 seconds and 6 git commands to generate.